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1. Introduction

1.1. Main problem. Quasiconformal mappings in Euclidean n-space, n>2, have been
studied rather intensively in recent years by several authors. See, for example, Gehring
[4], [5], [6]; Krivov [8]; Loewner [9]; Sabat [14]; Viisila [17], [18]; and Zori¢ [20], [21].
It turns out that these mappings have many properties similar to those of plane quasi-
conformal mappings. On the other hand, there are also striking differences. Probably the
most important of these is that there exists no analogue of the Riemann mapping theorem
when n>2. This fact gives rise to the following two problems. Given a domain D in
Euclidean n-space, does there exist a quasiconformal homeomorphism f of D onto the
n-dimensional unit ball B*? Next, if such a homeomorphism f exists, how small can the
dilatation of f be?

Complete answers to these questions are known when n=2. For a plane domain D
can be mapped quasiconformally onto the unit disk B? if and only if D is simply connected
and has at least two boundary points. The Riemann mapping theorem then shows that
if D satisfies these conditions, there exists a conformal homeomorphism f of D onto B2

The situation is very much more complicated in higher dimensions, and this paper

is devoted to the study of these two questions in the case where n=3.

1.2. Notation. We let R?® denote Euclidean 3-space with a fixed orthonormal basis

(e1,€5,¢5), and we let B3 denote the Mobius space obtained by adding the point oo to R3.

(*) This research was supported by the National Science Foundation, Contract NSF-G-18913 and
Contract NSF-GP-1648.
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Unless otherwise stated, all point sets considered in this paper are assumed to lie in R2.
Finite points will usually be designated by capital letters P and @, or by small letters
2 and y. In the latter case, x,,%,,z, will denote the coordinates for x, relative to the basis
(e1,€5,€5), and similarly for y. Points are treated as vectors and |P| and |z| will denote
the norms of P and z, respectively.

Given a finite point P and ¢ >0 we let B3(P,t) denote the 3-dimensional ball |z —P| <¢
and S%(P,t) its 2-dimensional boundary sphere |z—P|=¢t. We will also employ the ab-
breviations

Bi(t)=B¥0,t), B=B1), St)=08%0,1), S2=8%1),

where 0 denotes the origin. Next for each set E<R® we let £, 0E, and C(E) denote the
closure, boundary, and complement of E, all taken with respect to R3. When Ec R8,
we let A(E), A%(E), and m(E) denote respectively the linear or 1-dimensional Hausdorff
measure, the 2-dimensional Hausdorff measure, and the 3-dimensional Lebesgue measure
of E. (See [10] and [15].)

By a homeomorphism f of a domain D< R?® we mean a homeomorphism of D onto a
domain D’< R3. For each quantity A associated with D, such as a subset of D or a family

of arcs contained in D, we let A’ denote its image under f.

1.3. Modulus of @ ring. We say that a domain BR< R® is a ring if C(R) has exactly two

components, say C, and C;. Then following Loewner we define the conformal capacity

of R as
capR=inffff | ve P do, (1.1)
u R

where the infimum is taken over all functions » which are continuously differentiable in
R with boundary values 0 on C, and 1 on C;, and where | Vu| is the norm of the gradient
vector (Qu/0x,, dufdr,, duloxs). It is easy to see that 0<<cap R<<co. We then define the
modulus of B by means of the relation

¥
modR=~( i ) . (1.2)
cap R

This modulus behaves in many ways like the familiar modulus of a plane ring, usually
defined by means of conformal mapping. For example, if R is the domain bounded by

concentric gpheres of radii @ and b, a <b, then

mod B =log f—i.
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1.4. Modulus of a family of arcs. The conformal capacity of a ring can also be expressed
in terms of extremal lengths, or more precisely, as the modulus of a certain family of arcs.

A set y< R3 is said to be an arc if it is homeomorphic to a linear interval which may
be open, half open, or closed. If E, and E, are two sets which meet the closure of a set D,
then an arc (or more generally a connected set) y is said to join E, and E, tn D if y< D
and if y N Ey+0, y N B +0.

Suppose next that y is an arc and that g is a non-negative Borel measurable func-

tion defined on some set containing y. We define the line integral of ¢ along y by means

J; ods = J; odA. (1.3)

(See p. 19 and p. 53 in [15].) When y is rectifiable, it is not difficult to see that the integral
in (1.3) is equal to the usual line integral taken over y with respect to arclength. (When ¢

of linear measure,

is constant, this follows from [1]. The general case is then obtained by a simple limiting

argument.)

Suppose that I is a family of ares in R3. We denote by F(I') the family of functions g

which are non-negative and Borel measurable in R3 and for which

f@d&‘?l
¥

for each arc y €1'. We then define the modulus of the arc family I'" as

M(T) = inf f f f o*dw, (1.4)
e R3

where the infimum is taken over all functions g € F(I'). It is clear that 0 <M(I") < oo and
that M(1") =0 whenever the family I" is empty.

It is important to observe that the nonrectifiable arcs have no influence on the mod-
ulus of a given arc family. That is, if I, denotes the subfamily of rectifiable arcs in a

family [, then
MIYy=M[T,). (1.5)

See [17] for this and other properties of the modulus M(I").

Now suppose that R is a ring and that I is the family of arcs which join the compo-
nents of OR in R. Then it follows from (1.5) and Theorem 1 of [3] that

cap R=M(T). (1.6}

1.5. Dilatations of a homeomorphism. Suppose that f is a homeomorphism of a domain:
D< B3, If R is a bounded ring with R< D, then R’ is a bounded ring with R'< D’. We.
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define the inner dilatation K,(f) and the outer dilatation K(f) of the homeomorphism f as

mod R mod R’
Kyf)y=sup — = (1.7)

K((f) =sup ——

where the suprema are taken over all bounded rings R with R< D for which mod R and
mod R’ are not both infinite. We call

K(f) =max (K(f), Kof)) (1.8)
the maximal dilatation of f. Obviously
K(f)=K\f), KoH=KA™), K(H=K(). (1.9)

Moreover, it follows from Theorem 5 of [4] or Theorem 6.11 of [17] that
K(N<Kyf)?, Kofy<K(f) (L.10)

Thus the three dilatations of a homeomorphism f are simultaneously finite or infinite.
In the former case, f is said to be quasiconformal; f is said to be K-quasiconformal if K(f)<K
where 1 <K < co,

One can also define the dilatations of a homeomorphism in purely analytic terms.

Suppose that f is a homeomorphism of a domain D< R3. For each P€.D we let

L(P)=limsl}1p——-——|f(r£:§£ll))|, Z(P)=nm;nf———|f(|’2:’;f)l,
(1.11)
e m(B’)
J(B)=lim sup gy

where B= B3P,t). At a point of differentiability, L(P) and I(P) are just the maximum
and minimum stretching under f, and J(P) is the absolute value of the Jacobian. Next
we say that [ is absolutely continuous on lines, or simply ACL, in D if for each ball B with
Bc D, fis absolutely continuous on almost all line segments in B which are parallel to

the coordinate axes.
Lemma 1.1, Suppose that f is a homeomorphism of a domain D< R3. If f is not dif-
ferentiable with J >0 a.e. in D or if f is not ACL in D, then
K (f)y=Ko(f) =K(f) = .
If f is differentiable with J >0 a.e. in D and if f is ACL in D, then

J(P L(P)?
K/ = ess sup % K(f)*=ess sup J(( P)) -
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This result follows from Theorems 4 and 6 of [4] and also from Theorems 6.10, 6.13
and 6.16 of [17].
If we apply Lemma 1.1 to the affine mapping

f(xi,x2,$3) = (szl,szz,xa), -K > ]->

we obtain K,(f) =K? and K(f)=K. Hence the inequalities in (1.10) are best possible.
We see from (1.2) and (1.6) that it is possible to define the dilatations of a homeo-
morphism f in terms of what happens to the moduli of certain arc families under f, namely
the families of arcs which join the boundary components of bounded rings with closure
in D. Surprisingly enough, if we know what happens to the moduli of this particular class
of arc families under f, we know what happens to the moduli of all arc families under f.
In particular, combining Lemma 1.1 with Theorem 6.5 of [17], we obtain the following

result.

Lemma 1.2. Suppose that f is a homeomorphism of a domain D< R3. Then

M) o (T
T M(P) s O(f)2 - Slll_‘p M(F/) ’

where the suprema are taken over all arc families I' which lie in D and for which M(T') and

MI") are not simultaneously equal to 0 or oo,

1.6. Coefficients of quasiconformality. Suppose that D is a domain in R® which is
homeomorphic to the unit ball B3. We set

K(D)=inf K/f), Ko(D)= inf Ky(f), K(D)=inf K(f), (1.12)

where the infima are taken over all homeomorphisms f of D onto B3. We call these three
numbers K (D), K D), and K(D) the inner, outer, and total coefficients of quasiconformality
of D. From (1.10) we obtain

K/(D)<K,D)?, K (D)< K (D), (1.13)
while from (1.8) and (1.10) it follows that |
max(K (D), K(D))<K(D) < min{K,(D), K,(D))2. (1.14)

Thus these three coefficients are simultaneously finite or infinite. In the former case we

say that D is quasiconformally equivalent to a ball.

1.7, Summary of results. We can now formulate in a more precise manner the two

problems with which our paper is concerned. First determine what kinds of domains D



6 F. W. GEHRING AND J. VAISALA

are quasiconformally equivalent to a ball. Next given such a domain D, determine the
coefficients K,(D), Ky (D), and K(D). Needless to say, both of these problems are fairly
difficult and we give only rather fragmentary contributions to the solution of each.

The aim of this paper is, therefore, to obtain bounds for the coefficients of certain
domains. To obtain upper bounds for a given domain D, it is only necessary to construct
a suitable homeomorphism f of D onto B? and calculate the dilatations of f by means of
Lemma 1.1. The problem of obtaining significant lower bounds is much more difficult,
since one must find lower bounds for the various dilatations of all homeomorphisms f
of D onto B®. We do this by considering what happens to certain arc families under each
homeomorphism f and then appealing to Lemma 1.2.

We begin in section 2 by giving a few general properties of the coefficients K (D),
Ky(D), and K(D). Next in section 3 we derive bounds for the moduli of some arc families.
In section 4 we show that if D and D’ have sufficiently smooth boundaries, each quasicon-
formal mapping f of D onto D’ induces a homeomorphism f* of 6D onto 6D’ which is

quasiconformal with maximal dilatation
K(f*) <min (K (f), Ko())* (1.15)

‘We use this sharp bound in sections 8 and 9 where we actually calculate the outer coeffi-
cients of an infinite circular cylinder and of a convex circular cone. In section 5 we obtain
an upper bound for the coefficients of a certain class of starshaped domains; here the
homeomorphism f may be chosen as a simple radial mapping. In section 6 we give asymp-
totically best possible lower bounds for the inner coefficient of another class of domains
which are characterized by a certain separation property. Then in section 7 we calculate
the inner coefficient of a convex dihedral wedge.

It is natural to assume that the values of the coefficients of a domain depend strongly
upon how smooth the boundary of the domain is. In section 10 we study what can be
said about the coefficients of D when 8D contains a spire or a ridge. It turns out that the .
presence of a spire and the presence of a ridge have quite different effects on the coeffi-
cients, and that these effects depend also on whether the spire or the ridge is directed
into or out of D. Finally in section 11 we prove that the space of all domains which are
quasiconformally equivalent to a ball has a natural metric, and that this metric space is

complete and nonseparable.

1.8. Definitions for quasiconformality. The terminology concerning quasiconformal
mappings in space is rather confused. The class of K-quasiconformal mappings considered

here is the same as the class studied by Gehring in [4], [5], and [6]. It also coincides with
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the class of K2-quasiconformal mappings studied by Viisild in [17] and [18]. In particular,
the numbers K,(f)? and K(f)> were called the inner and outer dilatations of the homeo-
morphism f in [17].

According to Sabat [14], a homeomorphism f of D is K-quasiconformal if f is C!
and if J>0 and L<KI everywhere in D. Such mappings are K-quasiconformal by our
definition. In the other direction, if f is K-quasiconformal by our definition and if f is

C' with J >0 in D, then f is K*3.quasiconformal by Sabat’s definition. The affine mapping
f(xl’ xz’ .’L‘3) = (K4/3 xla K2l3 xz, xa)

shows that the constant K*?® cannot be improved.

2. General properties of the coefficients of domains

2.1. Lower semicontinuity of the dilatations. We need the following result to establish
the existence of extremal mappings and to obtain a similar continuity result for the

coefficients of a domain.

LEMMA 2.1. Suppose that {f,} is a sequence of homeomorphisms of domains D,< R?,
that each compact subset of a domain D< R? is contained in all but a finite number of D,

and that the f, converge uniformly on each compact subset of D to a homeomorphism f of D.
Then
Ki{f) <lim inf K,(f,), K (f) <lim inf K(f,), 2.1)
Nn—>»00 n->»>o0

and similarly for the maximal dilatation K(f).

Proof. Let R be a bounded ring with R< D. Then R< D, for n>ny(R). If R, and R’
denote the images of R under f, and f, then the hypotheses imply that each component
of &R}, converges uniformly to the corresponding component of @R, in the sense of Lemma

. 6 of [4]. Hence mod R;, converges to mod B’ and we have
mod R <lim inf (K{f,) mod R,)=mod R’ lim inf K(f,).
n->00 n—o0
Since this inequality holds for all such R, we obtain the first half of (2.1). The proof for

the second half is similar, and (2.1) then implies the analogous inequality for K(f).

2.2. Extremal mappings. We see next that there exist extremal quasiconformal map-

pings for each domain with finite coefficients.

LeMMA 2.2. If D is a domain in R3 which is quasiconformally equivalent to a ball,
then there exist extremal homeomorphisms f,, f,, f of D onto B® for which

K(f)=K(D), Kf)=KyD), K(f)y=K(D). (2.2)
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Proof. Fix K so that K (D)<K<co. Then we may choose a sequence of homeo-
morphisms {f,} of D onto B3 such that

K (D) =lim Ki(fs) (2.3)

and such that K,(f,) <K for all n. By composing f, with a suitable Mébius transformation
of B3 onto itself, we may further assume that f,(P)=P’, where P and P’ are fixed points
in D and B3, respectively. Now (1.10) implies that the f, are all K2-quasiconformal, and
hence by Corollary 7 of [4] there exists a subsequence {fu;} which converges to a homeo-
morphism f; of D onto B3, uniformly on compact subsets of D. Combining Lemma 2.1

with (2.3) yields
K (Dy<K(f)< hﬂgf K(fn) = K,(D),

and hence f, satisfies the first part of (2.2). The proofs for the existence of f, and f follow
exactly the same lines.

2.3, Lower semicontinusty of the coefficients. Suppose that {D,} is a sequence of domains
in B3 which contain a fixed point P. We define the kernel D at P of the sequence {D,}
as follows [6]. '

(i) If there exists no fixed neighborhood U of P which is contained in all of the D,,
then D consists only of the point P.

(ii) If there exists a fixed neighborhood U of P which is contained in all of the D,,
then D is the unique domain with the following properties.

(a) PED.

(b} Each compact set < D lies in all but a finite number of D,.

(c) If A is a domain satisfying (a) and (b), then A< D.
Next the sequence {D,} is said to converge to its kernel D at P if for each subsequence
{ny}, the sequence of domains {Dx,} also has D as its kernel at P.

Using this notion of convergence, we obtain the following continuity property for
the coefficients of a domain.

TuEOREM 2.1. Suppose that {D,} is a sequence of domains in R® which contain the
poink P, that the D, converge to their kernel D at P, and that D +{P}, B®. Then

K,/(D)<liminf K,(D,),  K,(D)<lim inf K(D,), (2.4)
and simtlarly for the coefficient K(D).

Proof. We establish the first half of (2.4). For this let
K =lim inf K,(D,).

n—>o0
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We may assume that K < oo, for otherwise there is nothing to prove. Next for each n,
let f, be one of the extremal homeomorphisms of D, onto B2 for which K,(f,)=K,D,).
By choosing a subsequence and relabeling, we may assume that

K =lim K,(f,)

n—->00

and that K,(f,) <K +1 for all n. Furthermore, by composing the f, with suitable Mébius
transformations of B3 onto itself, we may assume that f,(P)=0. Now the f, are (K +1)-
quasiconformal, D< R3, and D has a finite boundary point. Hence we may apply Theorem
3 of [6] to obtain a subsequence {fx} which converges to a homeomorphism f of D onto

B3, uniformly on each compact subset of D. Then with Lemma 2.1 we have

K/(D)<K(f)< ]jin inf Ky(fn) =K

as desired. The proofs for K (D) and K(D) follow similarly.

