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Let L be a Jordan curve on the Riemann sphere, and denote its completmen-
tary components by Q, Q*. Suppose that there exists a sense-reversing quasiconformal
mapping A of the sphere onto itselfs which maps Q on QF and keeps every point on
L fixed. Such mappings are called quasiconformal reflections. Our purpose is to study
curves L which permit quasiconformal reflections.

Let U denote the upper and U* the lower halfplane. Consider a conformal
mapping f of U on Q and a conformal mapping f* of U* on Q*. Evidently, f*-1if
defines a quasiconformal mapping of U on U* which induces a monotone mapping
h=f*-1f of the real axis on itself. It is not quite unique, for we may replace f by
{S and f* by f*S* where S and S* are linear transformations with real coefficients and
possitive determinant. This replaces & by S*-12S which we shall say is equivalent to
h. Observe that &, or rather its equivalence class, does not depend on A. It is also
unchanged if we replace the triple (Q, L, Q*) by a conformally equivalent triple
(TQ, TL, TQ*) where T is a linear transformation.

The mapping f of U has a quasiconformal extension to the whole plane, namely
by the mapping with values Af(3) for z€ U*. It is known that quasiconformal map-
pings carry nullsets into nullsets. Therefore L has necessarily zero area.

From this we may deduce that % determines () uniquely up to conformal equi-
valence. In fact, let f,, /i be another pair of conformal mappings on complementary
regions, and suppose that fi 'f,=f*!f on the real axis. For a moment, let us write
F for the mapping given by f(z) in U and by Af(Z) in U*, and let F, have the cor-
responding meaning. The mapping H = F{'fif*'F. is defined in U* and reduces to
the identity on the real axis. We extend it to the whole plane by sstting H(z)==z
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in U. Then F,HF-! is a quasiconformal mapping. It reduces to f,f~1 in Q and to
fif*' in Q* Tt is thus conformal, except perhaps on L. But a quasiconformal mapping
which is conformal almost everywhere is conformal. Hence f;=7f where 7T is a linear
transformation.

What are the properties of A? A necessary condition is that & can be extended
to a quasiconformal mapping of U on U*, namely to f*~'Af. This condition is also
sufficient. To prove it, let g be a quasiconformal mapping of U on U* with bound-
ary values h. The function ¢g*(z)=g(z), defined in U”, has weak derivatives which
satisfy an equation

P = Hgz
with |u|<k<1 (k constant). Set u=0 in U. Consider the equation
Fz=uk,

for the extended u. An important theorem (see [1]), sometimes referred to as the
generalized Riemann mapping theorem, asserts the existence of a solution F which
is a homeomorphic mapping of the sphere. Because z is a solution in U and g* a
solution in U* it is possible to write F=f in U, F=f*g* in U*, where { and f* are
conformal mappings. Clearly, Q=fU) and Q*=f*(U*) are quasiconformal reflections
of each other.

To sum up, we have established a correspondence between equivalence classes of
boundary correspondences %, conformal mappings f, and curves L which permit a qua-
siconformal reflection. It is a natural program to try to characterize the possible &,
f and L in a more direct way. For boundary correspondences % this problem has
been solved; we shall have occasion to recall the solution.

In Part I we solve the corresponding problem for L. It turns out that the curves
which permit a quasiconformal reflection can be characterized by a surprisingly simple
geometric property. (Partial results in this direction have been obtained by M. Tie-
nari whose paper [7] came to my attention only when this article was already written.)

We have been less successful with the mappings f, but in Part II we show, at
any rate, that the mappings f form an open set. To understand the meaning of this, we
observe that the mappings equivalent to f are of the form TfS. To account for T
we replace f by its Schwarzian derivative g ={f, z}. The Schwarzian of f§ is ¢(S)S",
and to eliminate S it is indicated to consider gdz® in its role of quadratic differential.

¥ f is schlicht in U, Nehari [6] has shown that |@|y® <. We take the least upper
bound ‘of |p|y® to be a norm of ¢. In the linear space of quadratic differentials

with finite norm, let A be the set of all ¢ whose corresponding f is schlicht and has
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a quasiconformal extension. We are going to show that A is an open set. For the
significance of this result in the theory of Teichmiiller spaces we refer to the com-

panion article of L. Bers [4] in the next issue of this journal.

Part 1

1. In 1956 A. Beurling and the author derived a neccessary and sufficient con-
dition for a boundary kb to be the restriction of a quasiconformal mapping of U on
itself (or on its reflection U*). This work is an essential preliminary for what follows.

We recall the main result. Without loss of generality it may be assumed that
h(co)=oco. Then % admits a quasiconformal extension if and only if it satisfies a

g-condition, namely an inequality

h{x+t)—h(zx
R W
which is to be fulfilled for all real x, { and with a constant g=0,00. More precisely,
if » has a K-quasiconformal extension, then (1) holds with a g(K) that depends only
on K, and if (1) holds, then A has a K (p)-quasiconformal extension.

