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Let (W, F) be a bordered Riemann surface. We say tha t  (W, F) satisfies the A B -  

maximum principle if each bounded analytic function on W U 1 ~ assumes its maximum on 

F. If  W has genus zero, then W is conformally equivalent to a plane domain whose boundary 

consists of the image of F and a total ly disconnected perfect set E which has the property 

tha t  it is " removable"  for every bounded analytic function, i.e. every function bounded 

and analytic in U ~ E for some neighborhood U of E can be extended to be analytic in U. 

A similar situation occurs when W has finite genus, but  when W has infinite genus we 

cannot represent it as the complement of a set on a compact surface, and so the question 

arises of whether we can have some generalization of this notion of "removabil i ty" .  

Myrberg [4] and Selberg [6] have shown tha t  for certain twosheeted covering surfaces 

of the disc each bounded analytic function on the surface is obtained by  lifting a bounded 

analytic function from the disc to the surface, and Heins [2] has shown that ,  if W has a 

single end and tha t  a parabolic end, then there is a mapping ~v of tha t  end into a disc 

so tha t  every bounded analytic function on the end is of the f o r m / o  ~0 where / is analytic 

on the disc. In  the present paper  we generalize these results by establishing Theorem 3 

which states that ,  if (W, F) satisfies the AB-max imum principle, then there is an analytic 

mapping ~0 of W U F into a compact Riemann surface such tha t  each bounded analytic 

function on W U I ~ is of the form/o~0 where / is an analytic function in a neighborhood of 

t h e  closure of ~[W U F]. 

T h e  proof of this theorem relies on the application of techniques from the theory of 

function algebras to the algebra of bounded analytic functions on W U F. We begin in 

Section 1 by showing that,  if we have any algebra of analytic functions on a Riemann 
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surface, then there is a Riemann surface on which the algebra really lives in the sense that  

it weakly distinguishes points on this surface and the surface is the largest one to which 

the algebra can be extended with this separation property. This is generalized to cover the 

case of a surface with border. We then show that  if W is the proper Riemann surface for an 

algebra A of analytic functions and K a compact subset of W then the homomorphisms 

of A into the complex numbers which are bounded by the maximum of the functions on 

K are all obtained by evaluations at points of W which are either in K or in a compact 

component of the complement of K. This result (Theorem 1) and a generalization (Theorem 

2) to enable us to handle the case of a bordered surface then lead to our result on "remov- 

ability" given by Theorem 3. 

In  proving Theorem 1 considerable use is made of what are here called analytic 

characters on an algebra. These are analyzed in some detail in Section 4 and used to as- 

sociate bounded homomorphisms with points on a Riemann surface. The ideas used here 

were first used by Wermer [7] in proving that, under certain conditions, an algebra of 

analytic functions on the unit circumference could be extended to a finite Riemann surface 

bounded by the unit circumference. This theorem of Wermer's was the origin of my in- 

vestigations, and Theorems 1 and 2 of this paper can be considered to be generalizations 

of Wermer's theorem. In  Section 7 we derive Wermer's theorem as a consequence of 

Theorem 2. 

Errett  Bishop [1] has also generalized the work of Wermer, and his Theorem 2 has 

virtually the same content as Theorem 1 here. His method of proof differs from that  used 

here in that  he considers the maximal ideal space of an algebra and introduces an analytic 

structure into it, whereas here we construct the proper Riemann surface for an algebra 

and then show that  the maximal ideal space of the algebra can be represented on this 

surface. Both methods of proof, however, rely in some form on Wermer's ideas. 

1. Algebras and their representations 

I t  will be convenient to consider algebras of analytic functions not only on connected 

Riemann surfaces but also on not necessarily connected Riemann surfaces. In accordance 

with the usual terminology, we shall use the term "Riemann surface" to mean a connected 

Riemann surface, unless otherwise specified. If  A is an algebra of analytic functions on 

a not necessarily connected Riemann surface, then we say that  points p and q of the 

surface are weakly separated by A if there are functions / and g in A such that  there are 

neighborhoods of p and q in which / has only isolated zeros and g//assumes different values 

at p and q. 
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L~MMA 1. I / A  separates p weakly/ tom q, then there are neighborhoods U and V o / p  

and q such that A separates each pair o/points in U • V except <p, q>. 

Proo/. Let / and g be elements of the algebra such tha t  / has only isolated zeros near 

p and q and g / /has  different values at  p and q. Since A is an algebra, we may  assume tha t  

g//is  0 at  p and ~ at q. Let U be a neighborhood of p in which / has no zeros other than 

p and where /g/l] < 1. Let  V be a neighborhood of q in which / has no zeros other than  q 

and where /g/l[ > 1. Then / and g separate each pair of points in U • V except possibly 

<p, q>. 

L~MMA 2. I / A  separates weakly on a Riemann sur/ace W, then the subset Co /  W • W 

de/ined by C = {<p, q>: p #q; /(p) =/ (q) /o r  a l l / E A )  is countable. 

Proo/. Let  A be the diagonal of W • W, i.e. A = ( < p , p > ) .  Then Lemma 1 states that  

W • W ~  A can be covered by neighborhoods U • V each of which contains at most  one 

element of C. Since W is separable (i.e. first countable), so is W • W ~ A ,  and so this 

covering by neighborhoods has a countable subcovering. Consequently, C is countable. 

L~MMA 3. Let A be a weakly separating algebra o/analytic/unctions on a (not neces- 

sarily connected) Riemann sur/ace W, and y~ an analytic map o~ W into a (not necessarily 

connected) Riemann sur/ace V such that/or each /E A there is an analytic/unction [ on V 

with/=[o~o. Then ~fl is one-to-one. 

Proo/. Let p and q be two distinct points of W, and let / and g be elements of A with 

g/ / taking different values at  p and q and / having only isolated zeros near p and q. Then 

~/[ must  take different values at  ~o(p) and at  ~(q). Hence y3(p) #y~(q), and ~p is one-to-one. 

We say tha t  the algebra A of analytic functions is primitive at  the point p if there are 

elements / and g in A such tha t  g//has a simple zero at  p. 

LEMMA 4. Let A be primitive at the points p and q. Then A weakly separates p and q 

i /and  only i/ there is an element o/ A whose order at p is di//erent /rom its order at q. 

Proo/. If  A weakly separates p from q, then.there are functions / and g in A with g// 

having different values at  p and q. Hence either g - / o r  / has an order at  p different f rom 

tha t  at q, and the "only if" par t  of the lemma is established. 

Suppose A is primitive at  p and ff and tha t  there is a function h with differens orders. 

at p and q. Let gl//1 and g2//2 have simple zeros at  p and q, respectively. By adding to /1  

a suitable power of/2 and to /2  a suitable power of/1 we may  assume also tha t /1  does no t  

vanish identically near q and/2  does not vanish identically near p. I f  neither gl//1 or g,//~ 
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separates p from q, then they are both zero at both p and q and so some linear combination 

of them will have a simple zero at both p and q. Let g/ /be this linear combination. Let h 

be a function with different orders at p and q, and let n be the smaller order. Then h/n]g n 

separates p from q, and the lemma is proved. 

Let R be a (not necessarily connected) Riemann surface and ~ a homomorphism of an 

algebra A onto a subalgebra A" of the analytic functions on R. We call ~ a representation 

of A on R if for each component of R there is a n / " E A  ~ which is not constant on that  

component. When speaking of an algebra A we always assume that  it is an algebra with 

unit over the complex field and that  it has at least one representation. This is always the 

case if A is an algebra of analytic functions on a Riemann surface, for the identity homo- 

morphism is a representation. If  0 is an open subset of R, we define the restriction to 0 

of a representation ~ of A on R to be ~ followed by restriction to O. 

If  ~ and ~ are representations of A on R and S (or more generally homomorphisms 

into the analytic functions on R and S), we say that  ~ and ~ are conformally equivalent 

if there is a one-to-one analytic map ~0 of R onto S such that/e=/"o~0 for e a c h / E A .  If  

and ~ are two representations of A onto neighborhoods of 0 in the complex plane, we say 

tha t  ~ and ~ are locally equivalent (at 0) if there is a one-to-one colxformal map yJ of some 

neighborhood U of 0 onto a neighborhood of 0 such that  ~(0)=0 and such t h a t / e = / % ~  

on the neighborhood U. Clearly the restriction of Q to any smaller neighborhood of 0 is- 

equivalent to Q. The following lemma gives a criterion for local equivalence. 

L]~MMA 5. Let ~ and (~ be two representations o/ A onto neighborhoods o/ O. Then P and 

.(~ are locally equivalent at 0 i /and only i / /or  each / in A the/unctions/e and/~ have the same 

order at O. 

Proo/. The "only if" statement is trivial. Let us suppose tha t / e  and /~  have the same 

~rder for each lEA.  Let / and g be elements of A such that  the order of/e/g, is positive and 

is the smallest positive order at 0 among all elements in the field of quotients of A ~ Then 

]~/g" has the same order and it also is minimal for the field of quotients of A ". Replacing 

and ~ by locally equivalent representations we may assume that  ]q]ge =/, /g,= ~n and that  

~he representations are on the disk U = {~: I $ [ <  1). Thus for each h in A the function h ~ 

can  be expanded in U in a power series in ~. Since n is the minimal positive order in the 

:field of quotients of A e and since ~ is in this field of quotients, it follows that  this power 

series contains only terms in powers of ~ ,  i.e. h q = ~ o a ~  ~. Similarly, h"=~y=o b~ ~. 

Let P(~L) = ~.~=0 aft L~. Then P is the unique polynomial of order N such that  h e _p(f~/gO) 

has order greater than N at 0. But this implies tha t  h" -P(/~'/il ~) has order greater than N 

~ t  0, whence a~=b~. Thus h~ e, and the representations are locally equivalent. 
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Lv, MMA 6. Let ~ be a representation o / A  on a Riemann sur/ace W and p a point o / W .  

Then there is an analytic map yJ o / a  neighborhood U o] p into the plane with ~(p) = 0 and a 

representation ~ o / A  on ~[U] which is primitive at 0 and/or which ]~ =]a o~ on U. The repre- 

sentation ~ is unique to within local equivalence at O. 