The hypothesis that D = R3 is essential. For if we let D, = B3(P,n), then all coefficients
of each D, are equal to 1. On the other hand, D= R3 and hence all coefficients of D are
infinite [9].

2.4. Range of the coefficients. The inequalities (1.13) and (1.14) imply that
K/(D)=>1, K|(D)=1, K(D)=1 (2.5)

for each domain D< R3, and that there is simultaneously equality or inequality in (2.5).
It then follows from Lemma 2.2 and Theorem 15 of [4] that the coefficients of a domain
D are equal to 1 if and only if D is either a ball or a half space. Hence we see that

K(D)>1, K(D)>1, K(D)>1

for essentially all domains D< R3.

2.5. Influence of the boundary. The main task in this paper is to obtain some significant
lower bounds for the coefficients of certain domains; by significant lower bounds, we
mean bounds which exceed 1. Up to now, the only general result of this kind is the follow-
ing one [18] which considers the topological nature of the boundary.

TrEOREM 2.2. If D is a domain in R3, if D is locally connected at each point of ifs
boundary 0D, and if 0.D is not homeomorphic to S2, then all the coefficients of D are infinite. ()

(1) A domain D is said to be locally connected at a boundary point if for each neighborhood U of
the point there exists a second neighborhood V of the point such that each pair of points in VN D
can be joined by an arc y< UN D.
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It is obvious from Theorem 2.2 that the coefficients of a given domain depend strongly
on the global nature of 6D. We show now how one can obtain lower bounds for the coeffi-
cients by examining D in a neighborhood of a fixed finite boundary point.

We say that a domain A< R? is raylike at a point @ if for each point P, P€A if and
only if @ +#{(P—@Q)EA for 0<t<oc. That is, A is raylike .at @ if each open ray from @
lies either in A or in C(A).

THEOREM 2.3. Suppose that D is a domain in R3, that U is a neighborhood of Q€0D,
and that DN U =ANU, where A is a domain that is raylike at Q. Then

E(D)>K(A), KyD)>KyA), K(D)>K(Q). (2.6)

Proof. We may assume without loss of generality that @=0. Choose a>0 so that
B3a)< U, and for each positive integer » let D,={x: z/n€D}. If €A and n>|z|/a,

then because A is raylike at the origin
“eAnveD, zeD,. @7

Hence if we fix PEA with |P| <a, we see that P€ D, for all n.
Now let D’ denote the kernel of the D, at P. Arguing as in (2.7) it follows that each
compact subset of A must lie in all but a finite number of D,, and hence we see that A< D",

If € D', then x€ D, for n>n,. Thus n>n,,|2|/a implies that
z
SEDNUCA, zE€A,

since A is raylike at the origin. Thus A=D’, and repeating the above argument with a
subsequence {n,}, we conclude that the D, converge to their kernel A at P. Finally since

0€0A, we can apply Theorem 2.1 to obtain

K (A)<lim inf K /(D,) = KD),

->0

and similarly for the two other coefficients.

2.6. An example. We conclude this section with an example which will motivate the

separation property discussed in section 6. Let D be the domain
D={x: (¥ + )t < oo, |m|<1},

let {b,} be any sequence of positive numbers which approach oo, and for each » let D,
be the right circular cylinder

D,={z: (e + 23 <b,, |xzs|<l}.
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Then D satisfies the hypotheses of Theorem 2.2 and hence has infinite coefficients [18].
On the other hand, the D, also converge to their kernel D at 0, and since D =+ R3, we see
from Theorem 2.1 that

lim K;(D,)=1lim K (D,)=lim K(D,)= oo,
n—=>o0 n—->w n—->»0

Thus the coefficients of a right circular cylinder approach oo as the ratio of its radius

to height approaches oo. We will give bounds in section 6 to show how fast the inner

coefficient grows.

3. Estimates for the moduli of certain arc families

3.1. Spherical cap inequality. We begin with an inequality which is required later
in the proof of a symmetry principle for the moduli of arc families. (Cf. Lemma 1 in [4]
and Theorem 3.6 in [17].)

Lemma 3.1. Suppose that S is a sphere of radius t, that D is an open half space, that
2=8N D, and that ¢ is a non-negative Borel measurable function in 8. Then each pair of

points P and Q in % can be joined by a circular arc a<X for which

(f gds)3<Atffzg3d6, (3.1)

where A is the absolute constant 16¢*[m and
7 3 i e
g=q (—) = fz (sin u)~*du. (3.2)
2 0

Proof. Since the inequality (3.1) is invariant under similarity transformations of R3
onto itself, we may assume that § is the unit sphere 8% and that P is the point (0,0,1).
Let f map 8 stereographically onto the extended complex plane Z. Then P corresponds
to z = oo and @ to some point z =a & co. Moreover, if § —X is nonempty, this set corresponds
to a closed disk or half plane £ which does not contain @ or co as interior points. Since E

is convex, we can find an angle § such that for § <0 <f+x, the ray
z=a+ue?®, 0<u<oo,

does not meet . Hence this ray corresponds to a circular arc «(f) which joins P and @

in 3. For each such arc we see that

il du
=9 = i0 = -1
J:z(ﬂ) o(x)ds J‘O 0:(2) T Iz 12, z=a+ue®, g,=pof’
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and thus we may choose a particular circular arc « joining P and @ in ¥ for which

2 04(2) do
J;Q(x)dsgy—zfjg—‘hl—al1+|z|2’ (3.3)

where Q is the half plane §<arg (z~a)<pf+x. Now Hélder’s inequality implies that
the cube of the right-hand side of (3.3) is majorized by

,%(ffﬂlz—a|~%(1 +|z|2)—ida)2(ffngl(z)3(1 +|zI2)“2da).

If we appeal to the argument in the proof of Lemma 1 in [4] or to Theorem 7.2 in
[12], we obtain

ff |z—a]"§(1+|z|2)‘*d0'<ff |z——a|‘*(1+|z|2)“*do'<ff |2]"¥(1+|2|%) " tdo =21 ny.
Q z z

Finally we see that
4ff 0,(2* (1 +|z[)2do < ff o(z)’da,
Q p)

and if we combine the above inequalities, we obtain (3.1) as desired.

3.2. Suppose that D is an open half space and that E, and E, are disjoint continua
in D.(!) Next for small >0 let I" and I'(¢) be the families of arcs which join E, to E, and
Et) to E,(t) in D, respectively, where E,(t) denotes the closed set of points which lie
within distance ¢ of E; for i=0,1.

The following result yields an important relation between the families of functions
F(I') and F(I'(#)). (Cf. Lemma 2 in [3] and Lemma 2 in [19].)

Lemma 3.2, If o€ F(T') and if g is L3-integrable, then for each a>1 there exists a £>0
such that ap € F(I'(t)).

Proof. Choose b>0 so that a(1-2b) =1, let ¢ >0 denote the minimum of the diameters
of E, and E,, and let d>0 denote the distance between E, and E,. Next for PED and
£>0 let X(P,t)=8%P,t)n D. Since p is L3-integrable, we can choose t, 0<t<c/4,d/6,

such that
log 2
3do < ——b®
[J 0<%

for all PED, where A4 is the constant of Lemma 3.1. This means that for each PED we
can find a spherical cap Z(P)=2X(P,u) such that t <u=u(P)<2t and

Au f f o*do <b°. (3.4)
=P

(1) By a continuum we mean a compact connected set in R® which contains more than one point.
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To complete the proof of Lemma 3.2 we must show that

f ods>1—-2b (3.5)
Y

for all y €1'(f). Choose y €I'(t). There are two cases to consider.

Suppose first that there exist finite points P;€5 N E(t) for =0,1. Then since P;€7,
since the diameter of y exceeds that of X(P,), and since » is a connected set in D, y must
meet 2(P;) for 1=0,1. Next because E, is a connected set in D, a similar argument shows
that F, must meet E(P,-) for £=0,1. We conclude from Lemma 3.1 and (3.4) that for
¢=0,1 there exists a circular arc «; which joins y and E, in %(P;)< D and for which

f ods<b. (3.6)
o

It is then easy to show that &,U & Uy contains an arc § which joins B, to B, in D

and hence
f st?f st—f gds—f ods>1—2b.
v 8 %o 24

Suppose next that one of the sets, say y N E,(f), contains only the point co. Then
9 N Eyft) contains a finite point P,, and arguing as above, we can find a circular arc «,
which joins 9 to By in 2(Pg)< D and for which (3.6) holds with ¢=0. Since oo €E}, ayUy

contains an arc § which joins E, to B, in D and we obtain

fgds>f st-—f ods=21—b6>1—2b.
Y B %o

Thus the proof for Lemma 3.2 is complete.

3.3. Remark. Now suppose that D is an arbitrary open set and that Z, and %, are
bounded continua in D which lie at a positive distance from each other. Then the argument
given above, or Lemma 2 of [19], shows that Lemma 3.2 is again valid if for small £>0,
we let I' and I'(#) denote the families of arcs which join £, to B, and E(t) to E,(t) in D,
respectively.

3.4. Symmetry principle. We next use Lemma 3.2 to establish the following symmetry
principle for the moduli of arc families.

LemMA 3.3. Suppose that D is an open half space, that B, and E, are disjoint continua
in D, and that By and B, are the symmetric images of E, and E, in the plane 6D. IfT is
the family of arcs which join E, and E, in D and T the family of arcs which join E,U E,
and B, U E, in B3, then

MIT)=LMTY). (3.7)
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Proof. We may assume, for convenience of notation, that D is the half space z;>0.
If we let " denote the family of arcs which join B, and £, in D, the half space 3 <0, then
T and I are separate families and "' U i"‘Cl“l. Obviously M(I")=M (f’) and hence

oM(T)=M(T)+MT)=MT uT)<M(T,)

by Lemma 2.1 of [17].

Next let T' denote the family of arcs which join E, and E, in D, let f be the contin-
uous mapping of E® into D given by

f(xl’xbx:)) = (xl’xz’ | xsl )?

and let g€ F(T). Set 0, =pof and choose y, €I';. Then f[y,], the image of y, under f, contains

an arc y €T and hence

f oy(x)ds= f o{f(z)) dA = ‘f o(r)dA = f o(x)ds=1.
Y1 "1 1yl 4

M(T)< Jf r oldw=2 fff_g:’dw <2 ij o*dw,

and we conclude that M(I",) <2M (I—’).
To complete the proof of (3.7) we must show that

Thus o, € F(L')),

MT)<M(D). (3.8)

Now the fact that B, and E, are disjoint implies that M(I')<co. Fix a>1 and choose
€ F(I") so that p is L3-integrable. By Lemma 3.2 we can choose £>0 so that ap € F(I'(t)).
Set p,(x) =ag(x +ie;), let yIEIT, and let y be the arc y, translated through the vector fe;.
Then y €I'(t) and we have

f 0y(x)ds= f ag(x)ds>1.
Y1 y

= [ s ]

and taking the infimum over all such g yields

Hence g, € FI),

M(T)<a*M(T).
Finally if we let a—1, we obtain (3.8) as desired.

3.5. Continuity of moduli. The following continuity property for the moduli of arc

families is an easy consequence of the preceding arguments. (Cf. Lemma 6 in [4].)
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LeEMMA 3.4. Suppose that D is an open set, that Ey and E, are disjoint bounded continua
in D, and that for small t>0, 1" and I'(t) are the families of arcs which join E,to E, and Et)
to E,(t) in D, respectively. Then

M(T) =lim (). (3.9)

Proof. If 0<t;<#,, then I'<I'(¢;)<TI'{{,) and hence
MIYy<MTE) <M T(E).
Thus the limit in (3.9) exists and

M(T)<lim M(T'¢)). (3.10)
t=>0

Since E, and E; are disjoint continua, 0 <M (I')<oo. Fix a>1 and choose g€ F(I") such

that
Jff o’dw<aM(T).
RS

By Lemma 3.2 and the remark in section 3.3, we can choose ¢ >0 so that ap € F(I'()). Thus
MT@)<a® f f f ddw<arM(T),
RB
and we obtain lim M(I'(t)) < at M(T).
t—=>0

If we let a—1, then the resulting inequality and (3.10) imply (3.9), and the proof is complete.

3.6. Extremal problem. Now suppose that D is the half space z3>0, that E, and E,
are continua in D, and that Py,0€ E, and P,,c0 € E,, where Py==0 and P, = co. We want
to find a sharp lower bound for M(I"), where I' is the family of arcs which join E, and
E,in D. '

For this let Eg denote the segment — |P,| <, <0, z,=x;=0 and E} the ray |P;| <
x, < oo, 2,=x,=0, and let I'* denote the family of arcs which join E¢ and EY in D. We

shall show that the family I'* has the following extremal property.
TaeorEM 3.1. M(I")=M(I'*).

The proof of Theorem 3.1 depends upon an analogous extremal property of the
Teichmiiller ring in space. In order to make use of this property we must first establish

the following result.

Lemma 3.5. If E, and E, are disjoint continua, then there exist a domain D and dis-
joint continua Cy and Cy such that Cy and C, are the components of C(D) and 8C,< E,=C,
for i=0,1.
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Proof. Choose @,€E, and Q,€E, so that |Q,—Q;| is equal to the distance between
E,and E,,let Q=1(Q,+@Q,), and let D be the component of C(Z,U E,) which contains ¢.
Then each component A of C(D) is a domain with a connected boundary. (See p. 123
and p. 137 in [11].) Next since E,N E,=¢ and since

dA<aC(DycéD< E, U E,,
either A< E, or )A< E,. Now let
Ci=(UAUE, i=0,1,
where for each ¢ the union is taken over all components A of C(D) for which A< E,.
Then it is not difficult to see that C, and C, are continua and that C(D)=0C, U C;. Since

0D< EyUE, and @,€0D N E,; for ¢=0,1, 0D is not connected and hence C; and C, are the
components of C(D). Finally we see that

oC;coDNC,c E,<(,

for 1=0,1, and the proof of Lemma 3.5 is complete.

Proof of Theorem 3.1. We first observe that M(I')= co whenever E,n E, +@. (Cf. p.
31 in [17].) For fix PEE,N E,. Then since E, and E, are nondegenerate, we can find
a>0 such that the closure of X(t)=S*P,t)N D meets E, and E, for 0<f{<a. Choose

o€ F(I'). Then
f pds>1

for each circular arc « which joins E, and E, in Z(t), and Lemma 3.1 implies that

a a
J1f o= [ (L= 5] o=
R3 0 pa¢e) A4 ot

Hence M(I") = oo and the desired inequality follows trivially.

Suppose now that E, and E, are disjoint, let E, and E, be the symmetric images of
E,and E, in 2D, and let T'; be the family of arcs which join E,U £ to E, U £, in R3. Lemma
3.5 implies there exists a ring R which has C, and O, as the components of its complement,
where 60,< E;,=C, for :=0,1. Hence the family of arcs which join the components of

OR in R is a subfamily of I';, and we obtain
MIT)=iM{I;)=4cap R

from Lemma 3.3 and (1.6). Since P,,0€(C, and P;,cc €C,, we can now apply Theorem 1

of [2] to conclude that
cap R >cap R*,
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where R* is the ring bounded by the continua Ef and ET. Because these sets are sym-
metric in 8D, it follows that

M(T*) =3 M(T]) =4cap R, (3.11)

where I'] is the family of arcs joining E§ to Ef in R3, and we obtain M (T) > M([™*).

3.7. Some applications. For each % >0 we let p(u) denote the modulus of the family
of arcs which join the segment —1<x,<0, z,=x;=0 to the ray u <z, <oo, x,=x,=0
in the half space z;>0. From (3.11) it follows that

() =2m(log ¥ ()2, (3.12)

where W(u) is the function described in [2]. If we combine Lemmas 6 and 8 in [2] with
the Corollary in [3] and with the estimates due to Hersch [7] and Teichmiiller [16] for
the modulus of the plane Teichmiiller ring, we obtain

2n(log A%(u + 1)) 2 <y(u) < 2x(log (16w +1))~2, (3.13)

where 4 is an absolute constant, 4<1<12.4....

Theorem 3.1 now yields the following lower bounds for the moduli of three different

families of arcs in D, the half space z,>0.

CoroLLARY 3.1. Suppose that E, and E, are continua in D, that both E, and E,
meet S*(a) where a>0, and that 0€ Ey and oo €E,. If I' is the family of arcs which join E,
and E, in D, then

My Z(1).

CorOLLARY 3.2. Suppose that E, and E; are continua in D, that E, separates O and
oo in 8D, and that 0,00 € B,. If T is the family of arcs which join E, and E, in D, then
MT)>p().
CoroLLARY 3.3. Suppose that Py, Py, P,,P, are distinct points in 0D and that E,, E,,

E,, E, are continua in D which join P, to P,, P, to Py, Py to P,, P, to P,, respectively. If
I'; and T'y are the families of arcs which join E, to E; and E, to E, in D, respectively, then

MT)=>pl) or M(Ty)>yp(l).