The necessity follows from the simple observation that the quadruple (x—¢, x,
z+t, o) with cross-ratio 1 must be mapped on a quadruple with bounded cross-ratio.

The sufficiency requires an explicit construction. We set w(z) =u+ v with

u(z)= jl [k (x+ty) + h(xz—ty)]dt,
: (2)
v (z) =f [k (x+ty) — h(x —ty)]dt.
0

It is proved in [2] that w(z) is K (9)-quasiconformal.
I am indebted to Beurling for the very important observation that the mapping
(2) is also quasi-isometric, in the sense that corresponding noneuclidean elements of

length have a bounded ratio. This condition can be expressed by

|, < C(0) 2,
Y (3)
v

wz| = Cp)™ -,

|wz| = Clo) y
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where C(g) depends only on p. The proof is an immediate verification based on the
estimate given in Lemma 6.5 of the cited paper.

2. Let L be a Jordan curve through oo which admits a quasiconformal reflection.
The complementary regions determined by L are denoted by Q, Q*, and the reflec-
tion is written as z—>2*. We assume that the reflection is K-quasiconformal.

Constants which depend only on K will be denoted by C(K), with or without
subscripts. In different connections C(K) may have different values. We emphasize
that C(K) is not allowed to depend on L.

The shortest distance from a point z to L will be denoted by &(z).

LemMMA 1. The following estimates hold for all z in the plane and all z, on L:

(a) oK< || <o)
Z_Zo i
lz—2*|

(b) 3@ <C(K)

(©) O (K)1< ‘;((z;) <C(K)

Proof. If the cross-ratio of a quadruple has absolute value <1, then the cross-
ratio of the image points under a K-quasiconformal mapping has an absolute value
< C(K). This assertion is contained in [1], Lemma 16. It is a rather elementary
result.

If |2* — 24| < |2 —2,| We can apply the above remark to (z*, z, 2,, ) and conclude that
|2 —2,| < C(K)|2* — 24| Symmetrically, |z —z,| <|2* —2,| implies [2* — 2,| < O (K) |2z — 2, |-
In all circumstances (a) follows.

From (a) we obtain

|z—2"| < (C(K)+1)|2— 24| = C, (K) |2 — 2|

and (b) follows when |z—2z,|=0(z). Since §(z*)<|z—2"| the second inequality (c)
follows from (b), and the first is true by symmetry.
2. We introduce now the noneuclidean metrics ds=p(2)|dz| in Q and Q. Ex-

plicitly, if z=2z({) is a conformal map of |{|<1 on Q we set

o(2)|dz|= (1 - L) |dg]
The classical estimates
0(2)<p(2)1<44(2) 4)

follow by use of Schwarz’ lemma and Koebe’s one-quarter theorem.
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Lemma 2. If L passes through oo and permits a K-quasiconformal reflection, then it
also permits a O (K)-quasiconformal reflection with the additional property that corresponding

euclidean line elements satisfy

¢, (K)|dz| <|dz*| < C, (K)|dz|. (5)

Proof. As shown in the introduction, the given K-quasiconformal reflection in-
duces a K-quasiconformal mapping of U on U* with a boundary correspondence h.
This & must satisfy a g(K)-condition of type (1). The Beurling-Ahlfors construction
permits us to replace the mapping of U on U* with a C(K)-quasiconformal mapping
with the same boundary values, in such a way that it satisfies condition (3). It

follows that the corresponding reflection about L is C(K)-quasiconformal and satisfies
C, (K)o (2)|dz|<p(2*)|de*| < C, (K)o (2) | dz|.

Use of (4) and (c) leads to the desired inequality (5).

3. We are now ready to characterize the curves L in purely geometric form:

TaeorEM 1. 4 Jordan curve L through oo permits a quasiconformal reflection if and

only if there exists a constant C such that

P,P,<C-P,P, (6)

for any three points P, P,, P, on L which follow each other in this order.

Again, there is a more precise statement to the effect that C depends only on
the K of the reflection, and vice versa. If L does not pass through oo condition (6)

must be replaced by

P,P,: P,P,<C(P,P,: P,P,),

where (P, P;) separates (P,, P,).
4. Proof of the necessity. We follow the segment P,P; from P, to its last inter-
section with the subarc P,P, oo of L, and from there to the first intersection P; with

the arc P,Pyco. If P, P,> P, P, it is geometrically evident that

P P,: PP, <PiPy: PPs.

