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§ 1. Introduction

Let G be a connected semisimple Lie group with a compact Cartan subgroup B,
and B* the character group of B. Let g and b denote the Lie algebras of G and B

respectively. Then every b* € B* defines a linear function 1=1log b* on b. by the relation
(b*, exp Hy =™ (HEeD).

Let W be the Weyl group of (g, ). We say that b is regular if sA+ A4 for every
s*1 in W. Let B* denote the set of all regular elements of B* and define 3 as in
[2 (m), §1]. Then corresponding to every b* € B*’, we construct in Theorem 3 an in-
variant eigendistribution @, of 3 on G (cf. [2 (h), Theorem 2]). We shall see later in
another paper that those irreducible characters of G which correspond to the discrete
series (see [2 (a), § 5]) are actually finite linear combinations of these distributions
(cf. [2 (h), Theorems 3 and 4]).

The second main result of this paper is contained in Theorem 4 which gives an
alternative formula for the distribution ®,.. This will be needed for the determina-
tion of the contribution of the discrete series to the Plancherel formula of G.

Our method consists in first proving analogous results on g and then lifting them
to @, roughly speaking, by means of the exponential mapping. Theorem 1 is the g-
analogue of Theorem 4 and its proof depends very much on Theorem 5 of [2 (k)].
Then in §8 we introduce the notion of a tempered distribution on an open subset
of a Euclidean space (see also [2 (c), p. 90]) and prove some elementary results which
are then applied in §14 to certain tempered and invariant eigendistributions on a
reductive subalgebra 3 of g containing b. Lemma 28 asserts the uniqueness of such
distributions and the existence is proved in Theorem 2 and Lemma 37. Lemma 41
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contains the key result required for the reduction of the proof of Theorem 4 from
the group to the Lie algebra.

The rest of this paper is devoted to the proofs of Theorems 3 and 4. The uni-
queness part of Theorem 3 is relatively easy and follows from Lemma 28. However
the problem of existence is more delicate. Lemma 50 contains the main step required
in its solution. Lemma 59 gives a rather explicit formula for ®,. which will be useful
in later work. The main burden of the proof of Theorem 4 rests on Lemma 66.

Let L’ be the set of all linear functions 1 on b of the form A=Ilog " (6" € B")
and write ©;=0,.«. Define weS(h,) as in [2(k), §11]. Then we show in §29 that
for any f€0.,”(Q), the series

2. @(4) Ou(f)

Ael’

converges absolutely and its sum represents a distribution 7' on . We shall see later
that, apart from a constant factor, 7' is just the contribution of the discrete series
to the Plancherel formula of @ (cf. [2 (h), Theorem 4)).

This work was partially supported by a grant from the National Science Foundation.

Part I. Theory on the Lie algebra

§ 2. Reduction of Theorem 1 to the semisimple case

We use the notation and terminology of [2 (1)]. Let g be a reductive Lie algebra
over R, () a completely invariant open subset of g, 7 a distribution on Q) satisfying
the conditions of [2 (1), Theorem 1] and F the corresponding analytic function on
Q'=Qng. Then we have seen in [2(1), §9] that ® =V, F extends to a continuous
function on Q.

Let ) be a Cartan subalgebra of g. For any function ¢ on Q' let ¢y denote its
restriction on § N Q.

Lemma 1. Let DeD(Y,). Then the funciion DOy is locally bounded (1) on fn Q.

Fix a point H €hNQ and select a positive-definite quadratic form @ on §). For
any &£>0, consider the set f(¢) of all H€l such that Q(H —H,) <&® Then if ¢ is suf-
ficiently small, f(e)=€Q. Moreover the set §)(e)=1§(¢) N’ has only a finite number
of connected components. It follows from [2 (1), Lemma 2] that D®g remains bounded
on each connected component of §)(e) and therefore also on §'(e). Obviously this
implies the statement of the lemma.

(!) This means that D®y remains bounded on € N Q' for any compact subset C of § N Q.
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CoroLLARY. For any DE€J(g,), DO is locally summable on €.
Fix b as above. Then by [2 (j), Lemma 14],
(DD)y = by’ (D) @y~ 7 (y15(D) 070) P

But dg5(D)orm €D(h.) by [2(j), Theorem 1] and therefore we conclude from the above
lemma that =(D®), is locally bounded on § N Q.

Let m=(n—1)/2 where n=dim g, =rank g. Then m=d’zn. Let ¢ be an indeter-
minate and 7(X) the coefficient of ¢ in det(t—adX) (X €g.). Then 7 is an invariant
polynomial function on g. and n(H)=(—1)"a(H)* (H€N,). Moreover it follows from
the above result (see the proof of Lemma 3 of [2 (I)]) that |5 | | D®| is locally bounded
on Q. Therefore since |7|™* is locally summable on g [2 (k), Corollary 2 of Lemma
30], our assertion is now obvious.