Proof of Corollary 3.1. By hypothesis there exist points Py €.8%(a) N E,and P, €S52%(a) N K,

and hence by Theorem 3.1
Py
MT) = (l—l) =(1).
A1) 7Y

2—652932 Acta mathematica 114, Imprimé le 9 aotit 1965.
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Proof of Corollary 3.2. Since E, separates 0 and oo in D, we can find a pair of points
P,, Py€E,N0D such that 0<|P,| <}|P,—P,|. For example, we may take P, as one
of the points of E,N oD nearest to 0 and then let P, be any point in the intersection of
E, with the ray from 0 through —P,. Then after the change of variables y =z —P,, Theo-
rem 3.1 yields

Pyl
MI)= (——l 0 )> 1),
( ) Y lpl_Pol 1p(2)
since y(u) is nonincreasing in u.

Proof of Corollary 3.3. By performing a preliminary Mobius transformation of D onto
itself, we may assume, without loss of generality, that P,=0 and P,=oco. Then since
P,,0EE, and P;,00 € E,, we have

P
MTp)=y (l__s .
1

| P

v

Next since P,;, 0€E, and P,, ©€E,,

=y (22

Thus M(Ty) >p(1) if |Py| > |Py| and M(Ty) >p(l) if |P,| <|Ps|.

3.8. Eemarks. The bounds in Corollaries 3.1 and 3.3 are sharp. For example, we have
MT,)=MT,)=y(l) in Corollary 3.3 if E; denotes the arc of the circle a7 +a25=1, ;=0
which is contained in the closed i-th quadrant of z;=0, :=1,2,3,4.

On the other hand, we are sure that the bound in Corollary 3.2 is not best possible,
and we conjecture that under the hypotheses of Corollary 3.2,

7\ 2
M) = (;) =143..., (3.14)
where ¢ is as in (3.2). There is equality in (3.14) when E, is the circle 2} +a3=1, x,=0
and E, the ray x;, =2, =0, 0 <x; < co. From the second half of (3.13) we obtain
w(3) <2m(log 9)2=1.30...,
and hence the conjectured lower bound in (3.14) is greater than y(3).

3.9. We consider next the asymptotic behaviour of a particular family of arcs. We
use this result to establish the bound given in (1.15) for the boundary mapping f* induced
by a quasiconformal mapping f.
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LeMMA 3.6. For each a>0, let p(a) denote the modulus of the family of arcs which
join the segments 2, = +a, || <1, ;=0 in R3. Then ap(a) is nondecreasing in a and

lim ap(a) =4, (3.15)

a=>0

where 0 <A < oo,

Proof. Fix a>0 and let I" be the family of arcs which join the above segments in R3.
Then for a’ >a,

a a'
f(xp Ly xs) = ('(; xp Lo, ; 11:3)

is a homeomorphism of R® onto itself and we obtain

1

p(a)=UT)< Ko(f)2 M(T") =2 p(a).
a

Thus ap(a) is nondecreasing in ¢ and the limit in (3.15) exists with 4 <p(1) < oo. To show
that 4 >0, choose g € F(I'). Then Theorem 3.5 in [17] implies that

3d ! 3 1 1 2
> —du=——
fffR’@ ® f—l (ff:c.=u9 dG) du>f_121adu 2la

Hence ap(a) >2/21 and we conclude that 4 >2/21.

3.10. Cylinder and cone inequalities. We conclude this section by obtaining sharp
lower bounds for the moduli of two more families of arcs. These estimates will be used in
sections 8 and 9 when we calculate the outer coefficients of an infinite cylinder and of a.

convex cone.

LeEMMa 3.7. Suppose that a<b, that C is the finite part of the cylinder x5+ 2% <1 whick
s bounded by the planes x3=a and 23=>b, and that E is a connected set in C which joins the.
bases of C. If I is the family of arcs in C which join E to the lateral surface of C, then

M) 2 ix(b—a). (3.16}
There is equality in (3.16) if E is the segment x, =x,=0, a <xz <b.

Proof. Choose g€ F(I'). For a<u <b, the plane 23=u meets both E and the lateral
surface of C, and we can apply Theorem 3.4 of [17] to obtain

fffR ¢*dw> f: (ffh_u Q3d0) du > f: indu=in(d—a).

This yields (3.16) as desired.
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Next suppose that E is the segment x,=2,=0, a<z;<b, and set p(z)=%r—* in C
and o(x) =0 in C(C), where r denotes the distance from z to the x,-axis. Then g € F(I') and

J[] e

Hence in this case there is equality in (3.16).

(b —a).

Finally we have the following cone analogue of Lemma 3.7.

LeEMMA 3.8. Suppose that 0<oa<lm and 0<a<b, that C is the part of the cone
%y > (cobax) (27 +3)} which is bounded by the spheres S%(a) and S2(b), and that E is a connected
set in C which joins the spherical bases of C. If I is the family of arcs in C which join E to
the lateral surface of C, then

M) =2nq(x)-2log 2, (3.17)

where o qla)= f (sin u) "t du. (3.18)
0
There vs equality in (3.17) if E is the segment x,=2,=0, a <y <b.

Proof. Choose g € F(I') and for each £>0 let X(t) =8%(¢) N C. We first show that

2
f f @3da>7”q(a)-2 (3.19)
I
for a <t <b.

For thisfix ¢, @ <t <b. Since £ joins S%(a) and 82(b) in C, we can find a point Q € £ N X(¢).
Next let T be any fixed plane containing 0 and @, let 7(0) denote the plane through 0
and @ which meets 7" at an angle 0, and for P€X(t) let p =¢(P) denote the angle formed
by the segments OP and 0@, 0<¢ <2a. For each 8, f(0)=T(0) N X(¢) contains a pair of
circular ares which join E to the lateral surface of C. Thus

f pds>2,
B®

and with Holder’s inequality we obtain

2
(J. 0® sin (pds) (J (sin (p)'*ds) >8.
B©O 8©®

Since the length of £(6) does not exceed 2at <, it is easy to see that

f (sin @) " tds = tf (sin @)~ ¥|dp| < 2tg(a).
£®) B®
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342 3 2 -2
Thus we have 0%t sm<p|d<p|>;q(oc) ,
0

and we obtain (3.19) by integrating both sides of this inequality over 0 <0 <uz.
Next if we integrate both sides of (3.19) over the interval a <t <b, we get

b
Jff Pdw> f (Jf o® da) dt > 2mg(x) 2 log I—),
B3 a =) a

and hence (3.17) follows.
Finally suppose that E is the segment x, =2,=0, a <x;<b, and let

-1

o(w) =17 (sin ) * g(a)

in € and g(x)=0 in C(C), where t=|z| and ¢ is the acute angle between the segment 0z
and the positive x;-axis. Then g € F(I') and

fff 0*dw =2 q(x) "% log é
RS a

Hence in this case there is equality in (3.17).

4. Boundary correspendence induced by quasiconformal mappings

4.1. Introduction. If f is a quasiconformal mapping of D onto a half space D’ and if
D is locally connected at each point of its boundary, then f induces a homeomorphism
f* of 8D onto 0D’ by Theorem 1 in [18]. Moreover, by Theorem 10 in [4], this boundary
mapping is a two-dimensional quasiconformal mapping whenever 8D is itself a plane.

We show in this section that this result remains valid when 2D is, for example, a
smooth free surface, and we obtain a sharp bound for the maximal dilatation of the

boundary mapping f* in terms of the inner and outer dilatations of f.

4.2. Quasi-isometries. We introduce the notion of a quasi-isometry in order to describe
a certain class of surfaces. Suppose that f is a homeomorphism of a domain D< R%. We
say that fis a C-isometry, 1 <C < oo, if

O_IIP1_‘P2|<lf(P1)_f(P2)|<C|P1_P2| (4.1)

for all P),P,€D. A homeomorphism is a guasi-isometry if it is a C-isometry for some C.
We define C(f), the maximal distortion of f in D, as the smallest constant € for which
(4.1) holds for all P;,P,€D.

If f is a C-isometry, then it follows from Lemma 1.1 that

Ep<c, K p<ce (4.2)
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Thus f is quasiconformal. On the other hand, it is clear that a quasiconformal mapping

need not be a quasi-isometry.

4.3. Admissible surfaces. A connected set S< RS is said to be an admissible surface
if to each point P€S there corresponds a quasi-isometry i, with the following properties.
For each £>0 there exists a neighborhood U, of P, in which ¢, is defined, such that i,
maps SN U, onto a plane domain 7', and such that the maximal distortion C(ip) of ip
in U, satisfies the inequalities

sup C(ip) < oo, ess sup C(ip) <1l +e. (4.3)
PeS PeS

Here, and throughout the rest of section 4, the essential suprema and infima over § and
8’ are taken with respect to the A%-measure.

We want a simple geometric condition which implies that § is an admissible surface.
Suppose that a point P€S has a neighborhood V such that 8N ¥V is homeomorphic to
an open disk, suppose that » is a fixed unit vector, and suppose that for each pair of points
Q,,0:€8 N V, the acute angle which the segment ¢, @, makes with # is never less than «>0.
Then there exists a neighborhood U of P such that U< V and each point # € U has a unique
representation of the form

=@ +un,
where QES N U and u is real. For each such x we let

i(x) =4(Q) tun,

where (@) is the projection of @ onto the plane through P which has n as its normal.
‘Then ¢ maps 8N U onto a plane domain 7', and it follows from Corollary 5.1 that ¢ is a

quasi-isometry of U with maximal distortion
C(?) <cotea+1.

Thus a connected set S< R® is an admissible surface if to each point P there cor-
responds a unit vector n, with the following property. For each £>0 there exists a neigh-
borhood U, of P such that 8N U, is homeomorphic to an open disk and such that for each
pair of points @,,9Q,€S8 N Up, the acute angle between the segment @;Q, and the vector
7p 18 never less than ap, where

inf oz >0, essinf ap> I —&. (4.4)
PeS PeS

For example, a two-dimensional manifold S< R? is an admissible surface if it has

a well defined continuously turning tangent plane at each point P€S.
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4.4, Quasiconformal mappings between admissible surfaces. Suppose that S and 8’ are
admissible surfaces and that f is a homeomorphism of § onto §’. Next for each PES,
let P’=f(P) and let i and i, be the quasi-isometries associated with P and P’'. We say
that f is K-quasiconformal, 1 <K < oo, if for each £¢>0 there exist neighborhoods U, of
P and Uy of P’ with the following properties. The quasi-isometries i, and 7, map SN U,
and 8’ N Up onto plane domains 7', and T’ respectively, f maps SN Upinto 8’ N Up, and

s;gs) K(gp) < oo, ess sup K(gp) < K +¢, (4.5)

PeS

where K(gp) denotes the maximal dilatation of the plane homeomorphism
gp=1tpofoipl. (4.6)

We say that f is quasiconformal if it is K-quasiconformal for some K, and we define K(f),
the maximal dilatation of f, as the smallest number K for which f is K-quasiconformal.

Lemma 4.1. Suppose that S and 8’ are admissible surfaces and that f is a quasicon-
formal mapping of S onto 8'. If E< 8 and if A2(E)=0, then A2(E’)=0.

Proof. Suppose that f is K-quasiconformal, and for ¢=1 and each P€S, let U, and
Up be the neighborhoods of the above definition. By Lindel6f’s covering theorem, we

can choose a sequence of points P, €S so that the neighborhoods Up, cover E. Set E,=
E N Up,. Then
E'=UE,
n

and A2(E,)=0. Since ip, and ip; are quasi-isometries and since gp, is a plane quasiconformal
mapping, it follows that A*E;)=0. Hence AXE’)=0 as desired.

From Lemma 4.1 it follows that if f is a K-quasiconformal mapping of S onto §’,
then f~! is a K-quasiconformal mapping of 8’ onto S.

4.5. Surface modulus of a family of arcs. The above definition for quasiconformal
mappings is awkward since it involves the quasi-isometries ¢, and ¢p. We shall give two
other equivalent definitions, but first we must introduce the notion of the surface modulus
of an arc family.

Suppose that S is an admissible surface and that T is a family of ares in S. As in section
1.4 we let F(I') denote the family of functions ¢ which are non-negative and Borel meas-
urable in § and for which

j pds=>1
y
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for each arc y €I". We then define the surface modulus of the arc family I' as

MS(T) = inf f f o*do,
e S

where the integral is defined by means of the A%-measure and where the infimum is taken
over all p € F(I").

The surface modulus of a family of arcs in an admissible surface behaves like the
familiar plane modulus of a family of arcs in a plane domain. In particular, M5(I") reduces
to this modulus when § is a plane domain. Next it is easy to see that all of the assertions
of Lemma 2.1 in [17] hold with M, replaced by M*. Finally we can argue as in the proof
of Theorem 2.3 in [17] to show that the surface modulus of the family of all compact
nonrectifiable arcs in an admissible surface S is equal to zero. This means that the arcs
of a family I", which are not locally rectifiable, have no influence on M5(I"). That is, if
T, is the subfamily of locally rectifiable arcs in I", then

MT)=M5T,). (4.7)
We could also have used the following inequality to reduce the proof of (4.7) to the

special case where § is a plane domain.

LeMMA 4.2. Suppose that S is an admissible surface, that i is a C-isometry of U which
maps SN U onto a plane domain T, that T is a family of arcs in SN U, and that IV is the
image of I under i. Then

CM5T) <My <C*M5(T). (4.8)

Proof. If g€ F(I'), then Cp’ € F(I'"’), where ¢’ =go¢~1, and

M) < ff C*odo< 4 ff o’da.
T s

This yields the second half of (4.8). The first half follows similarly.

4.6. Analytic characterization. Suppose that f is a homeomorphism of an admissible
surface S. For each P€S we let

(P) =lim sup IO LD o) _ iy qup AUS N B))

z>P Ix - PI ’ t->0 A¥SnB)’ (4.9)

where B=B3%P,t). Next. we say that [ is absolutely continuous on arcs, or simply ACA,
in 8 if M5T")=0, where I' is the family of all locally rectifiable arcs in § which contain

a compact subarc on which f is not absolutely continuous. ()

(*) Suppose that S is a plane domain. If f is ACA in 8, then f is clearly ACL in S. Conversely, if
fis ACL in § and if the partial derivatives of f are locally L*-integrable in S, then f is ACA by Lemma
4.1 of [17].
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We now have the following analytic characterization of quasiconformal mappings

between admissible surfaces.

TaEOREM 4.1. Suppose that S and 8’ are admissible surfaces and that f is a homeo-
morphism of S onto 8'. Then f is K-quasiconformal, 1 <K < oo, if and only if f is ACA in
S and

L(PR<KJSP) (4.10)
A%age. in 8.

Proof. Suppose that f is K-quasiconformal. We wish to show that f is ACA in § and
that (4.10) holds for P€S — E where A*(E)=0. Fix £¢>0. Because S and 8§’ are admissible
surfaces we can choose for each P€S and P’ =f(P) neighborhoods U, and Up such that

sup C(ip) < oo, ess sup C(ip) <1 +e,
s
Pe PeS (4.11)
sup O(ip) < o0, esssup C(ip)<1+e,
PeS’ Pres’

where C(ip) and O(ip) denote the maximal distortions of ¢, and 4, in U, and U,., respec-
tively. Next because f is K-quasiconformal, we can choose these neighborhoods so that,
in addition, f maps SN U, into 8N Up and

sup K(gp) < o0, e88 sup K(gr) < K(1+¢), (4.12)

PeS

where K(gp) is the maximal dilatation of the plane homeomorphism g, given in (4.6).
We show first that f is ACA. Let I denote the family of all locally rectifiable arcs in
§ which contain compact subarcs on which f is not absolutely continuous. Next choose a
sequence of points P,€S8 so that the corresponding neighborhoods Up, cover §. Each
y €I has a compact subarc # on which f is not absolutely continuous. A bisection argument
then shows that for some », § has a compact subare o< 8 N Uz, on which f is not absolutely

continuous. These arcs « form a family I'y which minorizes I, (1) and hence
MET)y<M5T).