Therefore we may assume from the beginning that P,P; has only its endpoints on
L. For definiteness, we suppose that the inner points lie in €.
By Lemma 2 there exists a quasiconformal reflection which multiplies lengths at

most by a factor C'(K). Hence P, and P, can be joined in Q* by an arc y* of
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length <O(K)-ﬁ. The Jordan curve formed by P—IP; and y* separates P, from
co. Hence y* intersects the extension of ﬁ over P, and we conclude that ITI—Pzé
length of y*<C(K) Iﬁ

5. Proof of the sufficiency. We shall use the notations

—_— [
a=arc P,P,, o =arc PP,

f=arc Pioc. f'=arc Pyoo.

Denote by d(x, ) and d*(x,f) the extremal distances of « and f with respect to

Q and Q respectively. With similar notations for «’, 8’ one has the relations
d(w, f)d (o, f)=d* (a, p)d* (&', ') = 1.

In a conformal mapping of Q on the halfplane U with oo corresponding to oo,
let P,, P,, P; be mapped on z,,x, z,. It is evident that d(x, 8)=1 if and only if
¥y — 2, =1, — x,. Furthermore, the ratio |z, —x,|:|7,—2,;| is bounded away from 0 and
oo if and only if this is true of d(«, §). Consequently, in order to prove that the
boundary correspondence induced by L satisfies (1) it is sufficient to show that
d(x, f)=1 implies K (C)1<d*(a, B)< K (C).

Two elementary estimates are needed. We show first that d(a, 8)=1 implies

P,P,: P,P,< (. 7)

Indeed, it follows from (6) that the points of B are at distance >O"LITP2 from P,
while the points of « have distance <C~ITI’3 from P,. If (7) were not true, « and
B would be separated by a circular annulus whose radii have the ratio e**. In such
an annulus the extremal distance between the circles is 1, and the comparison prin-
ciple for extremal lengths would yield d(a, §) >1, contrary to hypothesis. Hence (7)

must hold. If P; and P, are interchanged we have in the same way

P,P,: P,P,< (%™ (8)

Consider points Q, €a, @, €S. By repeated application of (6)

0,Q,>C' QP >C2P,P,

and with the help of (8) we conclude that the shortest distance between a and g is
>C *e ™ P,P,. To simplify notations, write d = P,P;, M, =Cd, M,=C"*e¢ *"d. Because
of (6), all points on « are within distance M, from P,.

We recall that the definition of extremal length implies
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 (inf [, 0]dz|)?
Jfaeo®dzdy

where the infimum is with respect to all arcs y that join « and B within Q*, and

a* («, B)

¢ is any positive funection for which the right-hand side has a meaning. We choose
e=1 in a circular disk with center P, and radius M,+ M, o=0 outside of that
disk. Then [,o|dz|>M, for all curves y. Indeed, this is so whether y stays within
the disk or contains a point on its circumference. We conclude that

d* (o ﬂ)?lv L)2=n'l(l+05e%)_2.
’ a\M,+ M,

The same inequality, applied to «', f’, yields an upper bound for d*(a, f), and our

proof of Theorem 1 is complete.

Part 11

1. In the introduction we saw that the boundary correspondences % give rise to
conformal mappings f, and with these we associated their Schwarzian derivatives
@={f,2}. The set of all such ¢ was denoted by A. We formulate a precise definition:

The set A consists of all functions @, holomorphic in U, such that the equation
{f.2} =¢ has a solution f which can be extended to a schlicht quagiconformal mapping
of the whole plane.

Our purpose is to prove:
THEOREM 2. A is an open subset of the Banach space of holomorphic functions
with norm || || =sup | (2)| >

We know already that all p €A have norm <3}. It will follow that the norms
are in fact strictly less than §.
2. Tt is a known result that A contains a neighborhood of the origin ([3], [5]). As an

illustration of the method we shall follow it is nevertheless useful to include a proof.

Lemma 3. A contains all functions ¢ with || ¢| < 3.

Proof. Let n, and 7, be linearly independent solutions of the differential equation

7= ~1n. (9)

normalized by #me—namy=1. It is well known that f=1,/5, satisfies {f, z}=¢. Ob-
serve that f may be meromorphic with simple poles, and that f &0 at all other

points!
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It is to be shown that f is schlicht and has a quasiconformal extension. To

construct the extension we form

_m@+E-2)n()

F(z)= 7
O = @ T -2 )

(z€U). (10)
Because 17{1]2 ~17é 71=1 the numerator and denominator cannot vanish simultaneously.
If the denominator vanishes we sst F = oco, and local assertions about F will apply
to 1/F.

A simple computation which makes use of (9) gives
F./Fz=3}(z—2 "¢ ()
Under the assumption ||@||<% we conclude that F is quasiconformal and sense-re-
versing. The mapping z—>F () is quasiconformal and sense-preserving in U*.
Our intention is to show that

1@

={ f(z) in U a1

F(3) in U*

gives the desired extension. To see this it is sufficient to know that f can be ex-
tended to the real axis by continuity, that the extended function is locally schlicht
at points of the real axis, and that it tends to a limit for z—oco. Indeed, fwill then
be locally schlicht everywhere, and by a familiar reasoning is must be globally schlicht.