Proo/. Let / and g be elements of A such tha t  g"//~ has the smallest positive order a t  

p. Then we can choose a uniformizing variable z at  p which maps a neighborhood U of 

p onto IzI <1  and such tha t  g~ =z n. Now for each hEA,  the function h ~ can be expanded 

in U in a convergent power series in z. Since n is the minimal positive order at p in the  

field of quotients of A" and since z ~ is in this field of quotients, it follows tha t  only powers 

of z n occur in this expansion, i.e. h"=~. avz ~ .  

In  the circle [~l <1  define h e by  h~(~)=~ a ~  ~. Then h--->h ~ is a representation of A 

and gq//~ =~. Thus ~ is primitive at  0, and the mapping yJ on U defined by  ~ =z  ~ has the 

desired properties. 

The orders at  p of functions in the field of quotients of A" form an additive subgroup 

of the integers, and hence consist of all integral multiples of n, the smallest positive ele- 

ment.  I f  ~ and yJ are any representation and mapping satisfying the conditions of the  

]emma, we have the order of/Q at  0 equal to 1/N times the order of F at  p where N is the  

order of W at  p. Since ~ is primitive at  0, we have N =n, and the order of/~ at 0 is determined 

by  p and a. Thus any two representations Q satisfying the lemma are locally equivalent  

by  Lemma 5. 

By a local representation of A we mean an equivalence class of representations of A 

which are locally equivalent at  0. I f  a is a representation of A on R and p is a point of R,  

let ~o be a one-to-one analytic map of a neighborhood U of p into the complex plane so 

tha t  ~ (p)=0 .  Define a representation ~ on ~0[U] by /~  =/"o~o -1. Then for different choices 

of ~ we obtain representations locally equivalent to ~, and so the local representation to  

which ~ belongs is uniquely determined by p (and ~). We call this local representation the 

local representation at  p. 

We say tha t  a local representation is primitive if one (and hence all) of the representa- 

tions belonging to it is primitive at  0. Denote by  Rep A the set of all primitive local repre- 

sentations of A. For p E R e p  A let ~ be a representation belonging to p and / and g such 

that/q/gq has order one at  0. Let  U be a neighborhood of 0 on which A q is defined and on 

which ]q/gq is univalent. Let  V be the set consisting of the local representations at  points 

of U. Since/~/gq is univalent in U, ~ is primitive at  each q in U, and so V c  Rep A. The 

collection of all such V forms a base for a Hausdorff  topology on Rep A. Since/q/gq is 

univalent on U, A e weakly separates points of U. Thus by Lemmas 4 and 5 the local repre- 
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sentations at  different points of U are different. Thus the points of U are in one-to-one 

correspondence with the points of V, and this correspondence is readily seen to be a homeo- 

morphism. Since these homeomorphisms for overlapping V's are related by conformal 

mappings, we have defined a one-dimensional complex analytic structure for Rep A, and 

so each component of Rep A is a Riemann surface. I f  ~ and e are locally equivalent, then 

]q(0) =/~(0), and so for each p E R e p  A we may  define [(p)=/q(0) for some Q belonging to 

p. Thus for e a c h / E A  we define a function [ on Rep A. On a neighborhood V, constructed 

as above, [ is carried onto/0 by the natural  correspondence between V and U. Thus each 

[ is an analytic function on Rep A, and the m a p / - + 1  is a representation of A as an algebra 

on Rep A. These and other properties of Rep A are summarized by the following pro- 

position: 

PROrOSlTIO~ 1. The space Rep A has a one-dimensional complex analytic structure, 

and so each component o/ Rep A is a Riemann sur/aee. The algebra A is a representation o/ 

A on Rep A which weakly separates any pair o] points. 

I/(~ is any representation o / A  on a (not necessarily connected) Riemann sur]ace R, there 

is a unique analytic map ~ o/ R onto an open set O c R e p  A such that/~=[ov. The map 

is one-to-one i/ and only i/ A ~ is weakly separating on R. 

Proo/. To see tha t  ~ separates weakly on Rep A, we note tha t  z~ is primitive a t  any 

pair <p, q> of points in Rep A. Since p and q are different local representations of A and 

are each the same as the local representation at  themselves, it follows from Lemmas 4 

and 5 tha t  ~ weakly separates p from q. 

I f  a is a representation of A on a Riemann surface R, define a mapping ~ of R into 

Rep A by  letting ~(p) be the primitive local representation associated with the local repre. 

sentation at  p as in Lemma 6. The continuity of ~ follows from the definition of the topology 

in Rep A, and we have ]" =[o~.  Hence T is analytic. The uniqueness of ~ follows from the 

fact tha t  any T with the proper ty  tha t  / " = l o t  must  take each p in R into the unique 

primitive local representation associated with the local representation at  p. The last 

s ta tement  follows from Lemma 3. 

As a corollary we establish the following lemma which we will find useful later. 

LE~MA 7. Let A be an algebra on a (not necessarily connected) Riemann sur/ace R. I] 

A separates weakly on a dense open subset o / R ,  then A separates weakly on R. 

Proo/. By Proposition 1 there is a map T of R into Rep A such t h a t / = [ o ~ .  Since 

A is weakly separating on a dense open subset U of W, ~ is one-to-one on U. But  an analytic 

map which is univalent on a dense open subset of W is univalent on W, and so T is univalent 
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on W. Thus A must separate weakly the points of W, since .~ separates weakly the points 

of Rep A and therefore of ~[ W]. 

LEMmA 8. Let W be a component o /Rep  A.  Then A restricted to W is a proper algebra 

/or the Riemann sur/ace W. 

Proo/. Let V be a Riemann surface containing W to which each [ has an extension 

/". Then ~ is a representation on V, and so by Proposition 1 there is an analytic mapping 

T of V into Rep A, such t h a t / ~  = / o r .  Since T restricted to W g i v e s / = / o r ,  and since the 

identity map of W into Rep A is the unique analytic map with this property, we see that  

the restriction of ~ to W is the identity. Hence T[ V /~  W. Since V is connected, T[ V/= W, 

and so T[V] = W. If we assume A" weakly separates on V, then ~ is one-to-one, and so V = W. 

Therefore, ~ is proper for W. 

The following lemma expresses the functorial character of Rep A. 

LEM~A 9. Let ~ be a homomorphism o/the algebra A o into the algebra A 1. Then there is 

an analytic mapping y~ o/ Rep A 1 into Rep A o such that/or l E A  o we have ~]=[o~p. 

Proo/. If ~ is a representation of A1, then ~o~ is a representation of A0, and hence to 

each local representation p of A 1 there corresponds a local representation yJ(p) of A 0 such 

that  ~ / = j o y  2. I t  follows from the definition of the topologies in Rep A 0 and Rep A 1 that  

~0 is continuous and hence analytic. 

PROPOSlTIO~ 2. Let A be an algebra o/analytic/unctions on a Riemann sur/ace W. 

Then there is a Riemann sur/ace W', a proper algebra A '  on W', and an analytic map T o/ 

W into W' such that each/EA is o/ the/orm got  with gEA' .  The pair (A', W') is unique up 

to a con/ormal equivalence. 

Proo/. By Proposition 1 there is an analytic map T of W into Rep A such that  ] =[o~ 

for e ach /EA.  Since W is connected, T[W] is contained in a component W' of Rep A. Let  

A' be the restriction of -~ to W'. Then A'  is proper for W' by Lemma 8. 

If (A", W") is another pair satisfying the requirements of the lemma, then A" is a 

representation of A, and so there is a map ~ of W" into Rep A such t h a t / " = [ o ~ f .  Since 

A" separates weakly on W", ~ is one-to-one, and since A" is proper for W", ~0 is onto a 

component of Rep A. Thus (A", W") is eonformally equivalent to _~ on a component 

of Rep A. Since the component of Rep A into which W is mapped by T is unique, (A", W") 

is conformally equivalent to (A', W'). 

The mapping T: (W, A)--->(W', A') given by Proposition 2 is called the resolution of 

(W, A). The following lemma is an immediate corollary of Lemma 9. 
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LE~MA 10. Let A o and A 1 be two algebras o/ analytic /unctions on a Riemann sur/ace 

W with Ao~A1,  and let Zo: (W, A0)->(W 0, Ao) and vl: (W, A1)-->(W1, A1) be the correspond- 

i2~j resolutions. Then there is an analytic map ~p o/ W 1 into W o such that/or l E A  o we have 
/ ' ,  

If  K is a set on a Riemann surface, we say that  a function / defined on K is analytic 

on K if / can be extended to an analytic function defined on some open set containing K. 

A collection of functions is gaid to be analytic on K if each function in the collection is 

analytic on K. Note that  we do not suppose that  there is an open set containing K on 

which all the functions of the collection are analytic. Whenever this latter property holds, 

we speak of a collection of functions uniformly analytic on K. 

If  (W, F) is a bordered Riemann surface with compact border r ,  we can also consider 

an algebra A of functions analytic on W V F. Proposition 2 does not apply directly, for 

although each / in A is defined and analytic on some Riemann surface containing W V F, 

there is no fixed Riemann surface containing W U I ~ on which all functions of A are defined 

and analytic. The following proposition shows, however, that  we can find a finitely gen- 

erated subalgebra of A which separates as well as A does. With the help of this proposition 

we can establish Proposition 4, which generalizes Proposition 1 to the case of a bordered 

Riemann surface. 

PROPOSITION 3. Let K be a finite union o/ analytic arcs on a Riemann sur/ace W and 

A an algebra o/meromorphic/unctions on K.  Then there is a finitely generated subalgebra 

A o o / A  with the property that A o separates weakly each pair o/points which are weakly sepa- 

rated by A.  Moreover, we can choose A o so that at each p E K  each / in A is expressible in some 

neighborhood o / p  as a convergent power series in a/unct ion in the field o/ quotients o / A  o. 