Let I',, be the subfamily of arcs of I'y which lie in SN Up,, and let I'; denote the image of
I', under the quasi-isometry ¢p,. The analytic definition for plane quasicbnformal mappings
implies that gp, is ACA in T'p,, and since ¢p, is not absolutely continuous on any arc of
I}, it follows that the plane modulus of T, is equal to zero. Hence M(T",) =0 by Lemma
4.2 and we conclude that

MTy) <3 MTH)=0.
Thus M3(I")=0 and f is ACA in S. "

(1) An arc family I'; is said to minorize an arc family I', if for each y, €I, there exists a p, €I,
such that y,C y,.
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We turn next to the inequality (4.10). Lemma 4.1, (4.11), and (4.12) imply there
exists a set B, < S such that A%(E,)=0 and

Cip)<l+e, C(ip)<l+e, K(gp)<K(l+e)

for PES— E,. Fix such a point P and let y=iy(x) for x€8 N U,. Then g=g, is a plane

K(1 +¢)-quasiconformal mapping of 7'=T; and we have, in an obvious notation,
Lz <(l+epL(y2<K(l+ePJ] (y) <K(1+e)*J5(x) (4.13)

A?-a.e.in T;, and hence A2-a.e. in SN U,. Since there exists a sequence of points P,€S— K,
whose neighborhoods Up, cover §—E;, we can find a set E, such that A%(E,)=0 and

L(P) <K(1+¢)°J5(P)

for P€S — E,. Finally let E be the union of the exceptional sets E, for e=1/n, n=1,2,....
Then A2(E)=0 and (4.10) holds for P€S — E. This completes the proof of the necessity
part of Theorem 4.1.

For the sufficiency part fix £>0. Then for P€S and P’ =f(P) choose neighborhoods
U, and U, so that (4.11) holds and so that f maps 8N U, into 8’ N Up. We show first
that the homeomorphism g, of (4.6) is a plane quasiconformal mapping with maximal

dilatation
K(gp) < KO(ip)*Clip ). (4.14)

Fix P€S, let IV be the family of all locally rectifiable arcs in 7', which contain a
compact subarc on which g, is not absolutely continuous, and let I be the image of I
under ¢3'. Since f is by hypothesis ACA in S, M5(") =0 and hence M™*(I'') =0 by Lemma
4.2. Thus g is ACA and, a fortiori, ACL in 7T'». Next arguing as in (4.13) we see from (4.10)

that
L,y <KC(p)*Clip)*5(y), g=gpand T'=T),

A?a.e. in Tp, and we obtain (4.14) from the analytic definition for plane quasiconformal
mappings.
Now (4.11) and (4.14) imply that

sup K (gP) <o,
PeS
and hence that f is quasiconformal. Then Lemma 4.1, (4.11), and (4.14) imply that

ess sup K(gp) < K(1 +¢)®.
PeS

Thus f is K-quasiconformal and the proof of Theorem 4.1 is complete.
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4.7. Modulus characterization. We can also characterize quasiconformal mappings

between admissible surfaces by means of the surface moduli of arc families.

THEOREM 4.2. Suppose that S and 8’ are admissible surfaces and that f is a homeo-
morphism of S onto 8. Then | is K-quasiconformal, 1 < K < oo, if and only if
My <KM5T) (4.15)

for each family of arcs 1" in 8.

Proof. Suppose that (4.15) holds for all arc families I' in S, fix ¢>0, and choose U,
Up, and gp as in the last part of the proof of Theorem 4.1. Then (4.15) and Lemma 4.2
imply that
MTF([) < KO(ip)* Clip)* UTH(T)
for each arc family I' in 7',, where IV is the image of I" under g,. Thus we obtain (4.14)
by virtue of the geometric definition for plane quasiconformal mappings, and the proof
that f is K-quasiconformal is concluded as in the proof of Theorem 4.1.
Suppose now that f is K-quasiconformal. Since f-! is K-quasiconformal, (4.15) will
follow if we can show that
M) <KMS (V) (4.16)
for each arc family I' in S. For this let I' be any family of arcs in S, let T'; be the family
of arcs in " which are locally rectifiable, and let I'y be the family of arcs in I'; on each
compact subarc of which f is absolutely continuous. Then (4.7) and the fact that f is ACA
in § imply that
MS5T)=M5T,)=M5T,). (4.17)
Choose g’ € F(I'), set o(x) =p'(f(x)) L{x)

for all €8, and pick y €l If 8 is any compact subarc of y, then § is rectifiable, f is ab-

solutely continuous on 5, and we obtain

f gds>f gds=[‘ g'Lds?f o'ds.
t4 B g i

(Cf. p. 24 in [17].) Since this inequality holds for all such g,

fgds>supf g’ds=f p'ds=1.
v g Jp v

Because g is Borel measurable, we conclude that ¢ € F(I',). Thus

M5y < ff o*do= ff (o'L)*do < KJ:[ 02 J%do < Kj‘f 0"do,
) s s s’
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and hence M5T,) < KMS(IV).
This, together with (4.17), yields (4.16) as desired.

4.8. Boundary correspondence theorem. Suppose that D is a domain in R3. We say
that a two-dimensional manifold 8 is a free boundary surface of D if

S<oD and Sn@D—-S8)=9. (4.18)

Suppose next that f is a function defined on D. Then for each P€9D we denote by C(f,P)
the cluster set of f at P, that is the set of limit points of all sequences {f(P,)}, where
P,—Pin D.

Our objective, in this section, is to establish the following result on the boundary

correspondence induced by quasiconformal mappings. (Cf. Theorem 10 in [4].)

THEOREM 4.3. Suppose that f is a quasiconformal mapping of a domain D< R3, that
S and 8" are free admissible boundary surfaces of D and D', respectively, and that

C(f,P)N 8" +0 4.19)

for each PES. Then f can be extended to be a homeomorphism of DU S onto D'U S, where
8’ is an admissible surface contained in S”. The induced boundary mapping f* is a quasicon-
formal mapping of S onto S’ with maximal dilatation

K(f*) <min (K (f), Ko(f)). (4.20)
This bound for K(f*) is sharp.

The proof of Theorem 4.3 depends upon the following four lemmas.

LemmA 4.3. If f is continuous in D and if D s locally connected at P€0D, then C(f,P)

28 a closed connected set.

Proof. If for each n we let E,= D n B¥P,1/n), then it follows that

0=C(f, P)= N flE,].

Clearly C is closed. Because D is locally connected at P, for each n we can find an m such
that each pair of points in E,, can be joined by an are in E,. Thus each pair of points in
C can be joined by a connected set in f—[_E_n]- If C were not connected, we could find a
bounded open set & such that both G and C(G) would contain points of €' while 6G N C=6@.
But 8GN f[E,] +0 for all n, whence

oG NC= NG N flE.])+9.

Hence O is connected.
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LeMMA 4.4. Suppose that S is a free admissible boundary surface of D and that U is
a neighborhood of PE€S. Then P has a neighborhood V< U such that the quasi-isometry ip
maps DNV onto a hemiball H and SN V onio the plane part of 0H.

Proof. By definition P has a neighborhood U,, in which i, is defined, such that i,
maps SN U, onto a plane domain 7. Let Q@ =:,(P) and B=B¥@,f). By (4.18), P lies at
a positive distance from éD - 8. Hence we may choose ¢ >0 so that T, divides B into
two open hemiballs, H, and H,, and so that

B [UNU,], Bni[@D—8)nU=0. (4.21)

Let ¥V and W, be the images of B and H, under i3'. Then V< U and (4.18) implies that
W, or W,, say Wy, contains a point of (D). Now (4.21) implies that 9D N W, =0 and hence
DnW;=0. Thus DN V=W, and 5, maps DNV onto H=H, as desired.

Lemma 4.4 shows that a domain is locally connected at each point of a free admissible
boundary surface.

LeMma 4.5. Suppose that S is a free admissible boundary surface of D, that B, and
E, are nondegenerate connected sets in D, and that E,N E, contains a point PES. If I' is
the family of arcs which join E, and E, in D, then M(I')=oo.

Proof. Let V be the neighborhood of Lemma 4.4 with U = R3, and let I'; be the family
of arcs which join Fy=E,NV and F,=E,NVin DN V. Then

MT)>MT) >0 M[Ty), Ti=ipl]

by (4.2), where C(¢p) is the maximal distortion of the quasi-isometry ¢, in V. Since the sets
E, and E, are connected, we can find a >0 such that the hemisphere 2(t) =8%(ix(P),t) N H
meets both [ F,] and ¢p[F,] for 0<t<a. Hence we can argue as in the first part of the
proof of Theorem 3.1, or as on p. 31 in [17], to conclude that M(I';) = co. Thus M(I") = co.

Lemuma 4.6, Suppose that D and D’ are domains in the half space 23>0, that T and
T are plane domains in x3=0 which are free boundary surfaces of D and D', respectively,
and that g is a homeomorphism of DU T onto D' U T" which is quasiconformal in D. Then

the boundary mapping ¢g* is a plane quasiconformal mapping of T onto T' with maximal
dilatation
K(g*) <min (K (g), K,(9))> (4.22)

Proof. Since T and 7" are free boundary surfaces, D,=DU T U Dand D;=D'UT'U D
are domains, where D and D’ denote the symmetric images of D and D’ in z,=0. We

can next extend g by reflection to obtain a quasiconformal mapping g, of D, onto D;
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with K,(g,) = K,(g) and K(g,) = K,(g)- (See Corollary 5 in [4].) Then arguing as in the proof
of Theorem 10 in [4], we conclude that ¢g* is actually a plane quasiconformal mapping of
T onto T".
To complete the proof of (4.22), it is sufficient to show that g* has maximal dilatation
K(g*)<K(9)*,
for then, by symmetry, it will follow that
K(g")=K(g* ) < K,o(g7)* = K.(g)*.

Next by virtue of the analytic definition for plane quasiconformal mappings, it is suffi-

cient to show that
L(Py<K(g)*J"(P)

at each point P€T, where g* is differentiable with J7>0; here L and JT are the distortion
functions of (4.9) with g* and 7 in place of f and S. Fix such a point P. By performing
preliminary similarity mappings in the plane x;=0, we may assume without loss of gener-

ality that P=0, that g*(P)=0, and that
g (24, 25) = (az,5) To( |, | + | 2]), (4.23)

where a > 1. We then must show that
a<Kyg) (4.24)
For this, fix £>0, choose 0 <b<1 so that

abp(ab) <A +e, (4.25)

where p and 4 are as in Lemma 3.6, and choose ¢ >0 so that B3(c)< D;. Then for 0 <u <2-%c
let B, and E, be the segments x; = +bu, |2,| <u, 23=0, and let I'; and I, be the families
of arcs which join E, and E, in D, and R3, respectively. Then each arc y €I',—I"; must

contain a subarc which joins 82(2¥u) to S2(c). Hence

-2
M(T,-T)<4n (log 2-*%) ,
and we may choose u; so that
£
pO)=MT)<MT)+— (4.26)

for 0 <u<wu,.
Next for >0 and 0<t<lab, let F, and F; be the sets of points which lie within
a distance of tu of the segments z, = +abu, |x,| <u, x3=0, and let I'y be the family of

arcs which join Fj and F; in R3. Then by Lemma 3.4,
lim M(T';) = p(ab),
50
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and we may fix £>0 so that
£

M(Ty) <plab)+=

(4.27)
for all 4 >0.

Finally by (4.23), we may choose u,>0 so that E;< F, and E;< F, for 0<u<u,,

and hence so that
M) <MT,) (4.28)

for 0 <# <wu,, where E; and I'; are the images of &, and I'; under the homeomorphism
¢;- Fix u so that 0<w <w;,u,. Then we can combine inequalities (4.25) through (4.28)
with the inequalities

A<bp(d), M(T,)<Ky(g2M (')

to obtain ad <Kg)?4 +(2K,(g)*+1)e.

Letting ¢ —0 then yields (4.24), and the proof of Lemma 4.6 is complete.

Proof of Theorem 4.3. We begin by showing that C(f,P) reduces to a single point for
each P€S. Fix P€S and suppose that C(f,P) contains two distinct points. Then Lemmas
4.3 and 4.4 imply that C(f,P) is a continuum, and by (4.19) we can find a pair of distinct
points Py, P1€C(f,P) N S”. Hence there exist sequences {P, ,} in D such that P, ,—P and
P| .n—>P{ for i=0,1. Since Py, P; €8”, we can use Lemma 4.4 to construct two nondegenerate
connected sets Eg, E; in D' such that Egn E; =9 and such that E; contains all but a
finite number of P; ,, ¢=0,1. Let [ be the family of arcs joining Ey and E; in D’. Then
clearly M(I')<oco. On the other hand, we see that P€ E,N E,, and hence M(I')=co by
Lemma 4.5. This contradicts the fact that f is a quasiconformal mapping, and we conclude
that C(f,P) must reduce to a point P’'€S” for each P€S.

We now extend f by setting f(P)=PF" for PES. Then f is continuous in DU S. Let
8" =f[8]. Then 8’< 8" and for each P'€8’ we have

PEC(f,P)n S +0.

The above argument shows that C(f~1,P’) reduces to the point P, and we conclude that
f is a homeomorphism of DU S onto D’ U 8. It is then clear that S’ is a free admissible
boundary surface of D',

We must now show that the induced boundary mapping f* is a quasiconformal map-
ping of § onto 8’ with maximal dilatation satistying (4.20). Fix £>0 and for P€S and
P’ =f*(P) choose neighborhoods U, and U, so that (4.11) holds. Next let ¥, and V¥V be
the neighborhoods of Lemma 4.4, chosen so that V,c Up, Vp.< U, and so that f maps
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(DUS)N ¥V, into (D'US)N Vp. Finally let H and H” be the hemiballs corresponding to
DnVyand D'NVp, and let T and 7" be the plane parts of H and 0H". Then

gp=ipofoip’
is a homeomorphism of HUT onto H'UT'< H"UT" which is quasiconformal in H.
Since T and T'< T"” are plane domains which are free boundary surfaces, we have essen-
tially the situation in Lemma 4.6. Thus the boundary mapping g3 is a plane quasiconformal
mapping of 7" onto 7" with maximal dilatation
K(g%) <min (K (g5), Ko(gp))?
SO0ty min (K (f), Kol f)*.
Then arguing as in the last part of the proof of Theorem 4.1, we obtain

sup K(g}) < oo, ess sup K(g}) < (1+¢)" min (Ky(f), Ky(f))",

and hence f* is a quasiconformal mapping of S onto S’ whose maximal dilatation satisfies
(4.20). Moreover, if we let

. f(xl’x27x3) = (K2x15 xz,x:;), K> 1:
then f maps z;>0 onto itself with K (f)=K and K(f)=K?2, while the boundary mapping
7* sends z,=0 onto itself with K(f*)=K2. Thus the bound in (4.20) cannot be improved.

5. Upper bounds for the coefficients of certain domains

5.1. We shall derive in this section upper bounds for the coefficients of bounded
starlike domains. To do this, we need only find some appropriate quasiconformal mappings,
for given any homeomorphism f of D onto B®, we obviously have

K(D)<K(f), KoD)<Kyf), K(D)<K(f).

All of our estimates are based upon the following homeomorphism.

5.2. Projection mapping. Suppose that S< R? is homeomorphic to a plane domain
and that, for all @,,Q,€S, the acute angle which the segment @,Q, makes with the basis
vector e, is never less than a«>0. Next let 7' denote the projection of S onto the plane

2, =0 and let D denote the set of all points P of the form
P=Q+ue,, (6.1)

where Q€S and u is real. Then for each P €D the representation (5.1) is unique and we

define
HP)=[(Q) +aues, (5.2)

where (@) denotes the projection of @ onto z,=0 and a is some fixed positive number.
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LemmA 5.1. The mapping f is a homeomorphism of D onto itself which maps S onto
T, and

3 |Pi=Py| <|{(P)~f(P))| <4|P,~Py| (5.3)
for all Py,P,€ D, where
A=3(acsca)+2a+1) +L((@esca)2 —2a +1)1. (54)
Proof. Fix points Py, P;€D,
Pr=0Q,+tue5, Py=Q,+use,

and let § and y denote the acute angles which the segments P, P, and @,¢, make with e,
From (5.2) it follows that

If(Pl) —f(P2)|2 = If(Ql) —H(@s) |2_|_a2(u1_u2)2
=((sinB)? +a?(cosf + cotysinB)?) | P, — P, |2 (5.5)
=B2|P,—P,|?, B>0,

and it is then not difficult to verify that a/C<B<C(, where C is equal to the right hand

side of (5.4) with y in place of . Now the hypotheses on § imply that «<y <z/2. Hence
C<4 and (5.3) follows from (5.5).