Let V,* denote the adjoint of Y, Then V,* is also an invariant and analytic

differential operator on g'.
LEmMMaA 2. Put f}(x:H)f—f(H’) (r€G, HEY) for fEC™(8). Then
fH* V') =(—1)"{(z: H; " d(w)on®) (z€G, HEY)
where m=}% (dim g —rank g).

Put gy=(H")°. Then gy is an open subset of g'. Fix g€C,*(gs). Then
[vet-gax=[1-vigax
and therefore we conclude from Corollary 1 of Lemma 30 of [2 (k)] that
[t te” B v oty da® b ~ (b fia® Hygta® H; i) da*a.

Now define ¢(z*:H)=(z*H) (x*€G*, HEY) for ¢=]f or g. Then it follows from the
definition of Vv, [2 (1), Lemma 24] that

g(z* H; Vg) = g(=* : H; 8(w)om).
Therefore

fn(H)Zf(x*H)g(x*H; Vo) dx*dH =(—1)" fn(H)gf(x* (H; n7'8(w)on?) g(x* H)dz*dH

since = is homogeneous of degree m. The differential operator = '&(w)on® being in-
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variant under the Weyl group of (g, §)), there exists (see the proof of Lemma 24 of

[2 (1)]) & unique invariant differential operator D on gy such that
f(z*H; D)= (—1)"f(z*: H; n ' o(w)on’)
for z*€G@*, HEl' and f€C*(g). Hence it is clear that
[ver-gax=[pr-gax.
This being true for every g€C,*(gs), we conclude that Ag*=D on gy and therefore
fH™; V") = (- 1)"f(z" : H; a7 o(w)on’)
for z*€Q*, Hel. This is equivalent to the statement of the lemma.
COROLLARY. f(H% Vy*on™ )=[(x:H; n'd(w)) (x€G, HEY).

Since n(H)=(—1)"n(H)?, this is obvious from Lemma 2.

By Chevalley’s theorem [2 (c), Lemma 9], there exists a unique element p € 1(g,)
such that py=(w")?® for every Cartan subalgebra %) of g. (Here we have used the
notation of [2 (i), § 8] and [2 (1), Theorem 3].) Put [J=2a(p).

Lemma 3. Let f be a locally invariant C* function on an open subset U of g'. Then

(Vg"ontovy)f=f-

Fix a point H €U and let §j be the centralizer of H, in g. Then ) is a Cartan
subalgebra of g and it follows from the corollary of Lemma 2 that

f(H; Vg"on ' oVy) = f(H; n”'o(w)) (HEHhNT)
where f,=V,f. However
f(H)={H; d(w)om) (HehNU)
from the definition of V,. Therefore
(H; V"o 'oVy) = f(H; 2" ' o(w®)om).
On the other hand since f is locally invariant, we have
f(H; )= {(H; 85’ (0)) = {(H; n” "o(w®)omr) (HEHNU)

from [2 (¢), Theorem 1] and the definition of [[]. This shows that
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f(Hy; Vg*on 'oVy) = f(Hy ()
and so the lemma is proved.
CoroLLARY. [(JF=(V;*on 'oV,) F=V,*'(n ' D).

This is obvious since F is invariant and V,F=.
For any £>0 let g(¢) denote the set of all X €g where |9(X)|>¢® Let u bea
measurable function on g’ which is integrable (with respect to the Euclidean measure

dX) on g(¢) for every £>0. Then we define ()

p-v. fu dX =lim udX
e —0 J g(e)

provided this limit exists and is finite.

THEOREM 1. For any f€C.”(Q) we have

ff[]F dX = p.v.fn_lvgf- ®dX.

Since [] €3(g.), it follows from [2 (1), Lemma 16] that ] F is locally summable
on Q. Hence the left side of the above equation is well defined. Now consider the
right side. Let Vs (0<8<4d,) be a family of invariant measurable functions on g with

the following properties.

1) There exists a number a such that |Vs(X)|< a for X€g and all 4.
2) Vo(X)=0 if |y(X)|<8® (X€q, 0<5<s,).
3) lim; o Vs(X)=1 for Xe€g'.