Proo/. Let p and q be two points of K (not necessarily different) which are not weakly 

separated by A. Let / be an element in the field of quotients of A which has smallest 

positive order at p. Since A does not separate p and q, / also has the smallest positive order 

possible at q. Choose uniformizing variables Sp and ~q so that  in the neighborhoods 

vo={l$ol< 'm} 
the function / has the form ~ and $~, respectively. Now Sp (or ~q) maps each arc of K 

emanating from p (or q) onto an analytic arc going from the origin to the circumference 

I~] =e. Since these arcs are analytic, any two of them either coincide or have only a 

finite number of points in common. Thus we may take e so small that  two such arcs which 

do not coincide have only ~ = 0 in common. We may also take e so small t h a t / '  does not 

vanish at any point of U, or Uq except possibly at p or q. Let g be any function in A. 
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By the argument used in the proof of Lemmas 5 and 6, we see tha t  in a sufficiently small 

neighborhood about p and q (depending on g) the function g can be expanded in a power 

series in / .  I f  J1 and J~ are two analytic arcs of K in Up and Uq, we may  express g on each 

of them as analytic functions gl and g2 o f / ,  s ince / '  =4:0 on J1 and J2. Near  p and q, i.e. 

near ~=0 ,  we have g expressed as a single analytic function in /. Thus i f / [ J1]= / [ J~] ,  

we have gl~--g2 near 0, and hence gl--g2 everywhere on / [ J1]  by  analytic continuation. 

Thus g cannot separate any point of Up N K from any point of Uq N K which is not already 

separated b y / ,  and the same conclusion also holds if g is in the field" of quotients of A. 

I f  p and q are separated by  an element / in the field of quotients of ,4, we can choose 

neighborhoods Up and Uq such tha t / [Up /  and/[Uq]  are disjoint. Cover K • K by  neigh- 

borhoods Up • Uq such tha t  either Up is separated from Uq by a function/~q or else Up 

and Uq are as in the preceding paragraph and take/~q to be the function / defined there. 

By the compactness of K • K we can select a finite number  of these neighborhoods which 

cover K • K. The algebra A 0 generated by the functions/~q corresponding to this finite 

covering is the desired algebra. 

I t  should be noted tha t  the hypothesis tha t  K is a finite union of analytic arcs cannot 

be weakened to the assumption tha t  K is a differentiable Jordan arc. For if K is tha t  

arc in ] z I ~< 1 defined by y = x ~ sin (l/x) for x @0, y = 0 at  x = 0, and if A is the algebra of 

all functions analytic on K each of which has in some neighborhood of z = 0 a power series 

expansion in even powers of z, then A separates on K, but  no finitely generated subalgebra 

does. 

PROPOSITION 4. Let W U F be a bordered Riemann sur/ace with compact border 1", 

and let A be an algebra o/ analytic /unctions on W U 1". Then there is an analytic map T o/ 

W U 1" into a Riemann sur/ace W' and an algebra A'  o/analytic/unctions on a connected 

compact set containing T[1"] such that a finitely generated subalgebra o / A '  is proper/or W' 

and such that on F each/EA is o/ the/orm got  where gEA' .  

Proo/. We may  suppose W U F embedded in some larger Riemann surface (say the 

double of W) so tha t  each / in A is analytic in some neighborhood of W U 1", the neigh- 

borhood depending on/ .  I f  F is not connected, we may  join the components of F by  analytic 

arcs lying in W. Let  K be the union of 1" and these arcs, and choose a finitely generated 

subalgebra A o of A as in Proposition 3. Since A 0 is finitely generated, there is a Riemann 

surface Wo~ WU 1" such tha t  each / in A o is analytic on W o. Let  T: (W o, Ao)-->(W', A'o) 

be the resolution given by  Proposition 2. Since A o separates the points of K as well as A 

does, each function in A is carried by T into a function on T[K], and by  the extra property 
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of A 0 in Proposition 2, we see tha t  each such function can be extended to be analytic in 

some neighborhood of ~[K]. This proves the proposition. 

Remarks on algebras o/meromorphic/unctions. The preceding material  on representa- 

tions of A as an algebra of analytic functions on a Riemann surface R can easily be extended 

to representations by algebras of meromorphic functions. Let  us call such a representation 

a meromorphic representation. Then we can construct a one-dimensional complex analytic 

structure on the set RepM A consisting of all primitive local meromorphic representations 

of A, and the analogue of Proposition 1 holds. Moreover, R e p A ~ R e p M A ,  and is just 

tha t  open subset of RepM A consisting of those points which have a neighborhood in 

which all f are analytic. Note tha t  several components of Rep A m a y  be contained in a 

single component of RepM A. 

An algebra A of meromorphic functions on a Riemann surface W is said to be mero- 

morphically proper for W if A separates weakly on W and A cannot be extended to a 

weakly separating algebra on some Riemann surface properly containing W. Note that  

an algebra of analytic functions on W can be analytically proper for W without being 

meromorphically proper. The following proposition is proved in the same manner  as 

Proposition 2. We include it in this paper  for reference elsewhere. 

PROPOSITION 2'. Let A be an algebra o/meromorphic/unctions on a Riemann sur/ace 

W. Then there is a Riemann sur/ace W', a meromorphically proper algebra A '  on W', and 

an analytic map v of W into W' such that each /EA is o/the form go t  with gEA' .  The pair 

(A', W') is unique up to con/ormal equivalence. 

2. Some topological properties of l~emann surfaces 

In  this section we discuss some of the topological properties of compact subsets of 

a Riemann surface. The following lemma is s tandard and we omit the proof: 

LEMMA 11. Let K be a compact subset o /a  Riemann sur/ace and U an open set containing 

K. Then there is an open set 0 with compact closure such that K c  O, O c  U, and the boundary 

o / 0  consists O/a ]inite number o/piecewise analytic curves. 

I f  K is a compact subset of a Riemann surface W, W ~ K is an open set, and since W 

is locally connected, each component of an open set is open. By an abuse of language we 

call an open subset of W compact if its closure is compact. Thus by  a compact component 

of W ~ K we mean a component whose closure is compact. Denote by K* the union of K 

and the compact components of W ~  K. Equivalently, K* is the complement of the union 

of the noncompact components of W,,~K. Thus K* is closed, and K * ~ K  is open. Let  
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8E denote the boundary of the set E, i.e. 8 E  = E N (W ~ E). Some properties of the opera- 

tion * are given by the following ]emma. 

LEMMA 12. Let K be a compact subset o/the Riemann sur/ace W, and let K* be the union 

el K and the compact components o/ W ~ K. Then K* is a compact set, and 

(i) K* D K 

(ii) K** =K* 

(iii) K* = [~K]* 

(iv) ~K* c K 

(v) I f  g x c g 2 ,  then K * c K ~  

(vi) I f F * D ~ K ,  then F*DK*.  

Proo/. Proper ty  (i) follows directly from the definition of K*, (ii) from the fact tha t  

W ~ K* is just the union of the noncompact components of W-~ K, (iii) from the fact tha t  the 

compact  components of W N ~K are the compact components of W-~ K and the components 

of the interior of K.  

As we remarked earlier, K* is closed and K * ~  K is open. Hence 

~K* = K* ~ interior K* c K. 
Thus (iv) holds. 

Let  K i c K  z. Then W ~ K 2 c  W ~ K 1 ,  and each component of W , ~ K  2 is contained in 

a component of W , ~ K  1. Let  0 2 be a noncompact component of W,,~K2, and let 01 be the 

component of W,,~K x containing it. Then 0 2 is a closed noncompaet subset of 0x, and 

hence ()1 is not compact. Since K~ is the complement of the union of the noncompact  

components of W,~ K x and K~ the complement of the union of the noneompact components 

of W,~ Ks, we have K~' c K~. 

If  F* D aK, then F* =F** ~ [~K]* =K*. 

To prove tha t  K* is compact, we may,  by Lemma 11, choose an open set 0 ~ K such 

tha t  0 is compact and whose boundary F is a finite number  of piecewise analytic curves. 

Since each boundary curve of 0 divides W into at  most two parts, W,~F can have at  

most a finite number  of components. Thus F* is compact, since it is a closed set which is 

the union of a finite number  of sets each with compact closure. But  now F*=  0*m K*, 

and K* is a closed subset of the compact set F*. Thus K* is compact, proving the lemma. 

The complement of the set 0 in the preceding paragraph has only a finite number  of 

components. Each noncompact component of W-~ K must  meet  a noncompact component 

of W ~ (), and since each component of W-~ 0 is contained in a component of W-~ K, we 

see tha t  W-~ K can have only a finite number  of noneompaet  components. We have thus 

established the following corollary: 
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COROLLARY. IT] g i8 a compact subset o /a  Riemann sur/ace W, then W N K  has only 

a finite number o/noncompact components. 

LEM~A 13. Let W 1 and W 2 be two noncompavt Riemann sur/aces, and ~ an analytic 

map o] W 1 into W 2 which is one-to.one on a connected open subset U o/W1. Let K be a compact 

subset o / W  1 whose boundary is contained in U. Then ~ is one-to-one on K. 

Proo/. By Lemma 11 there is an open subset O of U which contains K and whose 

boundary F consists of a finite number  of piecewise analytic curves. Since F * ~  K, and 

~F*c  F c  O, we m a y  replace K by  F*, and it suffices to prove the lemma for the case tha t  

K is bounded by  a finite number  of piecewise analytic curves. 

I f  p and q are any two distinct points of K,  we must  show v/(p) ~=v(q). By enlarging 

K slightly, we may  assume tha t  neither p nor q is on the boundary of K, and by reducing 

U we may  assume tha t  neither p nor q is in U. 

I f  the boundary F of K has more than  one component, let F1 be one component and 

set F~ = F ~ I~1. Since U is connected we may  connect F 1 to F~ by  a piecewise analytic arc 

lying in U ~ F .  By "thickening" this arc we can find the image R of a rectangle such tha t  

one end of R lies on F1, and one end on F~ with the remainder of R lying in U ~ F. Since 

this remainder of R is a connected set not meeting ~K, it lies entirely in the interior of K 

or entirely in the complement of K. In  the first case replace K by  K N R and in the second 

by  K U •. Then we have a new compact set with boundary in U, containing p and q in 

its interior, and having one less boundary component. Continuing in this manner,  we see 

tha t  it suffices to consider the case tha t  K is bounded by a simple closed piecewise analytic 

curve l ~. 