The missing information is easy to supply under strong additional conditions.
We suppose that @ is analytic on the real axis, including oo, where ¢ shall have a zero of
order >4 (this means that the quadratic differential @dz® is regular at oo). It is
immediate that f and F agree on the real axis, and that they are real-analytic in
the closed half-planes. It follows easily that f is locally schlicht. At co the assumption
implies that equation (9) has solutions whose power series expansions begin with 1

and z respectively. Hence

Mm=a,z2+b +0(z]7),
7]2=a2z+b2+0(|z|‘1)

with a; b, —a,b, =1. Substitution in (10) shows that

=a12+b1+0(|z|—1)
FE)= b, 0(z[)

and therefore f and F have the same limit a,/a, as z—oco.
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To prove the lemma without additional assumptions we use an approximation
method. We can find a sequence of linear transformations S, such that the closure
of S,U is contained in U and S,z—>z for n—>oo. Take ¢,(z)=¢(S.2) S (2)°. It
follows by Schwarz’ lemma that ||@,||<||@]|. Moreover, ¢, is analytic on the real
axis and has at least a fourth order zero at oo. Consequently, there exist quasi-
conformal mappings f,, holomorphic with {f,,2}=g¢, in U, with uniformly bounded
dilatation. A subsequence of the f, converges to a limit function f which is itself
schlicht and quasiconformal, and which satisfies {f, 2z} =¢ in U. This completes the
proof.

With suitable normalizations it is possible to arrange that f.—F, the mapping
defined by (11).

3. The method of the preceding proof can be carried over to the general case,
although with some significant modifications.

Suppose that @, €A and {f,, 2} =¢,. We may assume that f, maps U on a region
Q whose boundary L passes through oo, and we know that L admits a quasicon-
formal reflection w—>w* =1 (w). We choose 1 in accordance with Lemma 2.

If ||@—@ll<e and {f,2}=g¢ the identity

{f, z}={f, I‘o}ﬁ)2 + {fo’ 2}
yields K1, foll 1 fo Py <e.

The non-euclidean metric in ) is given by

o (w) |dw|=

[d2]
2 3
and if we write f=ffg' we obtain

{7, wi <420 (w)™. (12)

If ¢ is sufficiently small it is to be proved that f is schlicht and has a quasicon-

formal extension.

We set p={f, w} and f=7,/n, where 7,,n, are normalized solutions of

In close analogy with (10) we form

() = 10+ (0" —w) i ()
) )+ 0"~ w) s )

where w€Q and w* =/ (w). Computation gives
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Fw 2w (;) (w - w*)2

— =t 13

F3 117;+ 22% (13)
Here |1,/As|<k<1 because 1 is quasiconformal. To estimate the second term we
have first, by (12), Lemma 1(b) and (4),

[@]|w-—w*[2<4eC2.
On the other hand, |A;| stays away from 0, for Lemma 2 gives
01| dw| < | dw*| < 2| 25 || dw].

We conclude that |F,/Fy|<k <1 provided that & is sufficiently small.
4. We wish to show that

i flw) in Q
_{F(w*) in Q*

is schlicht and quasiconformal. Again, the proof is easy under strong assumptions.
This time we assume that L is an analytic curve, that ¢ is analytic on L and that
it has a fourth order zero at co. It is clear that we can prove f to be a quasicon-
formal homeomorphism exactly as in the proof of Lemma 3.

To complete the proof, let {=w (w) be a conformal mapping of Q on |{|<1.
Let Q, be the part of Q that corresponds to |{|<7,, L, its boundary. Here {r,} is
a sequence which converges to 1.

A quasiconformal reflection 1, across L, can be constructed as follows: If 75 <
|w (w)| <7, we define A, (w) so that w(w) and w (4, (w)) are mirror images with respect
to |Z|=r. If |w(w)|<7i we find w, so that w(w,)=r,?w(w) and choose A, (w)=
A(w,). The definitions agree when |w (w)|=r%, and L, is kept fixed. The dilatation
of 1, is no greater than the maximum dilatation of A.

After a harmless linear transformation which throws a point on L, to oo the
part of the theorem that has already been proved can be applied to Q,. It is to
be observed that g,>p where gnldw| is the noneuclidean metric in Q,. Therefore ¢

satisfies

|¢|<4£Qn(w)2

with the same & as before. Hence there exists a quasiconformal mapping f, of the
whole plane which agrees with f on Q, and whose dilatation lies under a fixed bound.
A subsequence of the f, tends to a limit mapping f which is schlicht, quasiconformal,

and equal to f in Q. The theorem is proved.
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