Fix a Cartan subalgebra §) of g and put gy=(§') as before. Then we can choose a
real number ¢=c¢(}))+0 such that

fg dX=c|n(H)?g(x* Hydxz*dH

for g€C,(g5) in the notation of Corollary 1 of [2 (k), Lemma 30]. Since Vsn 'Vgf @

vanishes outside a compact subset of g, it is obviously integrable on g. Therefore

f% Vsn 'Vof ®dX =(— 1)’”cL Vs(H)®(H) dHJ‘G.f(x*H; V) dz*

() p.v. stands for “principal value”.
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if we recall that #=(—1)"a* on ). On the other hand it follows from the definition
of v, that

fG*f(x*Iﬂ Vo) da* = ex(H) y(H :0(w)) (HEY)

in the notation of [2 (k), § 5], Therefore since d(w)" =(—1)"&(w), we get

L Vm‘lvgf- Odx= cfb V,s,[,en(l);,a(w)*zp, dH
i}

where V5 denotes the restriction of Vs on §. Since @ is continuous on Q, it is clear
(see [2 (k), § 15]) that

ﬁ Dyo(w)* | dH < oo.

Therefore the following lemma is now obvious.

LeMma 4. Let €0, Q). Then

lm | Vyn 'Vof - ®dX =c| ex@po(w)* y,dH.
o5 b

=0

Select a maximal set [j; (1<:¢<r) of Cartan subalgebras of g no two of which
are conjugate under G. Put g;=(0;')°. Then ¢’ is the disjoint union of g;, gy, ..., §r-
Fix a Euclidean measure d;H on B; and put ¢;=c(h;), ®;=®y, and w;,=wb% Then
we have the following result in the notation of (1) [2 (k), § 16].

CoroLLARY. For any [f€C. (L),

llm V5 n_Ing . d) dX= Z C; ng,;cbia(wi)*wf_idin P.V.f?]_Ing . (I) dX.
g

6—>0 1<i<r

The first equality is obvious from Lemma 4 and the second follows by taking
Vs to be the characteristic function of g(d).
On the other hand (see the proof of Lemma 3),

F(H; ))=FH; n 0(w)on)=OH; n 'o(w)) (HEH nQ).
Therefore f-OFdX=c J‘sn 9, 0(w) OydH
%

and so it is obvious that Theorem 1 is equivalent to the following lemma.

(1) eg,; denotes eg for h=0;.
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LeMmMa 5. Let f€C,2(Q). Then

2 ¢ J;) er,i (yr,1 (@) Oy — a(wi)* vy, ©)diH=0.

1<isr

We shall now prove Theorem 1 by induction on dim g. Put
J( =ijFdX—p.v. f 7" @ dX

=1 < Ci J;) &g, i (y7,10(w3) (Di“a(’wi)*fl’f.i‘q)i)diH

i

for f€C,”(Q). Then it follows from [2 (k), § 15] that J is an invariant distribution
on Q. We have to prove that J=0.

Let ¢ be the center and g, the derived algebra of g and first assume that ¢+ {0}.
Fix a point X, ,€Q. We have to show that J=0 around X, Let X,=C,+Z, (C,€¢,
Zy€g,). Select on open and relatively compact neighborhood ¢, of C, in ¢ such that
Zy+Cl(ce) =Q. Let Q, be the set of all points Z€g, such that Z+Cl(¢))=Q. Then
Q, is an open and completely invariant neighborhood of Z, in g, (see [2 (1), Lemma 9]).
It would be sufficient to prove (see [2 (i), Lemma 3]) that

J{axg)=0 (x€C.2(c,), g€C.7(Q,)).
Fix 0 €C.”(c,) and consider the distributions
Tug)=T(axg), Julg)=J(xxg) (ECT())

on Q,. Then T, and J, are both invariant. Put U,=UnI(g,) where Ul has the

same meaning as in [2 (1), Theorem 1]. Then
dim I(g,.)/U, < dim I(g,)/ N < oo

and o(1,) T.={0}. Hence Theorem 1 of [2 ()] is also applicable to (T, §,, ,) instead
of (T,g,Q). Put Q'=Q,ng" and fix Euclidean measures dC and dZ on ¢ and g,
respectively such that dX=d(CdZ (X=C+Z,C€c, Z€g,). Let F, be the analytic
function on Q,” such that

1.0~ [F.9dz gecr @,
Then it is clear that

FZ)= f «(C)F(C+2)dC (ZEQ,).
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Put ®,=V, F,. If §) is any Cartan subalgebra of g, it is clear that §j=c-+1), where

b, =bhng,. Moreover n and &(w) are in D(h,.) and []€d(1(g:.)). Hence it follows
without difficulty that

Jolg) =f gDFadZ—p-V-f 7 'V, 9 D.dZ
S

L

for g€0C.”(g,). But since dim g, <dim g, we conclude from the induction hypothesis

that J,=0. This shows that J(axg)=0 for a€C.*(c,) and g€, (Q,) and therefore
J =0 around X,.