Since ~o is one-to-one on U, yJ[F] is also a simple closed curve on W 2 and so divides 

W 2 into at most two regions. Let  ~ be the interior of K. Then ~0[~] is an open subset of 

We, and since ~[~]  (J ~o[P] is compact, we see tha t  the complement of v/IF] must  have a 

compact component and tha t  yJ[~] must  be this component. 

Let  u be a function which is harmonic on W 2 except for a logarithmic pole at  v2(p). 

Then the integral of *du along v/[F] is 2g and this is the same as the integral of *dv along 

F, where v =uo~. But  this lat ter  integral is 2z  times the number  of poles of v, and v has 

a pole at  each point of ~ which is mapped into ~(p). Thus there is only one point mapped 

into ~(p), and ~(p) g=yJ(q). 

3. Even mappings and finlte-sheeted Riemann surfaces 

Let  R be a (not necessarily connected) Riemann surface. An analytic function f 

defined on an open set O c  R is said to map O evenly onto the plane domain D if there is 
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an integer n > 0 such that  each value ~ E D is assumed by / exactly n times in 0 counting 

multiplicities, i.e. / - ~  has exactly n zeros in O, counting multiplicity. By a finite-sheeted 

Riemann surface over the plane domain D we mean a pair (R, z) consisting of a (not 

necessarily connected) Riemann surface R and an analytic function z which maps R 

evenly onto D. If  z has valence n, we speak of an n-sheeted surface. The mapping z is 

called the projection of R onto D,  and the points p such that  z(p) =~ are referred to as 

the points lying over $. 

The following lemmas express properties of even mappings, and finite-sheeted Rie- 

mann surfaces. The proofs are fairly straightforward, and are left to the reader. 

LEM~A 14. I /  / maps 0 evenly onto the domain D, then / is a proper mapping in the 

sense that/or each compact set K ~  D the s e t / - i l K / N  0 is compact. I] p is any point in 0 

and J any closed arc in D having one endpoint at/(p),  then there is an arc J '  in 0 having one 

endpoint at p and projecting onto J. The arc J '  is unique i/there are no critical points o/ / 

over J. 

LEMZ~A 15. Let / be an analytic/unction on a l~iemann sur/ace R, and let 01 and 03 

be two open subsets each o/which is mapped evenly onto D by/ .  Then 01,.~ 02 is open, and ] 

maps evenly onto 1) each o/the sets 01 U 02, 01 fl 03, 01 ~ 02 that is nonempty. 

COROLLAI~Y. I] 01 and 03 are connected open subsets o/ a Riemann sur/ace W, and i/ 

/ maps each o/them evenly onto D, then either 01 N 02 = 0 or 01 = 03. 

LE~MA 16. I / / m a p s  0 evenly onto D, then / maps each component o / 0  evenly onto D. 

LE~MA 17. Let Pr + ... be a polynomial whose coe//icients are analytic/unc- 

tions o/ ~ in the domain D and whose discriminant does not vanish identically in D. Then 

there is an n-sheeted (not necessarily connected) Riemann sur/ace (R, z) lying over D which 

belongs to Pr in the sense that there is an analytic/unction / on R such that 

Pr = an(~) 1-I (/(p) -- 2). 
zCp)~ 

The _Riemann sur/ace is branched only over those ~ at which the discriminant o/Pc vanishes. 

The triple (R, z , /)  is unique up to con/ormal equivalence. 

4. Algebras and their characters 

Let A be an algebra over the complex field. A finite linear combination V = ~.~=1 ~ 

of homomorphisms z~ of A into the complex field is called a character on A. If  each ~ =~0, 

and z~ ~=~rj for i =t=j, then we call V a character of order n. I t  is clear that  the sum or 
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difference of two characters is again a character. The following proposition gives us a 

criterion for a linear functional ~ on A to be a character. 

PROPOSITION 5. Let ~ be a linear/unctional on the algebra A. Then ~ is a character 

o/order n i /and  only i/ 

(1) For any two sets (x  o .... , x ~ ,  (Yo ..... y~) o / n  + 1 elements o / A  we have det [~(x,y~)] = 0. 

(2) There are elements x 1 ..... x~, y~ ..... y~, / such that the polynomial 

has n distinct roots. 
P(2) = det [q~(x,(/- ~) y~)] 

Proo/. Suppose ~ = ~ = z  ~tzi, and set ajk=q~(xjyk). Then ajk=~ ~iTe~(xj)g~(yk), and 

so the ( n + l ) •  ( n + l )  matr ix  [ajk] is the product of ( n + l ) •  and n •  matrices 

[~ig~(xj)] r and [~i(Yk)]. Hence [ajk] is singular, and property (1) holds. If  ~j 4 :~  for i ~:], 

we can find xl, . . . ,x,  in A such tha t  ~(x~) =5=~. Let  y= =x= a n d / = ~  ix=. Then q)(x~y~)= 

~ t ~ ,  and q~(x=(/-2)y~)=a=(i-2)~. Thus property (2) holds for these elements if each 

~r ~:0. Thus the two conditions are necessary. 

Assume now tha t  ~ is a linear functional satisfying (1) and (2) and tha t  x~, y~, and / 

are chosen satisfying (2). Since P(2) has n distinct roots, the coefficient det [~(x= y~)] of 

~t" must  be different from zero. Thus the matr ix  [~(x~y~)] has an inverse B=[fl~].  I f  we 

replace x~ by ~ fl~x~, then q~(xty~)=5~, and P(Z) is merely multiplied by det B. Thus 

we may  suppose tha t  x~ and y~ are chosen so tha t  q)(xty~) = ~ .  

Let g and h be any two elements of A. By property (1) with x 0 =g  and Y0 =h,  we have 

q~(gh ) = ~ ~p(gYk) q~(xk h ). 

Replacing g by  x~ g and h by  hyj, we have 

~(x~ g hy~) = ~ qJ(x~ gYk) q~(xk hyj). 

Thus the mapping T which takes each g in A into the matr ix  [q)(x~gy~)] is a homomorphism 

of A into the algebra of n • n matrices. By (2) the matr ix  T(/) has n distinct eigenvalues, 

and so there is a nonsingular matr ix  F such tha t  F T( / )F -1 is diagonal. I f  we replace 

x~ by  ~ 7~jxj and y~ by  ~ ~jy j ,  where ~ ~j~jk =~tk, we preserve the fact tha t  cf(x~ys) =(~s, 

do not change P(Z), and replace the representation g-+ T(g) by g-->F T(g)F -z. Thus we 

may  assume tha t  T(/) is diagonal. Since T(/) is diagonal with distinct eigenvalues, each 

matr ix  which commutes with T(/) must  also be diagonal. Since A is commutative,  each 

T(g) is diagonal. I f  we let ~i(g) be the i th diagonal element of T(g), then g=(g) is a homo- 

morphism of A into the complex numbers. 
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Now ~(g) = ~(g. 1) = ~. @(gYk) ~(zk) 
k 

and q~(gYk) = ~(1" gYk) = ~ q~(y~) ~(x, gYk) = ~ @(Y~) z~(g) ~ = @(y~) z~(g). 

Hence q~(g) = ~ q~(x~) q)(Yk) zk(g), 
k 

and we see that  ~ is a character of order at most n. Since q~(x~y~) =~u, property (1) cannot 

hold with n replaced by any smaller number. Thus ~ is a character of order n, proving the 

proposition. 

Since the elements on the diagonal of T(g) are the roots of P(2) and the values of 

~(g), we have also established the following lemma: 

L E P T A  18. Let ~ = ~ = ~  ~r be a character o~ order n, and x~ ..... x , , y~  ..... y~ and / 

satis/y property (2) o/Proposit ion 5. Then the rootsP o/(~) =de t  [~(x~(/-~)y~)] are the numbers 

~dl) ,  k = 1, ..., n. 

LEM~A 19. Let q~=~=:  ~i7~ be a character o/ order n on the algebra A ,  and suppose 

that qJ is a bounded l inear/unctional in terms o/ some norm II II/or A .  Then each ~, has norm 

1, i.e. II/11. 

Proo/. Since the ~ ' s  are distinct, there is an x~EA such that  z~:(x~)=(~u. Thus ~i(/)= 

~[lq~(xi/), and so 

I < I I-'11 11 IIx,lll < I o ,l-'ll ll IIx, II II/11  cll/ll. 
Consequently, for each 

I  <cll:ll <ell/ll 

Taking vth roots and letting v tend to infinity, we obtain 1 < II111. 

By an analytic functional ~ on a domain D in the complex plane we mean a mapping 

-->~ ~ of D into the linear functionals on A such that. for each / E A we have ~(/)  an analytic 

function of ~. 

LEMMA 20. Let q~ be an analyt ic/unctional  on D, and suppose that /or  each ~ in some 

open subset U ~  D the l inear/unctional q)r is a character o/ order n. Then q)r is a character o/ 

order n at each point o/ D with the exception o~ a set E having no cluster point in D. 

Proo/. For any x0, x 1 ..... x~ and Y0, Yl ..... y,  in A, we have det [~r an analytic 

function on D. Since ~r is a character for each ~ in U, this determinant vanishes in U and 

hence identically in D. Thus property (1) of Proposition 5 holds everywhere in D. 

For some point $0 in U, let x I . . . . .  x , ,  Yl . . . .  , Yn and / be chosen satisfying property (2) 
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of Proposition 5 for ~c. Then each coefficient of Pc(2)=det  [~c(xi(/-2)yj)] is an analytic 

function of ~ in D. So also is the discriminant of Pc, and since the diseriminant is not zero 

at ~, it can vanish only at a set E o having no cluster point in D. Thus ~0 C is a character of 

order n everywhere in D except for a subset E of E 0. 

An analytic functional ~ on D, which is a character at each ~ except those in an isolated 

set E will be called an analytic character on D, and the set E will be called the exceptional 

set of ~. Thus the preceding lemma states that  an analytic functional on D is an analytic 

character of order n on D if it is an analytic character of order n in some open subset of D. 

PROPOSITIO~ 6. Let q~ be an analytic character o~ order n on the domain D in the 

complex plane. Then there is a (not necessarily connected) n-sheeted Riemann sur/ace (R, z) 

lying over D, a meromorphic /unction :( on R which is not identically zero on any component 

o/ R, and a homomorphism (~ o/ A onto an algebra o~ analytic/unctions on R such that/or 

each g E A 

~(g) = 7 ~(p)g~ (1) 
z(p)=. 