CorROLLARY 5.1. If a=1 in (5.2), then f is a quasi-isometry with maximal distortion

C(f)y<cote+1,
and a quasiconformal mapping with

K(f) <(3{(cot )2 +4)t + ] cot )t < (cot e +1)E.
CoROLLARY 5.2. If a=sinwa in (5.2), then f is a quasiconformal mapping with

K< K(f)2<27% cot g ese g

®  a
K, ()2 <2t cot 3 008 5

Proofs. If we set a=1 in (5.4), we have
A=}(cotx)2+4) +}cota<cota+1, (5.6)
while if we set a=sina in (5.4), we get
A=132+2sin )t + (2 -2 sin a)? = 2% cos g. (6.7)
We see from (5.3) that
LP)< A, UP) >§, J(P)=a

3~ 652932 Acta mathematica 114, Imprimé le 10 aott 1965.
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for all P€D, and hence Corollaries 5.1 and 5.2 follow from Lemma 1.1 and (5.6) or (5.7),

respectively.

8.3. Starlike domains. A domain D< R3 is said to be starlike at a point Q€D if the
closed segment PQ lies in D whenever P € D. Suppose next that D is a domain which is
bounded and starlike at the origin 0, and that @€9.D. For each P€SD, P £Q, we let «(P,Q)
denote the acute angle which the segment PQ makes with the ray from 0 through @,

and we define
(@) =1lim inf (P, @), 0< (@) < im. (5.8)
P—>Q

If 0D has a tangent plane at @ whose normal forms an acute angle § with the ray from
0 through @, then «(Q) =17 —p8.

TrrOREM 5.1. Suppose that D is a domain which is bounded and starlike at the origin,
and that a(Q)=a>0 for all Q€OD. Then

K/(D2E<K(D)*<2 cot g cse 32‘

(5.9)
29t % i
K (D)*< 2% cot 5 €085
Proof. Fix a>0. Since D is bounded and starlike at the origin and since a(@)>0
for all Q€OD, each point P€D, P+0, has a unique representation of the form P=uQ,
where Q€0D and 0<u <1. For each such P we define

[(Py=u*f(@), HQ)= ik (5.10)

and we let f(0)=0. Then f is a homeomorphism of RE?® onto itself which carries D onto
B3, and a tedious but elementary argument, similar to the one given in the proof of

Lemma 5.1, shows that

L(P)<A“(P—{)l|, IP)> “(—11_:” J(P)=a|’[(P)l3 (5.11)

| P 1P|’
for all PED, P=+0, where A4 is as in (5.4). The bound on L(P) implies that f is ACL and
that f is differentiable a.e. in D. Since J >0 in D, we conclude from (5.11) and Lemma 1.1
that

P

A3 A3
Kz(f)2<;?’ Ko(f)2<7'
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Finally if we set a=sin «, we obtain, as in Corollary 5.2,

K(f?<K(fy*<27% cot g csc g,

* o«
Ky(f)*<2% cot 30085

and this implies (5.9).

5.4. Convexr domains. We can use Theorem 5.1 to obtain the following upper bounds

for the coefficients of convex domains.

THEOREM 5.2. Suppose that 0<a<b, that D is a convex domain, and that B*a)<
D< B3(b). Then (5.9) holds with ec=arcsin(a/b). In particular,

K(D)< K(D) <8t 2 . Ky Dy<st (Z) ’ (5.12)

Proof. The hypotheses imply that D is bounded and starlike at the origin. Hence
(5.9) will follow if we can show that

a(@) = are sin %

for all Q€4D. For this fix Q€&D, let C, be the finite cone which consists of the union of’
all open segments PQ with P € B%(a), and let C, be the symmetric image of C, in . Since:
D is convex and B3(a)< D, it follows that ;< D and C,< C(D). Thus

oDNnC,=9, aDnCy=9,
and since D< B%(b), we conclude that
a a
a(Q) = arc sin — >arc sin .
@ €] b

Finally if o= arc sin (a/b), then

2
27t cotgcsc g<8* (sin o) =8t (—) )

2+ cot g cos §< 8% (sin a) 1 = sfff—;,

and we obtain the less precise but simpler bounds in (5.12).
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6. Lower bounds for the coefficients of certain domains

6.1. In this section we shall obtain some lower bounds for the inner coefficient of
domains which have a certain separation property. In general, it is much more difficult
to obtain a significant lower bound for a coefficient of a given domain D than it is to
obtain an upper bound, since one must find a lower bound for the corresponding dilata-
tion of each homeomorphism f of D onto B3. We shall accomplish this by studying what
happens to the modulus of a certain arc family I" under f and then appealing to Lemma 1.2.

6.2. Main theorem. We observed in section 2.6 that the coefficients of a right circular
cylinder D approach oo as the ratio of its radius to height approaches co. We establish
now a rather general result which gives a lower bound for the order of growth of the inner

coefficient of the cylinder D.

THEOREM 6.1. Suppose that 0<a<b, that D is a domain in R3, and that C(D) N B3(b)

has at least two components which meet S¥(a). Then

K{D)= A log g, (6.1)
where A 1s the absolute constant : |
w(%))* S
=22 >.129..., 6.2
A ( i (6.2)

and p is as in (3.12).
Proof. Let f be any homeomorphism of D onto B%. We must show that
Ki{f)=Alog g. (6.3)

Since the right hand side of (6.3) is continuous in b, it is sufficient to establish (6.3) under
the slightly stronger hypothesis that the closed set H=C(D)n 1—%') has at least two com-
Pponents which meet S2(a).

We consider first the special case where f can be extended to be a homeomorphism
of D onto BS. By hypothesis, there exist points Q,,Q; € 8%(a) which belong to different com-
ponents of H, and hence we can find disjoint compact sets H; and H, such that H=H, U H,
and Q,€H,, Q,€H,. Let F, be the closed segment @;Q,, let P; be the last point in Fyn H,
as we move from @, toward @, along F, let P, be the first point in ¥, N H, as we move
from P, toward @, along F,, and let E, be the closed segment P,P,. Then E,=D and
P,,P, are points of 8D which lie in different components of H.

Next let F;, =D n C(B3b)) and let C be any connected set in §D which contains both
P, and P,. Since P, and P, belong to different components of H, F, N C==@. Hence F,
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separates P; and P, in 0D, and because &.D is homeomorphic to 82, we can find a con-
tinuum E, < F, which separates P, and P, in 6D. (See p. 123 in [11].)

Now let ' be the family of arcs which join E, and E, in D. Since E’OCIWa) and
E,cO(B3(b)), I" is minorized by the family of arcs which join S%(a) and S%(b) in R3, and
hence

MI)<4n (log g)_2. (6.4)

On the other hand, we see that Ej joins P; and P; in B3, that E; separates P; and P;
in 82, and that [V is the family of arcs which join Eg and E7 in B8. Hence if we map B3
conformally onto ;>0 so that P; and P; map onto 0 and oo, we can apply Corollary 3.2
to conclude that

M) Zp(}). (6.5)
We then obtain (6.3) from Lemma 1.2, (6.4), and (6.5).

We consider now the general case. For each positive integer » let D, denote the image
of B3(n/(n+1)) under f-1, let H,=C(D,) N B%, and let f, denote the restriction of f to
D,. The hypotheses imply there exist points ¢,,@,€S%(a) which belong to different com-
ponents of H. Let C and C, denote the components of H and H, which contain ¢,. Then

the C, are nonincreasing in =,

C=N?o,

and since @, ¢C, there exists an » such that @, ¢C,. Thus @, and @, lie in different com-
ponents of H,, and we can appeal to what was proved above to conclude that

b
Ki{f)> Ki(fn)> A4 log pe
This completes the proof for Theorem 6.1.

6.3. An alternative formulation. There is a useful inverted form of Theorem 6.1 which
we will need for studying what effect the presence of a spire in 8D has on the coefficients
of D.

THEOREM 6.2. Suppose that 0 <a <b, that D is a domain in R3, and that C(D) N C(B3(a))
has at least two components whick meet S2(b). Then

K(D)>Alog g , (6.6)

where A is the absolute constant in (6.2).
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Proof. Let f be a homeomorphism of D onto B3 We want to show that (6.3) holds;
the last argument in the proof of Theorem 6.1 shows we may assume that f can be ex-
tended to be a homeomorphism of D onto B, By hypothesis we can find ¢,,@, €5%(b) which
belong to different components of H=C(D) N C(B%(a)). Let Fy be any closed arc in S%(b)
joining these points. Arguing as before, we can find a closed subarc E,< D with endpoints
P,,P, which lie in different components of H. Let Fy,=6D N 1%. Then F, separates P,
and P, in 8D, and hence a continuum E, F, separates these points in 2D. If we let I
denote the family of ares which join E, and E, in D, then (6.4) and (6.5) hold, and we
obtain (6.3) as before.

6.4. Bound for convex domains. If we apply Theorem 6.1 to a right circular cylinder D
with radius b and height.%, we obtain

(b + ) 2
‘——”—h =4 log 7 .

KD)>Alog
This is a rather poor estimate for the order of growth of K,(D), since the class of domains
considered in Theorem 6.1 is so large. For the domains in this class which are also convex,

we have the following sharper bound.

THEOREM 6.3. Suppose that 0<a <b, that D is a convex domain in R3, and that
C(D) n B3(b) has at least two components which meet S*(a). Then

a

b\? i
K{D)=2%4 ((—) - 1) , 6.7)
where A is the absolute constant in (6.2).

Proof. Let f be any homeomorphism of D onto B2. We must show that

K(f)>2t4 ((1—’)2— 1)*. (6.8)

a

As in the proof of Theorem 6.1, it is sufficient to establish (6.8) under the hypothesis that
H=C(D)n E’% has at least two components which meet S§%(a).

Consider first the special case where f can be extended to be a homeomorphism of
D onto B3, By hypothesis there exist points @,,@,€S%(a) which belong to different com-
ponents of H, and since D is convex, we can find planes T,,7T, such that @,€T; and
T,=C(D) for i=1,2. Let F, be the union of the two closed segments from 0 drawn per-
pendicular to T, and 7T',. Now the parts of 7, and T, in B3(b) must belong to different
components of H. Hence F, has a closed subare E,< D with endpoints P;, P, which lie in

different components of H. Then, as in the proof of Theorem 6.1, there exists a continuum
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E,=0Dn C(B*b)) which separates P; and P, in 6D, and if we let I' denote the family

of arcs which join E, and E, in D, we have
MI)=p(3). (6.9)
We need an upper bound for M(T"). Let G denote the set of points in D which lie
within a distance of (b2 —a?) from E,, and set p=(b2—a?)~} in G and p=0 in C(B). Since

D lies between the planes T'; and 7'y, it is not difficult to show that the distance between
E, and E, is not less than (2 —a?)? and that

m{@) < 2ma(b? —a?).
Thus g € F(T'), MI)< Jff 0*dw < 2ma(b®—a?) 73, (6.10)
/ s

and we obtain (6.8) from Lemma 1.2, (6.9), and (6.10).
For the general case let D, be the image of B3(n/(n+1)) under f-1, let

H,=0(D,)n Bb),

and let f, denote the restriction of f to D,. Next pick points @,,@Q,€8%(a) which belong to
different components of H. Then there exists an n such that @,,Q, belong to different
components of H,. Since D, is a subdomain of the convex domain D, we can find planes
T,,T, such that Q,€7T; and T,=C(D,) for i=1,2. The above argument then shows that

K=K =24((2) 1)’

a

and this completes the proof of Theorem 6.3.

6.5. Remarks. It is not difficult to verify that
logz <2¥a2—1)}

for 1 <z < oo, and hence Theorem 6.3 yields a better lower bound for the inner coefficient
of a convex domain than that given by Theorem 6.1. Moreover, if the conjectured ine-

quality (3.14) were true, we could take

¥
aT
A—~2—g~l—.337...

in Theorems 6.1, 6.2, and 6.3. On the other hand, we should point out that these three
theorems give sharp bounds for the order of growth of K,(D) as bja —oo.
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To see this in the case of Theorem 6.1, for 1 <b < oo let D(b) denote the class of domains
D< R3 such that C(D) N B3(b) has at least two components which meet S2, and let

g(b) =igf K (D), (6.11)

where the infimum is taken over all D€ D(b). If 1<b’<b, then the mapping

_log &’

= c-1 =

is a homeomorphism of R3 onto itself such that for each domain D< R3, DeD(d) if and
only if D'€D(b’). From Lemma 1.1 it follows that K, (f)=c-1, and we obtain

logb

<
g(b) fog 9

(&").
Thus g(b)/log b is nonincreasing in 1 <b< co and

tim 28 _ B> 40, (6.12)
b0 lOg b
Hence g(b)~ Blogbh as b—>oco, and we see that the lower bound for the order of growth of
K /(D) given in Theorem 6.1 cannot be improved. The above argument shows that the
same is true of Theorem 6.2.
We exhibit a particular domain D to show that the order is right in Theorem 6.3.
For 0 <a<m, let P, =(cos}e,0,0) and P,=(—cos}«,0,0), and let

D=B¥P,,1) n BYP,,1).

Then D is a lens shaped domain which can be mapped by means of an inversion onto a
convex wedge D', bounded by two half planes which meet at an angle «. Hence from
Theorem 7.1 we obtain

)
K(D)=K(D')= (g) . (6.13)

Next it is easy to see that D is itself convex and that C(D) N B3*®b) has two components

which meet S%(a), where
a b

o o
=1- z =gin =, == =, 6.14
a=1—cos > b=sin 3 cot 1 ( )

From (6.13) and (6.14) it follows that

b b\~ xt/b\}
K,(D)—E(arc cot;) NE(;)
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as bja—oo, and thus the order of the lower bound in Theorem 6.3 cannot be improved.

This example also yields the upper bound

]
A< (g) = 626...

for the constant in Theorem 6.3.

6.6. Bounds for a right circular cylinder. We conclude this section by determining
how fast the inner coefficient of a right circular cylinder grows as the ratio of its radius
to height approaches co.

Suppose that 0 <#<2b and that D is the right circular cylinder

D={x: (2] + )t <b, |x3|<g}

Then from Theorem 6.3 we obtain

b\ b\ 5
K(D)>24 (E) > .259 (i) , (6.15)

where 4 is as in (6.2). Next the homeomorphism

x, %y 2%
f(xh x2’ x3) = (31, 32: Ts)
maps D onto a right circular cylinder D', where B%(1)< D’< B3(2}%). Theorem 5.2 implies
that

K/(D')*<2 cot g cse g =4.46...,
and since K (f)*=2b/h, we obtain

Ki(D)<2.99 (%)i. (6.16)

Neither of the constants given in (6.15) and (6.16) is best possible. For example an
independent argument, based on Corollary 3.3, shows that we can replace the constant
.259... in (6.15) by .408.... Moreover, if the conjectured inequality (3.14) were true, we
could improve this constant to .667... . Similarly, by making a more judicious choice for
a in (5.10), we can improve the bound for K,(D’') and thus reduce the constant in (6.16).
Nevertheless, these inequalities do show that the order of growth for the inner coefficient

of a right circular cylinder is equal to the square root of the ratio of its radius to height.
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7. The inner coefficient of a dihedral wedge

7.1. Introduction. In the last two sections we obtained lower and upper bounds for
coefficients of various domains. In the next three sections we will calculate coefficients
of three different domains.

To calculate a given coefficient of a domain D< R3, we first must obtain a lower
bound for the corresponding dilatation of each homeomorphism f of D onto B3. Then
we must show that this bound is actually assumed by some extremal homeomorphism
of D onto B3, Clearly it is the sharp lower bounds which are most difficult to obtain. We
use two different methods. The first involves selecting a certain extremal family of arcs
I in D and then comparing M(I") and M(I"). In the second, we choose arc families I'; = D
and [';c8<oD and then compare the relations between M(I",) and M3(I',) and between
M(Ty) and M5 (Ty).

7.2. Dihedral wedge. Let (r,0,x,) be cylindrical coordinates in B3, We say that a domain
D is a dihedral wedge of angle a, 0 <<a <2z, if it can be mapped by means of a similarity

transformation f onto the domain
D,={z=(r,0,2;): 0<f<a, |x|<oo}. (7.1)
The image of the z;-axis under f-1 is said to be the edge of the dihedral wedge D. We

shall calculate here the inner coefficient of a convex dihedral wedge. But first we require

the following preliminary result.

Lemma 7.1. Suppose that 0 <a<2m, that E, ts the segment r =0, —1<x,<0, and that
E, is the ray r=0, 1<ay<oo. If T, is the family of arcs which join E, to E, in D,, then

o
=Z(1),
M(Ta)=—3(1)
where y s as in (3.12).
Proof. Suppose that 0 <« <f<2m. Then the homeomorphism
flr, 0, z3)= (r, é 0, xs)
o
maps D, onto Dg, T', onto I's, and since K,(f)*=p/x, we obtain
M(I‘p)<§M(I‘a). (7.2)

Suppose next that 0 <a<g<2sx, that plx is a positive integer n, and for m=1,2,...,n
let I'f* be the family of arcs which join E, and E, in the dihedral wedge

DF = {10,z 1 <0<, el < o]
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Then the I'f are separate families, 'y >I'; U ... UT}, and hence by Lemma 2.1 of [17]
MTy=MITH+...+ M(TF) =§M(I‘a). (7.3)
With the aid of (7.2) and (7.3) it is now easy to show that

uwy)=Lur.), (1.4)

whenever 0 <«, <27 and f/« is rational. Then since M(I',) is nondecreasing in «, an ele-
mentary limiting argument, together with (7.2), gives (7.4) even when f/u is irrational.
Finally if we set =z in (7.4), we obtain

as desired.