The Riemannian sur/ace (R, z) and the homomorphism (~ are unique up to con/ormal equi- 

valence. 

Proo/. For some ~0 E D for which ?Co is a character of order n, we may choose x 1 .... ,xn, 

Yl ..... yn, and / such that  at ~0 the discriminant of Pc(k)=det  [~(x~(/-t)yj)] is different 

from zero. Since this discriminant is analytic in D and nonzero at ~0, it vanishes only at 

a set E having no cluster points in D. Let R be the n-sheeted Riemann surface lying over 

D belonging to Pc(~t) in the sense of Lemma 17. Let R'  be the subset of R lying over D ~ E. 

Denote the function / of Lemma 17 by/~. Then by Lemma 18 the values of/~ at the 

n points of R'  over ~ 6 D ~ E are just the numbers ~k(/), k = 1 ..... n, where ~c = ~ ~k~k- 

For each p E R', let ~p be that  homomorphism in ~z(p) for which ~( / )  =/"(p). Since/" takes 

distinct values at the points of R' lying over z(p), the homomorphism g~ is uniquely deter- 

mined. 

For each g 6A, define a function g" on R' by g~ =~(g).  For the element / this defini- 

tion agrees with our earlier definition of/~ The mapping g--->g" is a homomorphism of A 

into the algebra of all complex-valued functions on R'. If we let ~(p) be the weight of 

~ in ~%(,), then ~ is a complex-valued function on R', and 

qc(g) = ~ :((P)g~ 
z(p) = C 

for CED,,,E. 

Thus the proposition will be established if we can show that  each g" is analytic on 
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R '  and admits  an analyt ic  cont inuat ion to R and tha t  ~ is analyt ic  on R' and has a mero- 

morphic extension to R. 

Since R' is an  unbranched  n-sheeted covering of D ~ E,  t h a t  par t  of R' which lies over 

a disk U in D,~ E consists of n components  U~ each of which is mapped  conformally onto 

U by  z. Le t  z~ -1 be the  inverse of z restricted to  Uo and s e t / i = ] ~  1, ~ = ~ o z ~  1. Then  

~(C)/~(C) = ~ ( f ) .  

Taking v =0 ,  I . . . .  , n - l,  this is a system of n linear equations for ~(~). The determinant  of 

the  sys tem is a van  der Monde determinant  and equal to I-ii,j ( / i - / j ) .  This is an  analyt ic  

funct ion which does no t  vanish in U, and since the  coefficients and f ight  hand  side of 

our system are all analyt ic  functions of $, Cramer 's  rule shows t h a t  each ~ is also an analyt ic  

funct ion of ~. Hence ~ is analyt ic  on R'. 
The same argument  applied to the  system of equations 

~,(C) g,(C) fi(C) = ~ ( g f ) ,  

where g~ =g%z~ 1, shows t h a t  ~g~ is analytic.  Since ~r is a character  of order n at  each point  

in D ~ E, ~ cannot  vanish on R' ,  and so g" is analyt ic  on R' .  

Let  ~0 be a point  of E and take  U to  be a disk about  ~o which is so small t h a t  $0 is 

the  only point  of E in (J. Let  U'=U~{~o}, V=z-I[U], V'=z-I[U']. Then for SEU' ,  we 

h a v e  

z ( ~  ~(p) [l~(p)]~ = ~(f) ,  (2) 

and for v = 0  .. . . .  n - 1  this gives us as before a system of n equations for the values of 

~(p) at  the points p where z(p)=~. The determinant  of this system is I-L.q (/~(p)-f(q)) 
which is (when multiplied by  a suitable power of the leading coefficient) the  discriminant 

A(~) of P~(t). Thus A($) is analyt ic  at  $0, and Aoz is analyt ic  at  the points of R lying over 

$0. Cramer 's  rule shows tha t  in V' =z-l[U '] we have A(z(p))(x(p) expressed as a polynomial  

in f'(q) and ~(~)(f). Since these functions are bounded in V', we have ~ . A o z  bounded in 

V'. Since V,~ V' contains only isolated points, a bounded analyt ic  funct ion on V' can 

have only a removable  singulari ty there. Thus ~. Aoz  has an analyt ic  extension to  V and 

a meromorphie  extension. Thus ~ has a meromorphic  extension f rom R' to  R. 

To show tha t  each g~ has an  analyt ic  extension to  R', take ~0 and U as in the  preceding 

paragraph,  and let C be the boundary  of U. Define 

]]gH= max  ]g"(p)[. 
z(p) e C 

Then this is a norm on A, and for ~EC we have I~c(/)l <cll/H where 

c = n max  ~r 
z(p) ~ C 

9- -652932  A t t a  mathema$ica  114. Imprim6 le 12 aoh~ 1965. 
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Since is anal i  in U, this inequality holds in U. Thus by Lena 19, Ig~ < fig[[ 

for pE V'. Consequently, g~ is bounded on V', and so admits an analytic extension to V. 

This shows tha t  we can extend the homomorphism g-->g~ to be a homomorphism of A 

onto an algebra of analytic functions on R. 

The uniqueness of (R, z, ]~ follows from Lemma 17, and since ~ and g~ are defined 

by  equations (2) and (1), the homomorphism ~ is also unique. 

In  general the image A ~ of the homomorphism ~ given in the preceding proposition 

need not contain the projection z of R onto D, i.e. there may  not be an element g in A 

such tha t  g~ =z. The following lemma gives a criterion for this to be the ease. 

LEMMA 21. Let q~, D, and R be as in Proposition 6, and g an element o / A .  Then g~ =z 

i / and  only i/Ip(g/) =~qp(/) /or every / in A.  

Proo/. The "only if" par t  is trivial. To prove the "if" part ,  let ] and R'  be as in the 

proof of Proposition 6, and p a point of R'.  Since/~ takes different values at  the points q 

lying over z(p), there is an element/1  in A such that /~(p)  = 1 and/~(q) = 0  for z(q)=z(p), 

q ~=p: Then 
~(p) g~(p) = %.(~(g/) = z(p)fp(/1) = z(p) ~(p). 

Thus g" = z on R' ,  and hence also on R by  continuity. 

The homomorphism ~ of Proposition 6 need not be a representation, since A" may  

contain only constants on some component of R. The following lemma shows tha t  if z EA ", 

then A" is a representation and separates weakly on R. 

Lv.MMA 22. The homomorphism (~ given by Proposition 6 is a representation o/ A on 

R i/there is a g in A with g~ =z. In  this case the algebra A ~ is weakly separating on R. 

Proo/. I f  g" =z, then g" is constant on no component of R, and e is a representation. 

Let  ] and R'  be as in the proof of Proposition 6. Then if p and q are two points of R' ,  g~ 

separates them if z(p) =Fz(q) a n d / "  separates them if z(p) =z(q). Hence A" separates on R'  

and hence separates weakly on R by  Lemma 7. 

PROPOSITION 7..Let IP be an analytic character on D and / an element in A such that 

tP(/g)=~qP(g) /or all g in A.  Then there is an open set O c R e p  A which is mapped evenly 

onto D by ] and a meromorphic /unction ~ de/ined in 0 such that 

ipc(g) = ~. g(p)~(p). (3) 

p e O  

I] we require that a does not vanish identically in any component o /O,  then 0 is uniquely 

determined by tp. 
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I /  U is an open set contained in D, then the open set corresponding to q9 restricted to U 

i 8 / - I [ U ]  n O .  

I/q~i and q)~ are analytic characters on D and q?~(/g) =~f~(g) /or all g in A,  then q) =~1 +q~ 

is an analytic character in D with this property and/or the open sets O, 01, O~ corresponding to 

q~, q?i, q)~ we have O~  0 i U 0~. 

Proo/. Let R, z, and a be as in Proposition 6. Then by Lemma 21 /"=z,  and a is a 

representation by Lemma 22. By Proposition 1 there is an analytic mapping T of R onto 

an open set O c  Rep A such that  g"=~oT for each g EA. Since A" is weakly separating on 

R, T is one-to-one, and carries the ~ of Proposition 6 onto an ~ on 0 such that  (3) holds. 

The uniqueness of 0 follows from the uniqueness parts of Propositions 1 and 6. The state- 

ment about the restriction of ~ to U follows directly from the uniqueness of O. 

To prove the last statement of the proposition, we note that  ~ is a character at each 

where ~1 and q~ are characters. Since this happens everywhere in D except for an isolated 

set, ~ is an analytic character in D. Clearly q)(/g)=$q(g). Let 0 i and 03 be the open sets 

corresponding to ~1 and q2 and ~i and a~ the corresponding meromorphic functions. Since 

/ is even on 0 i and on 02, the sets 0 i N 02, 0 i ~ 02, 02 ~ 0 i are disjoint open sets by Lemma 

15. Define ~ on 0 i U 02 by setting ~ equal to ~1 + ~ ,  ~1, ~ ,  respectively, on these three 

sets. :Now / is even on 0 i tJ O~ by Lemma 15, and hence by Lemmas 15 and 16 / is also even 

on any open set 0 which is a union of components of 01 U Oz. Let 0 be the union of those 

components of Oi U Oz on which ~ is not identically zero. Adding the corresponding for- 

mulae for Ti and ~ ,  we see that  formula (3) holds for this O. Thus this is the 0 correspond- 

ing to q and 0 ~ 0 i U 02. 

We shall also find the following lemma useful. 

L~MMi 23. Let q?r be an analytic character in the domain D, and let R be the/inite:- 

sheeted sur/ace over D belonging to q~; in the sense o/Proposition 6. Suppose that/or some 

~o in D the character q~. is a nonzero homomorphism ~. Then there is a point p in R lying, 

over to such that g(g)=g(p) /or all g EA. 

Proo/. Suppose not. Then for each p~ over ~0 we can find a g~ in A such that  gi(P~) =0,, 

g(g) = 1. By taking a suitable power of the product of the gt we obtain a g in A with ~(g) = 1,~ 

and g vanishing at each p~ to an order so great that  ~g vanishes at p~. Thus 

~:o(g) = Y a(p,) g(p,) = o # ~(g).  
i 

The lemma follows by contraposition. 

9* -- 652932 A c t a  m a t h e m a t i c a  114 
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PROPOSITION 8. Let W be a Riemann sur/ace, A a proper algebra o/analytic/unctions 

on W, and / a nonconstant /unction in A.  Let Pl, ..., Pn be points o/ W at which ] is real, and 

let V, be a neighborhood o / p ,  which is mapped one-to-one by / onto an open set U,. Let the 

plane domains Do, D1, ..., Dn be such that the intersection o/ each D, with the real axis is an 

interval and such that U i c  D i N Dt-1. Let q~, be an analytic linear /unctional o/ A on D i 

with ~o--0 and (q)l-%_l)(g)=fl~(~)g(e~(~)) on Ui, where e~ is the inverse o / ]  restricted to 

•1, and fl~ is an analytic/unction on V i. 

Then/or  each i, 1 <~i <~n, there is an open set O~ on W and a meromorphic /unction ~r 

on 0 i such that O~ is a/inite-sheeted Riemann sur/ace over D t with projection/, and 

~(g) =f(p~ a~(p) g(p). (4) 
p e  0 t 

Moreover, each p E 0 i with/(p)  real can be joined to one o/the pj by an arc on which / is real. 

Proo]. I~eplacing V1 by  a smaller neighborhood, we may  suppose tha t  UI=/[V1] 

intersects the real axis in an interval and our hypotheses are unchanged if we take D O = 

/IV1/. Then the conclusion of the proposition is true for i = 0  if we take 00 = V 1 and ~0~-0. 

We prove the proposition by  induction on i, and hence assume the conclusion for i = v - 1 ,  

and  will show tha t  this implies the conclusion for i =r. 

Thus ~,-1 is an analytic character in D~_I, and hence in lilT,/. Consequently, ~0~ must  

also be an analytic character in/[V,] ,  since it is the sum there of the analytic character 

~ - 1  and the analytic character ~ defined by yJ~(g)=fl,(~)g(e~($)). By  Lemma 20, ~, is 

t hen  an analytic character on all of D,. By our induction hypothesis, / maps an open set 

0~_ 1 in W evenly onto D so tha t  (4) holds. Hence by  Lemma 21 q~-l(/g)=~q~-l(g) in D~_ 1 

a n d  hence U,. Since 

~(/g) =~,(~)/(e~(~))g(~)) =~,(~)~g(e,(~)) = SW(g) ,  

we have q~,(/g) =~q~,(g) in U, and hence in D,, Thus by  Proposition 7 there is an open set 

~9,= Rep A and a meromorphic function a, on O, such tha t  (4) holds. 

Since A is proper for W, W is isomorphic with a component of Rep A which we 

ident i fy  with W. By Proposition 7 the open subsets of Rep A corresponding to ~,-1 and 

�9 ~ restricted to U, are 0,_ 1 f i / - l /U, /  and O, (7/-l[Uv]. Since the open set corresponding 

t o  ~o is V,, the last s tatement  of Proposition 7 asserts tha t  O, f i / - l [ U , ] c  0,_~ U V,= W. 

Since / maps each component of O, onto D, each component of O, contains points i n / - l /U , /  

a n d  hence of W. Thus each component of O, is contained in W, and so 0 , ~  W. 

I f  /~ O, a n d / ( p )  is real, then, since D, intersects the real axis in an interval and / 

:is even on O ,  p can be joined to a point q with/(q)  =/(p,)  by a curve in O~ lying over the 

~ t e r v a l  from /(p) to ](p,). Now q ~ 0~-x U V,, and the only point of V, lying over / (p , )  
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is p~. Thus either q=p~ or q60~_ 1. In  the latter case we can join q to some p~ by an are 

along which / is real by our induction hypothesis. This completes the proof of the proposi- 

tion. 

5. The bounded homomorphisms of A 

Let A be a proper algebra of analytic functions on the Riemann surface W, and K 

a compact set in W. We define the K-norm ]]gHK of an element g in A by 

Ilgll =supKIgl �9 

This is clearly a multiplicative norm for A. We say that  a linear functional ~ on A is K-  

bounded if it is bounded in the K-norm, i.e. if for some c, [~0(g)[ ~<c[[g[[K for all g 6 A .  

For each p in W, the map g-->g(p) is a homomorphism of A into the complex numbers, 

and we call this homomorphism the evaluation at p. If the evaluation at p is K-bounded 

we say that  A is K-bounded at p, and say that  A is K-bounded on a set E if A is K-bounded 

at each point of E. The set H consisting of all p on W for which A is K-bounded is called 

the hull of K. The purpose of this section is to characterize the hull of K and the K-bounded 

homomorphisms of A. 

I~ 9. Let A be a proper algebra on W, K a compact subset o/ W, and / 

nonconstant /unction in A which has no zero on K. Let 0 < ~ < i n f  [/[K][. Then there is a~v 

open subset 0 o/ W with 0 compact such that A is K-bounded on 0 and such that each K -  

bounded homomorphism ~ o/ A into the complex numbers with [g(/)[ <(~ is evaluation at 

some point el O, i.e. there is a p 6 0  with 7e(g) =g(p) /or all g6A .  

Proo/. Let M be the open set where ] / [>8 .  Then we may choose an open set M I 

whose boundary F consists of pieeewise analytic arcs so that  K c M a ,  M l c M .  Since f 

has only a countable number of critical points, and since [ can be multiplied by any number 

of modulus one, we may assume that  / is not real at any of its critical points (except pos- 

sibly where ] =0) and that  there are only a finite number of points Pl ..... p ,  on F at which 

[ is negative. We may further assume that  F is analytic and nonsingular at each p~. B y  

varying F slightly we can insure that  the values/(p,) are distinct. Let/(p,) =~,, and suppose 

that  the numbering is such that  ~1 <-.. <$ ,  <0.  Then each interval ($,, ~,+x) is contained 

in a component A i of the complement in plane of ][F]. Let A 0 be the component of the 

complement of /[F] which is unbounded, and A~ the component containing 0. Then ~ 

is a common boundary point of Ai_ 1 and A~ for i = 1, ..., n. 

Let ze be any homomorphism satisfying the hypothesis of the proposition. Then by 

the Hahn-Banach theorem we can extend ~ to a bounded linear functional on the space 
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of all continuous functions on K. Such a linear functional is represented by  a finite complex- 

valued measure/~ on K. Thus ~r(g) =S gd# for all gEA. Let G(p, q) be the Green's function 

of M (or of an open subset of M which contains M1), and define u by u(p) = SK G(p,q)d/~(q). 
Then u is a positive harmonic function in M ~ K ,  and if we let 0 be the differential (:ri)-X~u, 

i.e. tha t  differential which in terms of a uniformizer z has the form 

l ~ u  
- - - -  d ~ ,  
:ri ~z 

then  0 is an analytic differential in M~K,  and ] r  gO=]Kgd/~ for each function g ana- 

lytic in M. 

Let  :r(/) =~o, and for each complex number  ~ not in / [P]  define 

~:(,)=fr~---S~gO. 
Then ~0r is analytic in each component of the complement of ][F], and ~0r176 = ~r  gO =:r(g) 
for  gEA. 

H I$1 <6, the function (/-~o)(/-$)-'g is analytic in M, and so for such ~ we have 

f _ 0gd#, 
whence I ~(g)I < II g IlK" ~ x ~ - ~ ( K I .  

Thus ~: is K-bounded for each ~ in l~l <6.  

If 1r >lllllr, then (t-~1-1 can be uniformly approximated o n  K by polynomials 
Pn i n / .  Hence for such ~ and for g in A we have 

- lim f ( / -  r P,,(/) gO = lim ~ [ ( / -  $o) Pn(/)g] = 0 ~r 

since g ( / - ~ 0 ) = 0  and Pn(/) belongs to A. Thus ~r vanishes for all sufficiently large ~, 

and hence everywhere in A0, the unbounded component of the complement of/[F] .  There- 

fore, ~:~-0 in A 0. 

Let  A~, i = 1 ..... n - 1 ,  be tha t  component of the complement o f / [F ]  which contains 

(~, ~+1), and let A~ be the component containing 0. Denote by  ~ the restriction of r 

to A~. Then ~o~0 .  We shall show tha t  each ~0~ can be extended to be analytic in a neigh- 

borhood of ~.  Let  ~ be a positive number  such tha t  the intersection of the disk U about  

~e of radius ~ with ](F) is a simple analytic arc, and take e so small tha t  there is a neigh- 

borhood V of p~ which is mapped one-to-one by / onto an open set containing U. Let  
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U'= U N A~, and set V '= V fi/-l[Uo]. Let Fo be the boundary of V', and set F '  = F - F o ,  

in the usual combinatorial sense. Then U U A~ is contained in the complement o f / [F ' ] ,  

and the functional ~o on A defined by 

is an analytic functional in U U A~. Now 

~0~ - ~ J r . ~  " 

If ~ ~ U', this last integral is zero, since the integrand is analytic on V'. Thus ~o: =q)~ for 

~EA i. Thus ~ can be extended to be analytic in a neighborhood U of ~.  We can similarly 

extend qh-1 to be analytic in U. 

Let  z be a uniformizing variable in V such tha t / (z )  =z, and let 0 =~,(z)dz. Then for 

E Uo, we have 

and the integrand has a pole at the point p where z=~ with residue (~-~0)g(P)7(~). 

Hence the integral is equal to fl(~)g(p), where we have set fl(~)=2~i(~-~o)~(~ ). If el is 

the inverse of / restricted to V, p =e~(~), and we have 

(~,-q~,-1) (g) =fl($)g(e~(~)) (5)  

in U' and hence also in U. 

Repeating this process for each i from 1 to n we obtain neighborhoods U~ of ~ which 

are one-to-one images by ] of neighborhoods V~ of p~ such that  each ~ is analytic in the 

region A~, where A~ =A~ U Ul U U~+I, i = 1 ..... n - 1 ,  A n =An U Un, and A 0 = U 1. Moreover, 

the difference ~0~-~-1 is given by (5) in U~. For each i, i =0  ..... n, let D~ be a subdomain 

of A~ whose intersection with the real axis is an interval and such that  D~ contains [~, ~+1] 

for 1 <~i<~n-1, D O contains ~ ,  and D~ contains ~ and the closed disk [~] ~<~. Replacing 

U~ by U~ ~ D~ N D~_ 1, and V~ by V~ ~/-~[U~], we have the hypotheses of Proposition 10 

fulfilled. 