7.3. The inner coefficient. We now calculate the inner coefficient of a convex dihedral
wedge.

THEOREM 7.1. Suppose that D is a convex dihedral wedge of angle x. Then

K, (D)= (f)% (1.5)

o

Proof. We may assume, for convenience of notation, that D is the dihedral wedge

D, in (7.1). Then since D, is convex, 0 <a <, and we see that the folding mapping
f(r, 0, a5)= (r, g 0, xs)

is a homeomorphism of D, onto the half space D, with K,(f)?=n/a. Since we can map

D, onto B? by means of a M6bius transformation ¢, we have
K (D) <Kigoff=K,()*=".
To complete the proof of (7.5), it is sufficient to show that
KA(f)>7 (7.6)

for each quasiconformal mapping f of D, onto D,. For this let E; and E, be the segments
=0, —1<2,<0 and r=0, 0<zz<1, let E; and £, be the rays r=0, 1 <z;< oo and r=0,
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— oo <xy< ~1, and let I'; and I, be the families of arcs which join E, to E; and E, to E,
in D,. Then by Lemma 7.1

M) =M(Ty)= = (). (7.7

«
7
Since D, is locally connected at each point of its boundary, f can be extended to be a

homeomorphism of D, onto D, by Theorem 1 of [18]. Then E;, E,, E;, E, are continua
in 8D, which satisfy the hypotheses of Corollary 3.3. Hence

MT)>p(l) or M(Tz>y(l), (7.8)
and (7.6) follows from Lemma 1.2, (7.7), and (7.8).

7.4. The other coefficients. We have not been able to calculate the other coefficients

of a convex dihedral wedge. However, the following estimates are easily obtained.

THEEOREM 7.2. Suppose that D is a convex dihedral wedge of angle . Then

() ermsC). () <xor=()

o

Proof. The lower bounds follow directly from (1.13), (1.14), and (7.5). The upper
bounds result from the fact that the mappings

)
flr, 0, z5) = (r, :—: 0, ;_z xa), g(r, 0, ;)= (r, ;_z g, (g) x3)

are homeomorphisms of D, onto D, with K(f)=(n/x)! and K(g)= (n/x)?. We conjec-

ture that
n )
K\(D)= (;) .

7.5 Some lower bounds. We can combine these results with Theorem 2.3 to obtain

the following lower bounds for the coefficients of a large class of domains.

THEOREM 7.3. Suppose that D is a domain in R3, that U is a neighborhood of a point
QEOD, and that DN U=ANU, where A is a dihedral wedge of angle o« which has @ as a
point of its edge. Then the coefficients of D are not less than the corresponding coefficients of
A, In particular if A is convez,

K(D)> (g)i Ky(D)> (;—‘)*

Proof. Since @ is on the edge of A, A is raylike at @, and the results follow from
(2.6), (7.5), and (7.9).
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Theorem 7.3 yields lower bounds for the coefficients of all polybedra. For example
if D is a convex polyhedron with » faces, then the planes of a pair of adjacent faces must
bound a dihedral wedge A which contains D and is of angle «, 0<a<(n—3)(n—1)"n

and we obtain
n—1 n—1

1 i
KI(.D) = (1;:—3) 3 KO(D) = (n—_—?’) .

Or if D is a rectangular parallelepiped, then (7.9) gives
Ky (D)>2%, Ky (D)>2t.

We can also use Theorem 7.3 to obtain lower bounds for the coefficients of a domain
with a piecewise smooth boundary. For example, suppose that D is the right circular

cylinder
D={x=(r,0,x;): 0<r<b, 0<wz<h},

fix 0<a<b,h, and let g(u)=(0*—2*)? in |u|<a and g(u)=(}*—a?®)? in |u|>a. From
Corollary 5.1 it follows that
oy, X, @5) = (01 +g(@5), 5, %5)
is a quasiconformal mapping of R3onto itself and that K(f)>1 asa—0.NowD'n U=ANU,
where U = B3%a) and A is the quarter space x, >0, z;>0. Hence
E(D)K()>K(D)>2},  K\(D)K(f)>KyD')>2%,

and letting a —0 yields
K, (D)=2%  K\(D)>2%.

8. The outer coefficient of an infinite cylinder

8.1. Infinite cylinder. Let (r,0,2;) be cylindrical coordinates in R3 We say that a
domain is an infinite circular cylinder if it can be mapped by means of a similarity trans-

formation onto the domain

D={a=(r0,x;): 0<r<1, || <oco}. (8.1)

We shall calculate in this section the outer coefficient of an infinite circular cylinder.

For this we require the following preliminary result.

Lemwma 8.1. Suppose that D is the cylinder in (8.1), that D’ is the half space x3>0,
that f is a homeomorphism of D —{oo} onto D’ —{0} —{ oo}, and that

lim f(z)=0, lim f(x)= oo. (8.2)

ZTg—>- 00 Zg>+o0
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Then for each a’ >0, the image of the hemisphere S2(a’) N D’ under {1 lies between two planes

X3 =a, and x3=a,, where
0<a,—a,<AKf) (8.3)
and A is an absolute constant.

Proof. Fix a' >0, let ' =8%(a’) N D’, and set

a,=inf x,, @, = sup ;.
zel zel

Clearly we may assume that a,<a,, for otherwise there is nothing to prove. Next let
EBy={z:2€D, — o0 <z3<a,}, E,={v:2€D,a,<w;<oo},
and let I' be the family of ares which join E, and E, in D. Then it is easy to see that
M(T) =nlay —ag) 2. (8.4)

Next it follows from (8.2) that Eq= Eo U {0} and that E;{=E; U {co}. Hence I" is the family
of arcs which join the continua E, and Ej in D'. Finally since E; and E; both meet S%(a’),

we have

M(I)>y(1) (8.5)
by virtue of Corollary 3.1, and (8.3) follows from Lemma 1.2, (8.4), and (8.5) with

“=(5in)

8.2. The outer coefficient. We calculate now the outer coefficient of an infinite circular

eylinder.

THEOREM 8.1. Suppose that D is an infinite circular cylinder. Then

q 3
Ky (D)= (é) ~1.14..., (8.6)

2
where as i (3.2) q=f (sin %)~ tdu.
0

Proof. We may assume, for convenience of notation, that D is the cylinder in (8.1).
Next let (t,0,9) be spherical coordinates in R3, where the polar angle ¢ is measured from

the positive half of the z;-axis, let D’ be the half space 23>0, and set

filr.6,25) = (£.6,¢), (8.7)

1 2 2
where r= (a f (sin u)‘*du) , x3=§ log . (8.8)
0
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Then f, is a continuously differentiable homeomorphism of D onto D’ which maps each

infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to

dt gt @=q_t(sin<p)* tsin«pd6=tsinq)

de, 2 7 rdf r

de, 2’ dr 2 (8.9)

It is easy to show by means of elementary calculus that

r NP
(sin (p) —;(sm ®) fo(smu) du

increases from 2/q to 1 as ¢ increases from 0 to z/2. Hence from Lemma 1.1 and

(8.9) it follows that
LPy _q

J@P) 2

Ko(f,)*= sup
PeD
and since we can map D’ onto B® by means of a Mobius transformation g, we have

q 3

Ky(D)< Ky(gof,) = Ky(f,)= (5) .

To complete the proof for (8.6), it is sufficient to show that
q %

x> (%) (8.10)

for every quasiconformal mapping f of D onto D’, the half space x3;>0. Choose such a
mapping  and let f, be the mapping given in (8.7) and (8.8). Then fof; " is a quasiconformal
mapping of D’ onto D’ which can be extended to be a homeomorphism of D’ onto D’.
We can next choose a Mobius transformation g such that h=gofof;! is a homeomorphism
of D' onto D’ with h(0)=0 and k(co)=oo. Since gof=hof,, it follows from the properties
of vfl that we can extend gof to be a homeomorphism of D—{co} onto D'~ {0} —{oo}

such that

zﬁl_i)rglw gof(x)=0, ,,]i’fw gof(x)=co.
Finally since Ky(gof)=K,(f), we may assume, without loss of generality, that the given
mapping f satisfies the hypotheses of Lemma 8.1.

Now choose 0<a'<b’, and let €', §', and E’ be the parts of D', 2D’, and the positive
x5-axis bounded by 8%*a’) and S%(b’). Next let I'; be the family of arcs which join B’ to
& in ¢ and let I'; be the family of arcs which join 8%(a’) to S2(b’) in 8. Then by virtue
of Lemma 3.8, "

" 2m
M(F1)=?log el (8.11)
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while a familiar calculation yields
4 ’ b, —1
MS(3)=2x (log ;,) . (8.12)

Lemma 8.1 implies that {~1 maps S2(a’) N D’ and 8%(b") N D’ into ay <, <a, and b, <x, <b,,

respectively, where
0<a; —a,b —by<AK,(f), ay<b,. (8.13)

Hence we obtain M) >’§‘ (bo—a,) (8.14)

from Lemma 3.7, while a direct calculation shows that
M3(,) = 2m(by —ag) L. (8.15)

Now S and 8’ are free admissible boundary surfaces of D and D', respectively. Hence
by Theorem 4.3, f*, the restriction of f to §, is a quasiconformal mapping of § onto §’

with maximal dilatation
K(f*) <min (K (f), K(f))%

and we have M5(y) < K(f*) MS (D) <K (/2M5(Ty) (8.16)
from Theorem 4.2. If we combine the above inequalities with Lemnma 1.2, we obtain

n :" 1<M(1" Y MS(D,) < Ko f)t M(Ty) MS(T3) = 4 2 Ky(H~ (8.17)
1

Now (8.17) holds for all 0 <a'<b’, while (8.2) and (8.13) imply that

. b

im %74 _
a0 b LT @
b'—>o0

1. (8.18)

Combining (8.17) and (8.18) yields (8.10), and the proof for Theorem 8.1 is complete.

8.3. The inner coefficient. We have not been able to calculate the other coefficients
for an infinite circular cylinder. However, we have obtained the following bounds for

the inner coefficient.
THEOREM 8.2, Suppose that D is an infinite circular cylinder. Then
28 < K (D)< 2%, (8.19)

Proof. Assume that D is the cylinder in (8.1), that D’ is the half space x,>0, and
let (r,8,2;) and (£,0,¢) be the cylindrical and spherical coordinate systems given in sec-
tion 8.2. Next set
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f(r,07x3) = (t767 (P):
sin ¢

—=9~%. " ¥
where r=2 5o (g /)

z,=2"%logt.

Then f is a continuously differentiable homeomorphism of D onto D’ which maps each

infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to

at . tdy t sin @ df

— =93 R S 3 2 — ok .
dz, 27¢, r 2(sin (¢ + 7/4))%, T 2%t sin (@ +/4). (8.20)
Since 2¥ sin (¢ +7/4) < 2(sin (p +7/4))?, 28,
it follows that K (f)*~=sup J(P g =9t
peD I P)

Then because we can map D’ onto B3 by means of a Mébius transformation g, we have
K(D)<Kgofy=K,f)=2%.
To establish the left hand part of (8.19), we must show that
K, (f)=2Y¢ (8.21)

for each quasiconformal mapping f of D onto D', the half space z;>0. As in the proof
of Theorem 8.1, we may assume that f satisfies the hypotheses of Lemma 8.1. Fix 0 <a'<¥’
so that a, <b,, let ¢’ and §’ be the parts of D’ and 6D’ bounded by 8%(a’) and S2(b'), and
let I'; and I'; be the families of arcs which join 8%(a’) to 82(b’) in C" and S, respectively.
Then it is easy to verify that

AN
M) =2 (log %) , . (8.22)

while as in (8.12) MS'(F§)=2n(log Z—I,)—l. (8.23)
Lemma 8.1 implies that the images of 8%(a’) N D’ and S2(b’) N D’ under -1 lie in a, <z;<a,
and in by <3 <by, respectively, where (8.13) holds. Hence it follows that

M(Ty) <z(by~a,)?,
while as in (8.15) M3(Ty) 2 2nr(b; —ay)~t.
Now 8§ and 8’ are free admissible boundary surfaces of D and D’. Thus

M) <E(MTy), ML) <K,(HM*Ts)

4—652932 Acta mathematica 114. Imprimé le 10 aoctit 1965.
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by virtue of Lemma 1.2 and Theorems 4.2 and 4.3. If we combine all of these inequalities,
we obtain

1 , A | _ 1 (b, —a,\®
g = M) ¥ (T3 < K MOC) M= <5 (12 ) K.

Again (8.18) holds, and letting a'—0, b’ — oo yields (8.21).

8.4, Some lower bounds. We shall require the following analogue of Theorem 7.3 in
order to derive some lower bounds for the coefficients of a domain which has a spire in

its boundary.

THEOREM 8.3. Suppose that D is a domain in R3, that U is a half space, and that
DNU=ANU, where A is an infinite circular cylinder whose axis is perpendicular to 8U.

Then the coefficients of D are not less than the corresponding coefficients of A. In particular,
q é
K (D)= 2", K (D)= (5) .
Proof. Assume, for convenience of notation, that U is the half space x;>0, choose
PeAn U, and for each positive = let
D,={z: x+ne,€ D}.

Then as in the proof of Theorem 2.3, it is easy to show that the D, converge to their kernel

A at P. Hence
K (D) =1lim inf K,(Dy) > K (A),

and similarly for the other coefficients, by virtue of Theorem 2.1. The rest follows from
(8.6) and (8.19).

8.5. Folding of an infinite cylinder. We shall also need the following homeomorphism,

which folds an infinite cylinder onto a semi-infinite cylinder, in our study of spires.

LeEMMA 8.2. Suppose that D is the cylinder in (8.1) and that D' and E are the parts
of D and 0D which lie in the half space v, <0. Then there exists a homeomorphism f of DU K
onto D' U E such that f(x)=x for x€E,

K(f)<2( )§=3.00... (8.24)

DO (M

in D, and L(z)<3¢*=10.3... (8.25)
in D',
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Proof. Let f; be the homeomorphism given in (8.7) and (8.8), and let U denote the
half space 23 >0. Then there exists a Mobius transformation f, which carries U onto the
dihedral wedge D, and U N B® onto the dihedral wedge D, where for 0 <a<2m, D,
is as defined in (7.1). We see that f,of, is a homeomorphism of D onto D, which maps
D’ onto D,, and E into the closed half plane

T={x=(r0,2): 0=0}.
Now let f; be the folding mapping
6
fa(r, 0, z5) = (r, % x3).

Then f; maps D, onto Dy and fy(x)=2 for all x€7. Hence the homeomorphism
f=fi"ofs'ofz0fs0f,

maps DU E onto D'UE, f(x)=x for x€E, and

§
K() <K K Kro =2 1)

in D. Finally from (8.9) we see that

lmmK&ms%m<@)Mml (8.26)

for €D, while a direct calculation yields

Lyz)<1 and |g(x)[>|—z~| (8.27)

for x€B*N U, where g=/f;'0f,0f,. Inequality (8.25) follows from (8.26) and (8.27).

9. The outer coefficient of a cone

9.1. Cone. Let (t,0,p) be spherical coordinates in R3, where the polar angle ¢ is meas--
ured from the positive half of the x;-axis. We say that a domain is a circular cone of angle:

o, 0<a<a, if it can be mapped by means of a similarity transformation onto the domain.
D={x=(0,¢) O0<@p<a, 0<t<oco}, (9.1)

We have the following cone analogue of Lemma 8.1.

Lemma 9.1. Suppose that D is the cone in (9.1), that D’ is the half space x>0, that f
is @ homeomorphism of D onto D', and that f(0)=0 and f(co)=oco. Then for each a'>0,
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the image of the hemisphere S*(a’) N D’ under f lies between two spheres S¥a,) and S%(a,),
where

a
1< <eAs) 9.2)
(1

and A is an absolute constani.
Proof. Fix o' >0, let ' =82(a’) N D’, and set
=inf |z, =g .

ao=inf|z|, @ =sup|a]

‘We may assume that ay<a,, for otherwise there is nothing to prove. Next let
Ey={x: z€D, |z|<a,}, E;={x: 2€D, |z|>aq,},

and let T be the family of arcs which join E, to E; in D. Then I' is minorized by the family
of ares which join S2(a,) to 82(a,) in R3, and hence

a,\ >
M(T)<4n (log ;) : 9.3)
0

Next since 0€ By and oo € E;, Corollary 3.1 implies that
M(T)=p(1), (9.4)
and we obtain (9.2) from Lemma 1.2, (9.3), and (9.4) with
A= (i’l)*.
w(1)
9.2. The outer coefficient. We calculate now the outer coefficient of a convex circular

<one.