Let  O~ be the open subset of W given by this proposition. Then / maps O~ evenly 

onto D~. Let  ~ be the subset of On where [/[ <5" Since / is even on 0~, the subset of O~ 

where [/[ ~<~ is compact by Lemma 14. Thus ~-~ is compact. Now / maps ~ evenly onto 

the disk [~] <~, and (~, ]) is the finite-sheeted Riemann surface over [~[ <5 which belongs 

to ~ in the sense of Proposition 6. Since ~ is K-bounded at each $ in ]$[ <~, it follows 

from Lemma 19 that  each g in A is K-bounded in ~.  Since ~0~~ =~, it follows from Lemma 
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23 tha t  there is a point q E ~  with g(q)=re(g) for all gE A .  Let  O. be the component of 

which contains this point q. 

Then O. satisfies all the requirements of our proposition, except tha t  it depends on 

re. Let  {On} be the collection of all such On. By Lemma 16 )' maps each O. evenly onto 

]~I <~, and so by  the corollary to Lemma 15, any two sets in {On} either coincide or are 

disjoint. By Proposition. 8, each point p of On at  which ) '=0 can be connected to one of 

the p~ by  an arc in W along which )' is real. Since )' has no real critical values (other than  

zero), there is at  most one such p for each p~ and so at  most n such points altogether. Thus 

the collection {On} is a finite collection, and if we set 0 = (J 0~, then 0 satisfies the re- 

quirements of the proposition. 

L]~MMA 24. Let K be the union o)' a finite number o)` analytic arcs on W, and let re be 

a homomorphism o)' A into the complex numbers which is not evaluation at some point o)' K .  

Then there is an )' in A such that )' is never zero on K,  and re)' =0. 

Proo)'. Let g be a nonconstant function in A such tha t  reg = 0. Then there are only a 

finite number  of points of K at  which g vanishes. Since re is not evaluation at  any of these 

points, there is an h in A vanishing at  these points for which reh = 1. Now g maps K onto 

a collection of analytic arcs in the plane, and there are only a finite number  of tangent  

directions at  the origin. Let  e have an argument  which is not one of these tangent  direc- 

tions. Then for sufficiently small e the function g +sh takes the value s at  re and is different 

from s on K. Set ) ' = g + s h - ~ .  Then )' is the required function. 

T~EOREM 1. Let A be a proper algebra /or the Riemann sur)`ace W, and let K be a 

compact subset o)' W. Let K* be the union o)' K and those components o)' W ..~ K whose closurev 

are compact, and let 

A = ( p :  p~K* ,  3qEK* ,  )'(p)=)'(q) all ) 'EA}. 

Then K* is compact, A is an isolated set, and the/ollowing hold: 

(i) The hull o / g  is K* U A, i.e. K* U A = { p E  W:I/(p)] <supK]/] }. 

(if) I]  re is a homomorphism o / A  into the complex numbers wi th  Ire)'] <sup•])'I, then 

there is a pEK*  with re)' =)'(p). 

(iii) I)' ~ is a homomorphism o)' A into the algebra o)' analytic )'unctions on a disk D such 

that supD]Q)' l <~ sup~])'], then there is a unique analytic map y~ o)' D into the interior o)' K* 

such that ~)' =)'o y~. 

Proo/. Denote by H the hull of K, tha t  is H = { p :  I)'(P)] ~< ]I)']I~ for a l l / e A } ,  and le t  

us assume for the moment  tha t  K is the union of a finite collection of analytic arcs. I f  ~v 
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is any K-bounded homomorphism of A into the complex numbers which is not evaluation 

at some point of K, then by Lemma 24 there is a n / E A ,  zc/=O, / never zero on K. Hence 

by Proposition 9, there is an open set O c  W on which A is K-bounded and such that  

is evaluation at some point of O. Thus each K-bounded homomorphism of A which is 

not evaluation at a point of K is evaluation at some interior point of H ~-K. 

Let Z be the set consisting of those points of W which are separated by A from every 

other point of W, i.e. let 

E = {p E W: for all q e W, q #p ,  3 ] e A,/(p) #/(q)}. 

Then W ~ Z  is countable by Lemma 2, and so the components of E ~ K  are just the inter- 

sections of Z with the components of W ~ K. Let S be the subset of ~: consisting of those 

points at which A is K-bounded, i.e. S = ~  N H. Then S is clearly closed in ~. Since evalua- 

tion at a point p of S is a K-bounded homomorphism which is not evaluation at any other 

point of W, the point p must be an interior point of H ~-K, and so S ~-K is open relative to 

Z. Hence each component of S ~  K is a component of ~ ~ K. 

We now show that  the closure of S in W is compact. Since W is metrizable, it suffices 

to show that  each sequence (p~) from S has a cluster point in W. If (p~> has no cluster 

point on K, then we can find a neighborhood U of K with 0 compact such that only a 

finite number of the Pn are in U, and we may choose U so that  its boundary r consists of 

a finite number of analytic arcs. Let / be a nonconstant function in A. Since [/(Pn)[ <~ [[/}[K, 

we can find a subsequence (which we again call (Pn>) such that / (p , )  converges. Subtracting 

a constant from ], we may suppose ](p~) -~0, and by varying F slightly we may insure that  

/ i s  never 0 on r .  Since [[g[]K ~< [[g][r, the evaluations at p~ are all r-bounded, and from some 

n o on we have [/(Pn) ] <(~ < in f r  [/]. Thus by Proposition 9, there is an open set O c W with 

compact closure such that  p,  E O, for n ~> n 0. Thus (p , )  has a cluster point in 0 and hence 

in W. This shows that  ~q is compact. 

Thus each component S~ of S,,~K has compact closure. Now each component S~ of 

S,,~K is a component of Z N K  and thus the intersection of ~ with a component O~ of W,~K. 

Since 0i is open and Z is dense in W, ~q~ = ()~, and O~ has compact closure. Consequently, 

S is contained in the union of K and the components of W,,~K with compact closure, i.e. 

in K*. 

Since S is dense in the interior H ~ of the hull H of K, we have HOc K*. Since each 

K-bounded homomorphism 7~ not an evaluation on K is evaluation at some point of H ~ 

we see that  each K-bounded homomorphism ~ is evaluation at some point of K*. This 

proves statement (ii) of the theorem for the case that  K is the union of a finite collection 

of analytic arcs. 
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To establish this s tatement  for an arbi trary compact set K, we note that ,  if F is a 

finite union of analytic arcs and bounds a relatively compact open set containing K,  

then each K-bounded homomorphism ~ must  also be F-bounded. Thus n is evaluation at  

some point of F*, the union of F and the compact components of W-~F. Since K*= N F* 

for all such choices of F, we have n EK*, and statement  (ii) holds for an arbi t rary compact 

set K. 

Since K* is compact and has boundary contained in K, the algebra A is K-bounded 

on K* and K * c  H. On the other hand, evaluation at  a point of H is a K-bounded homo- 

morphism and so must be equal to evaluation at  some point of K*. Thus H contains in 

addition to K* only the set 

A={pCK*:  (3qEK*)(/(p)=/(q) all /EA)}. 

Since A is clearly contained in H, we have H =A U K*. To see tha t  A is isolated, we note 

tha t  if p E A were the limit of a sequence <Pn> in A, the points q= E K* would have a cluster 

point qEK*. But  by Lemma 1, p and q have neighborhoods U and V such tha t  A separates 

each point of U from each point of V except q. 

The preceding argument also shows tha t  the set of pfiK* for which there is a qfiK* 

wi th / (p )  =/(q) for all f in A is a finite set. Thus, with a finite number  of exceptions, a 

K-homomorphism g is evaluation at a unique point in K*. I f  ~ is the representation in 

s tatement  (iii), then evaluation at  each ~ED is a K-bounded homomorphism. Hence, 

except for those ~ corresponding to the exceptional homomorphisms, there is a unique 

point yJ(~) in K* where evaluation is the same as at  $. Thus ~ is defined on a dense subset 

of D and ~ / = / o ~  for each / in A. Let  <~> be a sequence in the domain of ~ which converges 

to $0 in D. Then <v2(~=)> has a cluster point in K*, since K* is compact. I f  it had two cluster 

points p and q, there would be / and g in A wi th / /g  taking different values at p and q. 

But  this is impossible since 

(t/g) (9($,)) =e/(~,)/eg(~) +e/($)/Qe(~). 

Thus it is possible to extend ~ to all of D such tha t  Q/=/o~v. The above argument  shows 

tha t  yJ is continuous, and since it carries analytic functions into analytic functions, it 

must  be analytic. 

THEOREM 2. Let A o be a proper algebra o/analytic/unctions on the Riemann sur/ace 

W, let K be a compact connected subset o] W, and let A be an algebra o/ analytic /unctions on 

K with A D A o. Let K + be the union o / K  and those relatively compact components o/ W.,, K 

to which each/unction in A has an analytic extension. Then K + is a compact set/or which 

the/oUowing hold: 
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(i) I / ,~ is a homomorphism o / A  into the complex numbers with ]~]l <sup l/I, then 

there is a pEK+ with ~/=/(p). 

(if) I / ~  is a homomorphism o/ A into the algebra o~ analytic/unctions on a disk D so 

that SUpD I~/I ~< supK ]/], then there is a unique analytic map V o / n  into the interior o / K  + 

such that ~/=/oyJ. 

Proo/. Let  A 1 be any subalgebra of A which is finitely generated over A 0. Since A 1 

is generated over A 0 by a finite number  of functions in A, there is a neighborhood U of K 

on which each function of A 1 is analytic. Since K is connected, we may  take U to be con- 

nected. Let  v: (U, AI)-->(W1, A~) be the resolution of (U, A1) given by Proposition 2. 

Since A 0 is weakly separating on U, so is A1, and ~ is one-to-one on U. Now (A0, W) is its 

own resolution since A 0 is proper for W, and so there is by Lemma 10 an analytic mapping 

~o of W1 into W such tha t  for /EAo,  ]o~0 = / ' .  On "c[U] we also have/o~0 = / '  f o r / E A  1. Since 

A 1 separates weakly on U, the function / is one-to-one on T[U]. 

Let  K 1 =v[K], and let K~ be the union of K 1 and the compact components of WI,.~Ka. 

Since OK~cK1c'c[U], and v[U] is a connected set on which ~0 is one-to-one, it follows by 

Lemma 13 tha t  ~ is one-to-one on K~. ~'or ]EA1, l e t / '  be the representative of / in A~, 

and define/* on ~o[K~] b y / *  =/'o~o -1. Then/*  is analytic on y~[K~], and /*  =/on  K. Hence 

each ]EA 1 admits an analytic extension to ~0[K~]. 

Since K t  ~ K is open, so is its image under ~. Since the union of tha t  image and K 

is the image of K~ and consequently compact, we see tha t  ~0[K]] is the union of K and a 

number of compact components of W..~K on which each ]EAa has an analytic extension. 

Let  ~ be any K-bounded homomorphism of A into the complex numbers. Then by  

Theorem 1 there is a point plEK] such tha t  for /EA1,  ](p~) =:~/. Setting p=~o(pl), we have 

a point p in L(A1) at which/(p)  =~/for al l /EAa,  where L(A1) is the union of K and those 

compact components of W,.~K to which each function in A~ has an analytic extension. 

Now there are only a finite number  of points p~ .. . .  , p ,  in K* such tha t  ~]=](p,) for 

a l l / E A  o. For each such p, which is not in a component of W,..K to which every function 

of A can be analytically extended, choose ]~ EA which does not extend to tha t  component. 

l~or each of the p, 's  in K~ with zq+/(p,) for s o m e / E A ,  choose/ ,  to be such an ]. Let  A 1 

be the algebra over A 0 generated by  the funct ions/ ,  thus chosen. Since g restricted to A~ 

is evaluation a t  some point p in L(Ax) , we see tha t  there must  have been one of the p, 's  

such tha t  p, EK + and g /= / (p , )  for each /EA.  This proves (i) and the proof of (if) is similar 

to tha t  of (iii) in Theorem 1. 
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6. Applications to algebras of bounded analytic functions on a Riemann surface 

In  this section we consider some applications of the preceding theorems to a class of 

Riemann surfaces. We begin by considering an example due to P. J. Myrberg [4]. Some- 

what similar observations had previously been made by tI. L. Selberg [6]. 

Let (an) be a sequence of points in 0 < [ z [ < 1 with l ima  n = 0, and let W be the two- 

sheeted Riemann surface over 0 < [z] < 1 which has the points an as branch points. Then 

every bounded analytic function on W takes the same values on the two sheets of W. 

For the square of the difference of the values on the two sheets is a bounded analytic 

function of z in 0 < lz [  < 1, and hence also in [z[ < 1. Since this function vanishes at the 

points a n it must vanish identically. 

In  this example we see that  each bounded analytic function on W is the composition 

go t  of an analytic function in the disk [z] < 1 and the projection T of W into the z-plane. 

Heins [2] has generalized this result to showing that,  if W is a parabolic Riemann surface 

with precisely one ideal boundary component, then some end ~ of W can be mapped onto 

0 < [z ]  < 1 by an analytic function T so that  each bounded analytic function / on ~ is 

of the form go t  where g is a bounded analytic function in the disk I z] < 1. 

Actually, a result of this nature holds under much weaker assumptions on W. Let 

(W, F) be a bordered Riemann surface with compact border F. Then W is said to satisfy 

the AB-maximum principle if every bounded analytic function on W tJ F assumes its 

maximum on 1 ~. Then the following theorem asserts that  there is an analytic mapping T 

of W U F into a compact subset C of some Riemann surface such that  every bounded ana- 

lytic function / on W U F is the composition go t  of T with some function g defined and 

analytic in a neighborhood of C. The theorem is slightly more general than this in that  it 

establishes the corresponding conclusion for functions in any algebra of analytic functions 

on W (3 F which assume their maxima on F. 

THEOREM 3. Let (W, F) be a bordered Riemann sur/ace with compact border, and A 

an algebra o/bounded analytic/unctions on W tJ F such that each / E A assumes its maximum 

on F. Then there is an analytic mapping T o/ W U F into a Riemann sur/ace W' such that 

T[W U F] has compact closure and each / E A  is o/ the /orm go t  where g is analytic in some neigh- 

borhood o/the closure o /T[W U F]. 

Proo]. By Proposition 4, there is an analytic map T of W 0 F into a Riemann surface 

W' and an algebra A'  defined on a connected compact set K containing T[F] such that  each 

] in A is of the form go t  on F. Moreover, there is a subalgebra A 0 of A '  which is proper for 

W'. Let  K + be the union of K and those compact components of W ~  K to which each 
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function in A'  has an analytic continuation. Then by Theorem 2, each parametric disk in 

W is mapped analytically into the interior of K+ by  a map  y) such tha t  for each /EA,  

/ = / ' o r  2 for this disk. Since the mappings ~o are unique, they  combine to give a global 

map of W into K +, and since this map coincides with T on a neighborhood of F, it coincides 

with T everywhere in W. Thus r maps W U F into K +, and so ~[W (J F] has compact closure 

in W' and each ]EA has the form g o t  for some gEA', i.e. for some g analytic in a neigh- 

borhood of ~[W U F]. 

I f  (W, F) satisfies the AB-maximum principle, we may  take the algebra A in Theorem 3 

to be the algebra of all bounded analytic functions. In  this case each ] on W of the form 

go t  with g analytic on the closure of ~[W U F] is a bounded analytic function on W U F, 

and so the class of bounded analytic functions consists precisely of those ] which are lifted 

from analytic functions on ~[ W U F]. 

For many  applications in function theory, one would like to know tha t  the mapping 

in Theorem 3 has bounded valence. Examples show, however, tha t  ~ m a y  have infinite 

valence even fbr A the algebra of all bounded analytic functions on a surface with the 

AB-maximum principle. I f  we assume tha t  W has an absolute AB-maximum principle 

in the sense tha t  each bordered Riemann surface with compact border contained in W 

has the AB-maximum principle, then it is possible to assert tha t  ~ has bounded valence, 

and tha t  the set of W' where the valence of ~ is less than the index of T/F/ i s  a Painlevd 

null-set. Details are published in [5]. 

7. Wermer's theorem 

I n  [7] Wermer proved the following theorem under the assumption of certain technical 

hypotheses which we see are unnecessary. 

THE O RE M (Wermer). Let A be an algebra o/analytic functions on the unit circumference 

F = {z: [z I = 1}, and suppose that A separates points o / r .  Then either A is dense in the algebrc~ 

of all continuous functions on F, or else there is a finite Riemann surface ~ with border F 

such that every ] in A has an analytic extension to ~ .  

Proof. By Proposition 3 there is a finitely generated subalgebra A o which separates 

weakly on F. Since A o is finitely generated, there is some annulus R on which all the 

functions of A 0 are analytic. Let  (W, A0) be the resolution of (R, Ao) given by  Proposition 2. 

Since A 0 separates weakly on F, F is mapped into a simple closed piecewise analytic curve 

F '  on W. (The curve F '  may  have cusps, but  tha t  is irrelevant.) I f  we choose A o to have 

the final property given in Proposition 3, then each ] in A can be expressed as an analytic 
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funct ion on F ' ,  so tha t  (F', A ' )  and (F, A) are isomorphic. Iden t i fy  F with F ' .  I f  there is 

a bounded homomorphism ~ on A which is no t  evaluat ion on F, then  by  Theorem 2 W N 1 ~ 

must  have a compact  component  ~ to  which each l E A  has an  analyt ic  extension. Since 

F is a simple closed curve on W, there can be at  most  one such component  and so F = ~ .  

Thus ~ is a finite Riemann  surface with border  F, and each lea  has an analyt ic  exten- 

sion to ~ .  

I f  there are no bounded homomorphisms ~ other  t han  evaluat ion on F, then  F is 

the  maximal  ideal space of A, the closure of A in the  uniform topology.  Since -~ is a Banaeh 

algebra, each ] which does no t  vanish on F has an  inverse in 2i, and hence R[]]EA for 

each rat ional  funct ion R with no poles o n / [ F ] .  Since every  continuous funct ion ~0 on ][F] 

can be approximated  by  such a rat ional  function, every  continuous funct ion of / is in ~ ,  

in part icular  Re ]. Thus the  subalgebra of ~I consisting of real functions separates points 

and hence is dense in C(F) ]by the Stone-Weierstrass theorem. Thus ~ = C(F), (ef. Theorem 

1 of [3]). 

I t  should be noted t h a t  the  hypothesis  of Wermer ' s  theorem could be weakened to  

requiring only t h a t  A separates weakly  on F, if we weaken the  first al ternative to  the  

s ta tement  .~ has finite co-dimension in C(F). 

References 

[1]. BISHOP, E., Analyticity in certain Banach algebras. Trans. Amer. Math. Soc., 102 (1962), 
507-544. 

[2]. HEIRS, M., Riemann surfaces of infinite genus. Ann. o] Math., 55 (1952), 296-317. 
[3]. HELSON, H. & QUIGLEY, F., Existence of maximal ideals in algebras of continuous func- 

tions. Proc. Amer. Math. Soc., 8 (1957), 115-119. 
[4]. MY~BERO, P. J., Uber die analytische Fortsetzung von beschr~nkten Funktionen. Ann. 

Acad. Sci. Fenn., Ser AI, No. 58 {1949). 
[5]. ROYDEN, H. L., Riemann surfaces with the absolute AB-maximum principle. Proceedings 

o] the Con]erence on Complex Analysis, Minneapolis 1964. Springer, Berlin. 
[6]. SELBERG, H.  L., Ein Satz fiber beschr~nkte endlichvieldcutige analytische Funktionen. 

Comment. Math. Helv., 9 (1936), 104-108. 
[7]. WERMER, J., Function rings and Riemann surfaces. Ann. o] Math., 67 (1958), 45-71. 

Received September 5, 1964 