TrrEorREM 9.1. Suppose that D is a convex circular cone of angle x. Then

7\
Ky(D)= ( q(a)) (sin )}, (9.5)
-where q=q(7[2) and q() = fa(sin u) " tdu. (9.6)
0

Proof. Assume, for convenience of notation, that D is the cone in (9.1) and let D’
be the half space 2,>0. Next set
f(t,e,g‘v) =(t.9, ‘Pl)’

-where t’=t“‘5"”‘)_*, Y= aq(e), a=-1_. 9.7
9(¢") = aq(e) pre) (9.7)
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Then f is a continuously differentiable homeomorphism of D onto D’ which maps each
infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to

7 ! ’ ’ ’ : ’ é LA ’
at ¢ t'dyp :%a(smgv), ¢ sin @ 9.8)

=L 3 ~%
di ta(sm %)% tdp sin ¢ tsing

Moreover, since 0 <o <2, it is not difficult to show that

3 ’ % ’
(sina) ¥ < (S’.n L4 ) <19 _,
sin @ q(p)

for 0 <@ <a. Hence

K =sup o= i (im0

by virtue of Lemma 1.1, (9.7), and (9.8). Then since D’ is conformally equivalent to B3,

we obtain

3
EyD)<Ky(f) = (5(‘:’;)) (sin at.

To complete the proof for (9.5), we must show that

>
K, (f)> (q(q—“)) (sin o)t (9.9)

for each quasiconformal mapping f of D onto the half space D’. Choose any such mapping
f. Then arguing as in the proof of Theorem 8.1, we see we may assume that f satisfies
the hypotheses of Lemma 9.1. Fix 0<a’'<¥/, let 0, §’, and E’ be the parts of D’, D’
and the positive z,-axis bounded by S%(a’) and S2(b’), and let I'; and I'; be the families
of arcs which join E’ to 8’ in ¢" and 8%(a’) to S2(b’) in &', respectively. Then as in (8.11)

and (8.12) we have
bl

a_n

AN
M{T)= %Z—t log M5(T3)=2n (log %,) .

Lemma 9.1 implies that the images of S%(a’)N D’ and S2(b’)N D’ under f~! lie between
8%a,) and S%(a,) and between S2(b,) and S%(b,), respectively, where

1<% b g pamo ay<by. (9.10)
@y O
. 2 by
Hence we obtain MT) = 2r9(x) % log =
a,

from Lemma 3.8, while a direct calculation yields

-1
M5(y) > 2xsina (log Z—l) . (9.11)
0
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Again S and 8’ are free admissible boundary surfaces of D and D', and hence
MI) <K MT),  MT,) <Ky M (T).
If we combine the above inequalities, we have
bo
¢*sin « 8 a,

2
qlo) log b,
1)

<K, (H (9.12)

Finally if we let a’—0,b'— co, then b,/a,—>cc and (9.9) follows from (9.10).

9.3. The inner coefficient. We have obtained the following bounds for the inner
coefficient of a convex circular cone.
TrrEOREM 9.2. Suppose that D is a convex circular cone of angle o. Then

(1 + cosa)'"®* < K (D) <(1 +cosa)t. 9.13)

Proof. Assume that D is the cone in (9.1) and that D’ is the half space z;>>0. Next set
ft.0,9)=(t",0,9"),

,_sin (a—¢)

: a=(1—cos )"}
sin ¢

where t'=1*, cotg

Then f is a continuously differentiable homeomorphism of D onto D’. A direct calculation
shows that

J(P
K= sup fpd= 1+ cos o,

and since D’ is conformally equivalent to B3, we conclude that
K/(D)<K/(f)=(1+cosa)t.
For the left hand side of (9.13) we must show that
K,(f) = (1 +cosa)*'® (9.14)

for each quasiconformal mapping f of D onto the half space D’. As in the proof of Theorem
9.1, we may assume f satisfies the hypotheses of Lemma 9.1. Fix 0 <a’<b’ so that a, <b,,
let ¢’ and 8’ be the parts of D' and D’ bounded by S%(a’) and 8%(b’), and let I'; and I'y
be the families of arcs which join S2(a’) to S%(b') in €' and §', respectively. Then as in
(8.22) and (8.23),

!

b\ AN
MTy)=2x (log ;,) , M) =2xn (log a—,) .
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Lemma 9.1 implies that the images of S%(a’) N D’ and 82(b’) n D’ under f! lie between
8%(a,) and S%(a,) and between 8%(b,) and 8%(b,), respectively, where (9.10) holds. Direct
calculation yields

-2
MT) <21 (1—cos ) (log %’) )
1
b -1
while as in (9.11) M5(T,) > 27 sin o (log j) .
0

Again S and 8’ are free admissible boundary surfaces of D and we obtain
MTY <K MTy),  MT,)<Ki(f)* M¥(T2).

Combining all of the above inequalities, we have

b
log a—°

(1 +cos «) < K\(f)S. (9.15)

log X
1)

Finally if we let @’ 0,5’ — oo, then byja,—>o0 and (9.14) follows from (9.10).

9.4. Remark. Suppose that D is the cylinder in (8.1) and that for 0 <a<n/2, D, is
the cone in (9.1) translated through the vector — (cote)es. Then the D, converge to their
kernel D at 0 as «—0, and we may think of D as a cone of angle 0. In particular, since

() - Glg) m

(8.6) is what we get by formally letting «—0 in (9.5). Similarly the bounds in (8.19) are
the limits of those given in (9.13) as a—>0.

9.5. Some lower bounds. We conclude this section with the following cone analogue
of Theorem 8.3.

TraEOREM 9.3. Suppose that D is o domain in R3, that U is a neighborhood of a point
@€oD,and that DN U=ANU, where A is a circular cone of angle « which has Q as its vertex.
Then the coefficients of D are not less than the corresponding coefficients of A. In particular
if A is convez,

E(D)>(1+cosa)'®, K (D)> (é%«))* (sin o)t

Proof. Since @ is the vertex of A, A is raylike at @, and the results follow from (2.6),
(9.5), and (9.13).
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10. Spires and ridges

10.1. Introduction. In view of the results of section 2.5, it is natural to assume that
for a given domain D, the presence of a spire or a ridge in 0D has a strong influence on
the coefficients of D. We shall study this question in detail. It turns out that if 6D has a
spire which is directed into D or a ridge which is directed out of D, then K(D)=oco.In
the reverse situations, K(D) may be finite.

10.2. Spires. A point set in R® is said to be a spire if it can be mapped by means of

a similarity transformation f onto
S={x=(r.0,z5): r=g(x5), 0<z3<a}, (10.1)
where a < oo and ¢ is subjeet to the following restrictions:

(i) g(u) is continuous in 0 <u <a and g{a) =0,
(ii) g'(u) is continuous and increasing in 0 <u <a, (10.2)

(iii) limg'(u) =0.
U->a

These conditions imply that g(u) >0 in 0 <% <a and that

¢ du
LA 10.3
f 0 7(0) (10:3)

The image of the point @ =(0,0,a) under f~! is called the vertex of the spire, the image
of the basis vector e; is its direction, and the image of the disk

B={x=(r,0,z5): 0<r<g(0), x3=0}
is its base.

A domain D< R® is said to have a spire in its boundary if some point Q€D has a
neighborhood U such that §=0D N U is a spire with vertex at . Let » be the direction
of 8. Then the points @ +un do not belong to S, and hence not to ¢D, for small »>0.
Thus there exists a constant b>0 such that either Q+un€ D for 0<u<b or @ +un€C(D)
for 0 <u <b. We say that the spire 8 is inward directed in the first case and outward directed
in the second case.

10.3. Inward directed spires. The following result answers a question raised by B. V.
Sabat.

TeEOREM 10.1. If D is a domain in R3 whose boundary contains an inward directed
spire, then K(D)= oo,
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Proof. By performing a preliminary similarity transformation, we may assume that

the vertex of the spire § is the origin, that its direction is —e;, and that for some a>0
SN B¥a)=0D n Bia).

Then S splits B%a) into two domains, and since § is inward directed, (D) n B3(a) is the
component of B%a)—.S which contains the interval =0, 0 <z, <a. Fix 0 <¢<1. Because
S is a spire, we can choose b, 0<<b<1a, such that S%(be,,bc) separates 0 from oo in C(D).
Hence C(D) N C(B3(beg,be)) has two components whieh meet S%(be;,b), and we conclude
from Theorem 6.2 that

K(D)=Alog -i—, (10.4)

where 4 is an absolute constant. Letting ¢ —0 in (10.4) yields K (D) = oo, whence K(D) = oo,

10.4. Outward directed spires. In contrast to the above situation, there exist domains
with outward directed spires in their boundaries and finite coefficients. We require first

the following result.

LrvMma 10.1. Suppose that g(u) >0 for 0<u<a < oo and that
lg(u) —g(®)| <blu—v|, b<eoo, (10.5)
for 0<u,v<a. Suppose next that D is the domain
D={z=(r,0,2;): 0<r<g(z,), O0<xzz<a},

that D' is the circular cylinder

D'Z{w=(r,6,x3): 0<r<g(0), 0<x3<g(0)fa;%)}’
0

and that B is the common base of D and D',
B={x=(r0,z5): 0<r<g(0), z3;=0}.

Then there exists a homeomorphism f of DU B onto D’ U B such-that f(x)=x for £€B and

KH<E®*+0)r+10)E<(d+1)2 (10.6)
Proof. Let f(r,0,25) = (rh(x5),6,7(x,)),
| IO TN .2
where h(xg)= o) Jlas) = g(O)fo s
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Then f is a homeomorphism of DU B onto D’'U B and f(z)=x for 2€ B. Since ¢ satisfies
(10.5), f is ACL and a.e. differentiable in D. Next an easy computation shows that at
each point x=(r,0,2;) € D where g'(x,) exists,

J(x) _ Lz)®

l(—x)—:s— 7@ = (%(62 + 4)* + é6)3 <(c+ 1)3, (10.7)

r ’ ’
where c=——|g(x3)|<|g(x3)l<b

9(z,)

by virtue of (10.5). Hence (10.6) follows from (10.7) and Lemma 1.1.
Now for 0<a<oco set g(u)=(a—u)? in 0<u<a. Then g satisfies the hypotheses of
Lemma 10.1 with b =2a, and

D={x=(r,0,25): 0<r<g(|ag]), 0<|z3| <a}

is a domain with a pair of outward directed spires in its boundary. Since ¢ satisfies (10.3),
we can use the mapping of Lemama 10.1 to construct a homeomorphism f of D onto an
infinite circular cylinder D’ with K(f) <(2a+1)!. Finally since ¢ may be chosen arbitrarily

small, we obtain the following result.

TrEOREM 10.2. For each £¢>0 there exists a domain D< R® whose boundary contains
an outward directed spire and whose coefficients are within ¢ of the corresponding coefficients

of an infinite circular cylinder.

10.5. An example. We consider next the class of domains D which are obtained by
adding an arbitrary number of outward directed spires to a half space. More precisely,
let T be the plane 2;=0, let {B,} be a collection of disjoint open disks in 7', and for each
n let S, be a spire with base B, and direction e;. Then

(T_ LnJBn) Y (l’.ljsn)
is a surface which divides R? into two domains. By Theorem 10.1, the upper domain has
infinite coefficients. Let D be the lower domain. One might think that K(D) could be

made arbitrarily large by making the spires S, very sharp or by adjusting their positions
on T'. We show, however, that this is not the case.

THEOREM 10.3. For each such domain D, K(D)<4.5.

Proof. Let D,, denote the points of D which lie below S,

D,={x=P—ue;: PE€S,, 0<u<oo},
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and let D; and E, denote the parts of D, and 6D, which lie in the half space x3<0. The
proof of Theorem 10.3 depends upon the following result.

LeMMA 10.2. For each n there exists a homeomorphism f, of D,U E, onto D, U E,

such that f,(x) =z for x€E,,
K(f,) <45 (10.8)

in D,, and Lp(x) <104 (10.9)
i D
We now define a mapping f of D by setting

n if s
f(x)={f(x) 1 2€D
z if x€F=D—(UD,).

By (10.8) and (10.9), f is a homeomorphism which is ACL and a.e. differentiable in D.
Each point of D— F has a neighborhood in which K(f) <4.5. Since f(x)=x in F and since
almost every point of F is a point of linear density in the directions of the coordinate
axes [15],

L(z)=l(x)=J(x) =1
a.e. in F. We conclude from Lemma 1.1 that f is a 4.5-quasiconformal mapping of D,
and hence that K(D)<4.5 as desired.

10.6. Proof of Lemma 10.2. Fix » and for convenience of notation write §=9,, B=B,,
D=D,, D'=D;, and E=E,. By performing a preliminary translation, we may assume
that S is the spire in (10.1). We now define a homeomorphism f of DU E onto D' U E,
such that f(z) ==z for x€ E and

K(f)<45in D, L{z) <104 in D', (10.10)
as follows.

Suppose first that |g'(x)| <} in 0<u<a, let D, be the part of D in 2,>0, and let
D; be the symmetric image of D’ in 23=0. Since ¢ satisfies (10.3) and the hypotheses of
Lemma 10.1 with b=}, there exists a homeomorphism f, of D, U B onto D; U B such that
f1(@) == for x€B and

K(f,) < (#)l 145 (10.11)

in D,. Now let D,=D'U BU D;. By Lemma 8.2 we can find a homeomorphism f, of
D, U E onto D’ U E such that fy(x) =z for x€ E and

K(f;)<8.01lin D,,  Lg(x)<10.4in D' (10.12)
Now set f(x)={f2°f1(x) if x€D,UB,
fox)  if x€D'UE.
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Then f is a homeomorphism of DU E onto D' U E, f(x) =z for z€ E, and f satisfies (10.10)
by virtue of (10.11), (10.12), and Corollary 5 of [4].

Suppose next that there exists a number b, 0<b<a, such that ¢’'(b)= —1%, let C be
the infinite circular cylinder 0 <r<g(b), and set

z—h(r)e, if z€(DUE)-C,

fl(x)={x—be3 if zeDnC,

where % is the inverse function of g. Then f, is a homeomorphism of DU E and f, (z) ==
for z€ E. Moreover, since |g'(u)| >} in 0<u<b, |W(u)| <2 in g(b)<wu<g(0), and we

conclude from Corollary 5.1, with cota=2, that
K(f)<@¥+1)1<376, L, (z)<3, (10.13)
in D. Now f, translates DN C onto a domain D, which lies below the spire
Sy ={x=(r,0,z5): r=g(xz+b), 0<z;<a—b}.

Let D; and E, denote the parts of D, and 2D, which lie in 2;<0. Since |9/ (w+b)| <}
in 0<u<a—b, by what was proved above we can find a homeomorphism f, of D, U B,
onto D; U E; such that f,(x) =z for € E, and

K(f;)<45in D,, L, (x)<10.4 in Di. (10.14)
Finally set
(A= if xeDUE)-C,
f(x)—{fzofl(x) if zeDnC.

Then f is a homeomorphism of DU E onto D'U E, f(x)== for x€E, and (10.10) holds
by virtue of (10.13), (10.14), and Corollary 5 of [4]. Hence the proof of Lemama 10.2 is

complete.

10.7. Inaccesstble boundary points. We can use Theorem 10.3 to show that there exists
a domain which has finite coefficients and some inaccessible boundary points. For choose
a sequence of disjoint open disks {B,} which converge to the origin, erect a spire S, of
height 1 on each B,, and let D be the corresponding domain, as defined in section 10.5.
Then each point of the segment r=0, 0 <x,<1 is an inaccessible boundary point of D,
while K(D)<4.5 by Theorem 10.3. Another such example has been given by Zori¢ [21].

It is clear how the above construction can be slightly modified to yield a domain with
finite coefficients, for which the set of inaccessible boundary points has positive 3-dimen-

sional measure.
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10.8. 4 lower bound. Finally we have the following sharp lower bound for the coeffi-
cients of a domain whose boundary contains a spire.

TrrorREM 10.4. If D is a domain in R® whose boundary contains a spire, then the

coefficients of D are not less than the corresponding coefficients of an infinite circular cylinder.
In particular,

%
K (D) > 21, KO(D)>(%) .

Proof. By performing a preliminary similarity transformation, we may assume that
the vertex of the spire S is the origin and that its direction is —e;. Next by Theorem 10.1

we may assume that S is outward directed. Finally by definition we can choose a>0
so that
8N B%a)=0D N B3a).

Then § splits B¥a) into two domains and D N B3(a) is the component of B3(a) —8 which
contains the segment =0, 0 <z;<a. Let f, denote inversion in S%(a), let .D; denote the

image of .D under f;, and let U; denote the half space z;>a. Since S is a spire, it follows that
DNU ={z=(r0,2): O0<r<g(w,;), a<w;<oco},
where g’'(%) is continuous in a <% < co and

lim g'(u) =0. (10.15)

U0

Fix £>0, choose b>a so that |g'(u)| <& in b<u<co, let U be the half space 23>b, and
let A be the infinite circular cylinder

A={z=(r0,2;): 0<r<g), |z|<oo}.

f * du
LY o,
» 9(u)
and hence by Lemma 10.1 there exists a homeomorphism f, of D, N U onto AN U such
that fy(x) =z in D, NoU and K(f,) <(1+&)¥ in D, N U. Set

Since |g'(w)| <ein b<u< oo,

folx) if zeD nT,

fa(m:{x if zeD,—-U.

Then f=f;0f, is a homeomorphism of D onto a domain D', D'NU=ANU, and K(f) <
(1+¢)t. The desired lower bounds are now obtained by first applying Theorem 8.3 to D’
and then letting ¢—0. Theorem 10.2 shows that these bounds cannot be improved.
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10.9. Ridges. A point set in R® is said to be a ridge if it can be mapped by means of

a similarity transformation f onto
S={x=(2,,%5,%3): |25] =g(x;), 0<z;<a, [a5]<b}, (10.16)
where a < co, b< oo, and ¢ satisfies the conditions in (10.2). The image of the line segment
E={r=(x),x5,2): x,=a, x,=0, |x5]<b}

under f~* is called the edge of the ridge and the image of the vector e, is its direction.

A domain D< R3 is said to have a ridge in its boundary if some point Q€aD has a
neighborhood U such that §=0D N U is a ridge with @ a point of its edge E. Let » be
the direction of S. As in the case of spires, there exists a constant ¢>0 such that either
Q+un€D for 0<u<c or Q+un€C(D) for 0<u<c. The ridge S is said to be inward

directed in the first case and outward directed in the second case.

10.10. Outward directed ridges. We have the following analogue of Theorem 10.1 for
ridges.

TurorEM 10.5. If D is a domain in R3 whose boundary contains an outward directed
ridge, then K(D)=oo.

Proof. By performing a preliminary similarity transformation, we may assume that
the edge of the ridge S is the line segment z, =2, =0, |z4| <1, that its direction is —e,,
that @ =0, and that for some ¢ >0

S 0 B¥a)=aD N B¥a).

Then 8 divides B3(a) into two domains, and since 8 is outward directed, DN B3(a) is
the component of B%*a)—S which contains the interval 0 <z, <a, x,=2,=0. Because S
is a ridge, given 0<<¢<1, we can choose 0<b<}a so that D separates (b,bc,0) from
(b, —bc,0) in B?(bey,b). Thus C(D) N B3(be,,b) has two components which meet S%(be,,bc),

and we conclude from Theorem 6.1 that

K(D)> Alog % : (10.17)

Letting ¢—0 in (10.17) yields K (D)= oo, whence K(D)=co.

10.11. Inward directed ridges. In contrast to the above situation, there exist domains
with inward directed ridges in their boundaries and finite coefficients. For example, given

0 <@ < co, set g(u) =min (u?,a?) and let

T={x=(2,,5,23): || =g(2;), 2,>0}.
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Then 7' bounds a domain D < R® which has an inward directed ridge in its boundary.

For = (x;,2,,25) €D let
hiz) = {

z—g(r,) (sgn x,)e, if 2,20,

x if =»,<0,

where the function sgnu is defined to be u/|u| when %<0 and 0 when w=0. Then f is a
homeomorphism of D onto a dihedral wedge D’ of angle 27,

D' ={x=(r,0,2;): 0<6<2m, |x]<oo},
and K(f,) <(2a¢+1)¥ by virtue of Corollary 5.1. Now D’ has finite coefficients, since
folr,0,25) = (r, 30, () 2,)

maps D’ onto a half space with K(f,) =2%. Finally because @ may be chosen arbitrarily
small, we obtain the following analogue of Theorem 10.2.

TarEorEM 10.6. For each £>0 there exists a domain D< R® whose boundary contains
an inward directed ridge and whose coefficients are within & of the corresponding coefficients

of a dihedral wedge of angle 2.

10.12. An example. We consider next a class of domains analogous to those studied
in section 10.5. Let g be any function which satisfies (10.2). Next let 7' be the plane z, =0,
§ the ridge

S={x=(2y,75,75): |2;| =g(x,), 0<z,<a},
and B the base of S,
B={x=(2,,%5,%): || <g(0), x,=0}.

Then (7'— B)U 8 is a surface which divides R? into two domains. The domain which con-
tains the negative half of the x,-axis has infinite coefficients by Theorem 10.5. Let D be
the other domain. We show that the coefficients of D remain bounded no matter how

sharp we make the ridge S.
TrHEOREM 10.7. For each such domain D, K(D)<2.6.
Proof. Set
ful®y, gy 25) = (@ — 21, @y, 3),  1,(7, 0, 23) = (r, 30, 3) ).

Then fyof, is a homeomorphism of D onto a domain D,, which lies in the dihedral wedge
0<0<$m, and
K(fof)=K(fy) = (§t < 125,
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Now for each pair of points @,,Q,€0D,, the angle between the segment ¢,§, and the vector
e, —e, is never less than /4. Hence Corollary 5.1 yields a homeomorphism f, of D, onto

the half space 2, —2; >0 with

K(f) < (5%5—1)* <2.08,

and we conclude that K(D)<K(fsof,0f,)<2.6.

10.13. A lower bound. We conclude this section with the following implicit sharp

lower bound for the coefficients of a domain whose boundary contains a ridge.

THEOREM 10.8. If D is a domain in R3 whose boundary contains a ridge, then the
coefficients of D are not less than the corresponding coefficients of a dihedral wedge of angle 2.

Proof. Suppose that D contains a ridge in its boundary, and for 0 <a< oo, let U be
the open cube bounded by the planes z; =a+a, 2,= +a, ;= +a. By performing a preli-

minary similarity transformation, we may choose a so that
IDNU={x=(2,,25,73): |23| =g(2y), 0<2,<a, |ug|<a},

where g satisfies (10.2). Next by Theorem 10.5, we may assume that the ridge is inward
directed and hence that

aD)n U={x=(x1,x2,x3): |x2| <g(x,), 0<w;<a, |xsl <a'}-

Now fix b so that }a <b<a, set h(u) equal to g(x) for b<u<a and 0 for u>a, and extend
h so that h(u) =h(2b—u) for all u. Next for = (2,,7,,2;) €D let
x— h(x,) (sgn z,) €, if |a3|<a—b,
f(@) =1 2 — h(x,) (sgn =,) ((-l_—lxa—l) e, if a—b<|xg|<a,

b
z it |zy|>a.

Then f is a homeomorphism of D onto a domain D’ and
D' n B¥Q,t)=A" N BXQ,1),

where @ =(a,0,0), 0<t<a—b, and A’ is a dihedral wedge of angle 2z. Using Corollary 5.1,
we can show that K(f)—1 as b—a, and hence the desired conclusion follows from Theo-
rem 7.3.
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11. The space of domains quasiconformally equivalent to a ball

11.1. Space of domains. Let D denote the class of all domains D<= B3 with K(D) < oo,
Next given D, D' €D, we define the distance between D and D’ as

d(D, D’y =inf (log K(f)), (11.1)
s

where the infimum is taken over all homeomorphisms f of D onto D’. We identify two
domains D and D’ whenever d(D,D’)=0. Then it is trivial to show that d is a metric

on D. In this final section we show that D is complete and nonseparable under d.
11.2. Completeness. The completeness is equivalent to the following result.

TurorEeM 11.1. Suppose that {D,} is a sequence of domains in D and that
lim d(D,, D,)=0. (11.2)

m, n—>»0

Then there exists a domain Dy€D such that

lim d(D,, D,)=0. (11.3)

n—>c0
Proof. By virtue of (11.2) we may choose a subsequence {7,} such that
@Dy Dupsr) <277

for m=1,2,.... Next fix a pair of distinet points P, P,€D,, let f, be a homeo-
morphism of D,, onto Du,.; with

log K(fn) <277, (11.4)
and let @, be a Mébius transformation of D, onto a domain D, < R? chosen so that
Iu(Py) =P, and g,,(P,)=P, where

=P m=10 ... 0f1.
Then g,, is a homeomorphism of D, onto D,, and (11.4) implies that
log K(g,) <1

for all m. Hence by Lemma 5 of [6], the g,, are uniformly bounded and equicontinuous

on each compact subset of D, , and there exists a subsequence {m,} such that

lim gny(x) = g(x) (11.5)

k—>oc0
uniformly on each compact subset of D,,. Since g(P,) =P, &nd g(P;) =P;, Lemma 7 of [6]
implies that ¢ is a homeomorphism of D, onto a domain Dy< R?. Fix m and for m’ >m set

— -1 -1 _
b =gmwofi 0...0fp1 =@uofy_10...0fn.
5— 652932 Acta mathematica 114. Imprimé le 11 aoht 1965.
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Then %, is a homeomorphism of Dn, for which

log K(hy) <27 ™, (11.6)
and from (11.5) it follows that
Hm A () = h(x) (11.7)
k->00

uniformly on each compact subset of Dn,, where
h=gofilo...ofnl,.

Thus % is a homeomorphism of Dy, onto D, and from (11.6), (11.7), and Lemma 2.1

it follows that
log K(h)<2™™*1,

Hence A(Dnm, Dy) <27 ™*1, (11.8)

and (11.3) follows from (11.2) and (11.8).

11.3. Lower bounds for the dilatations of a homeomorphism. We require the following
result in the proof that D is not separable.

TaeorEM 11.2. Suppose that D and D’ are domains in R3, that U and U’ are neigh-
borhoods of QEOD and Q €2D’, and that DN U=ANU and D'nU'=A'nU’, where A is a
dihedral wedge with @ a point of its edge and A’ is a half space. If f is a homeomorphism of
D onto D' and if {(P)—>Q' as P—Q in D, then

KAN=K (D), EKyH)=KyD), K()=K(A). (11.9)

Proof. We may assume that K(f)< oo, for otherwise there is nothing to prove. Next
by performing preliminary translations, we may assume that @ =@’ =0. Choose a>0 so
that B3a)< U and fix P€ D with |P| <a. For each n let

fal) = anf (:) +Qn

-1
where Ay =

/()

Then f,(P)=P’ and |Q,|<|P’|+1. Moreover, since f(x)—0 as 2—>0 in D,

A b )

lim @, = oo. (11.10)

n-—>0

Now let D,,={x: EED}, D,={a,x+Q,: =z€D}.
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As in the proof of Theorem 2.3, P€ D, for all n and the D, converge to their kernel A at
P. Since f, is a homeomorphism of D, onto D;, P’€ D, for all n. Next because the @,

are bounded, by choosing a subsequence and relabeling, we may assume that

lim Q,=@Q”. (11.11)

n=>0

Using Theorem 11 of [4], one can prove that P’ has a neighborhood which is contained in
all the D;,. Then with (11.10) and (11.11) it is easy to show that the D}, converge to their
kernel A” at P’, where A” is the half space A’ translated through @”. Since K(f,) = K(f) < oo,
Theorem 3 of [6] implies there exists a subsequence {n,,} such that

lim fan(@) = g(a)

uniformly on each compact subset of A, where g is a homeomorphism of A onto A”. Hence

we obtain
EA(8) < Kifg) <Jim inf K{fom) = Ki()

from Lemma 2.1, and the rest of (11.9) follows similarly.

11.4. Nonseparability. Finally we show that D is nonseparable by establishing the
following result.

THEOREM 11.3. Given 0<a<oco, we can associate with each b, 0<b<1, a domain
D, €D such that
d(D,, B3)<a (11.12)

for 0<<b<1 and such that d(D,,Dy)=c (11.13)

for 0<<b,b’ <1, b=:b’, where ¢ is a positive constant which depends only on a.
Proof. Pick m >0 so that :
log(m+1)t=aq. (11.14)

With each b, 0<b <1, we can associate a sequence {b,} such that b,=0 or 1 for each n and

b=3b,2"". (11.15)
1

Next let ¢,=0 and
en=(Cp-1+ 1) +1>¢, ;+2 (11.16)

for n=1,2,.... Then for >0 set

B l——c)y) i |w—c,|<1 for some n>0,
gu(u) =4 2

0 if |u—c,|>1 for all n>0,



68 F. W. GEHRING AND J. VAISALA

and let D, be the domain
Dy={x=(r,0,75): gy(r)<ag<oo, 0<r<oo}.

It is not difficult to show that, for each pair of points @,,@,€0D,, the acute angle between
the segment @,@, and the vector e, is not less than arc cot m. Hence Corollary 5.1 yields

a homeomorphism f of D, onto the half space x>0 for which
K(f)y<(m+1)}, (11.17)

and (11.12) follows from (11.14) and (11.17).

Let {b,}, {¢+}, and D, be the sequences and domain corresponding to a second number
b #b, 0<b’'<1. To complete the proof of Theorem 11.3, we shall show that (11.13) holds
with ¢=log M, where

>1. (11.18)

-3
M= (1 __ arctan m)

Suppose this is not the case. Then there exists a homeomorphism f of D, onto D, with
K(f)<M <2}, (11.19)

Since D, and D, are Jordan domains in D, f induces a homeomorphism f* of 6.0, onto
0D, [18]. Let E, be the union of the circles r=1, ;=0 and r=c,+1, 2,=0, n=1,2,...
in 0D,, and let B, be the corresponding set in 8.D,.. We prove first that, because of (11.19),
f* maps E, onto E,.

Choose Q€ E, and suppose that f*(@) is a finite point Q' €D, — E,.. Then 0D, has
a tangent plane at @'. Fix ¢>0. Arguing essentially as in section 7.5, we can find (1 +¢)-
quasiconformal mappings % and A’ of R3 onto itself with the following properties: A carries
D, onto D, k' carries D, onto D', and the points A(Q) and #'(Q’) have neighborhoods U
and U’ such that DNU=ANU and D'NnU'=A’NU’, where A is a dihedral wedge of
angle 7z — arc tan m with 2(Q) as a point of its edge and where A’ is a half space. From
{7.5), (11.9), and (11.18) it follows that

K/ (W ofoh ) 2K, (A)=M,
and hence KH=zK()=(1+e)2 M. (11.20)
Since (11.20) holds for all >0, we can let £— 0 to obtain an inequality which contradicts
(11.19).

Suppose next that f*(Q)= oo, let C be the circle of E, which contains @, and let ¢’
be the image of ¢ under f*. Then (" —{co} is connected, and by what was proved above,

C'— {0 }< E,.
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This means that C’ —{cc} must lie in one of the circles of E,.. Hence ¢’ —{oo} is bounded
and this contradicts the assumption that f*(Q)= co. We conclude that f*(Q) € B, as desired.

It follows that f* must map each circle of E, onto a circle of E,. Let C,,C,,..., C,, ...
and C1,0y, ..., Cy, ... be the circles of E, and E,, respectively, ordered according to increas-
ing radii, let S, be the bounded component of 8D,—C,, and let S, be the image of 8,
under f*. Then S; and S, must contain exactly n—1 and » circles of E,, respectively,
and hence §, is the bounded component of 8D, —C%. In particular, this means that f*

maps the plane annulus
A, ={x=(r,0,5): ¢, +1<r<c¢,~1, x3=0}
onto the plane annulus
An={x=(r,0,2,): cp_1t1l<r<c,—1, x,=0}
for n=1,2, ..., and from (11.16) we obtain
(bn + 1) < K(f*) (b + 1), (b + 1)< K(f*) (b7 +1). (11.21)
Theorem 4.3 and (11.19) imply that
K(f)<K(p2<2, (11.22)
and combining (11.21) and (11.22) yields
(bn+1)<2(b,+1), (by+1)<2(b,+1) (11.23)
for n=1,2,.... Finally, since b, and b, take on only the values 0 and 1, (11.23) implies that
b,=b, for all », and hence that =b' by virtue of (11.15) and its counterpart for b’. This

contradicts the hypothesis that b<4b'. Hence (11.13) must hold with c=log M, and the
proof for Theorem 11.3 is complete. k
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