§ 3. Second reduction

Hence we may now assume that ¢ is semisimple and identify §j with its dual
space by means of the Killing form o of g. For any p€I(g.), let p; denote the re-
striction. of p on §; and put m;=a% (1 <i<r). We also identify §); with its dual space
by means of w;. Then w,=m. Put (D)=70ys (D) (D€J(g,) in the notation of
[2 (j), Theorem 1].

LemMMma 6. Let DEJ(g.), p€l(g.) and f€C,2(Q). Then

2 ¢ faR.i (w,py) (7e:yy,() - 6(D) O, d, H

1I<isr

= Z i | &€r,10(p1) (ﬂfo.i)‘ai(a(w)°D)(ptdtH

i<isr

and Z C; J‘ER' i 3((0,) 'l/)f_‘i . (6, (D) om; 0 3(]9,)) (D; di H

1igr
=2 ¢ er,1Yr,1(0: (8(w)o D)om, 08(p,)) ®,d, H.
1<i<r
We shall prove this in §4.

CororLaRY 1. For any k=0,

> ¢ J:‘Jn.ia(wtk) Yri® (8i(D)om;08(py)) ®yd, H

I<igr

-, 1z< 0 feﬂ.iwf.i(a(wik)oai (D)om;00(py)) ®,d; H.
<i<r
Since Yayr,i =0(w;) ¥r.: and 6;(8(w*)o.D)=d(w)od(D), this follows immediately
from the second statement of Lemma 6 by induction on k.
17— 652923. Acta mathematica. 113. Imoprimé le 11 mai 1965,
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COROLLARY 2.

Z ¢ fen,ia(wtk) (7wyrd) 0,(D)®;d;H= ,?.Ct fen.iﬂi Yri® 6,-(8(w")oD) ®,d. H

for £=0.

This follows from the first statement of Lemma 6 by induction on k.

COROLLARY 3.
Ei:ci fan,,(a (w,’)on{oa(wik))ip/,g'(ng‘H———; fsg.np,,i(a(w,")omoa(wi’))(b,d,ﬂ
for 4, k=0.
Apply Corollary 2 to f,=d(w)*f with D=1. Then since
Yri™ Aoy

we obtain > e fe,,,,(a (w)om08(wi¥)) v Oy H
i
=3¢ fsg,‘a(w,k) v mid(w) ®d H.
i

Now apply Corollary 1 with D=1 and p=c’. This gives the required result.
We shall now complete the proof of Lemma 5 and therefore also of Theorem 1.
Let A; denote the derivation of D(f).) given by(l)

A= 12‘ {a(wi), f} (Eem(bic))

Then since 7; is homogeneous of degree m, it is clear that (see [2 (c), p. 99]) that

Agm G=m ! a(?ﬁ).
Therefore Am)=m! 2™ 1 3 O™ — 1" *d(wf)omod(w™¥)
0<k<sm

where O™ denotes the usual binomial coefficient. Hence Lemma 5 follows immedi-

ately from Corollary 3 above.

§ 4. Third reduction
Fix De(g.) and put

() As usual {Dl, D,} =D,0D,—D,0D, for two differential operators D,, D,.
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J(f)= Z, Ci | €r,i {3(w1) (72:91,1) - 0(D) Oy — m; r,10:(0 (w)oD) (Di} d;H

1

and J'(f)= Z G st.i {8(a)i) Y11 6;(D) (m; D) — Yri 0:(6(w)o D) (m; (Di)} dH

for f€C,*(2). Then J and J’' are invariant distributions on Q.

LemMA 7. No semiregular element of Q of noncompact type lies in
(Supp J) U (Supp J').

Assuming this result, we shall now prove Lemma 6. For p€I(g,) and f€C.”(Q),
define

Jo(f) = Zl Ci | Er,i {3(6011):') (7 9r.4) (D) @; — o(p;) (70 9y.4) - 040 (w) 0 D) (Di} d; H.

Then J, is an invariant distribution on Q. We shall now show that J,=J"=0.
Fix a point X,€Q and, for any £>0, define Uy, (¢) as in [2 (1), Lemma 14] and
put Q(e)=Qn Ux(e). Then )(¢) is an open and completely invariant neighborhood
of X, in g. Put
Bi(e) =00 Qy(e), f)t(O)=QOIJi(8) (I<i<r).

Then we have seen during the proof of [2 (1), Lemma 13] ‘that §;(0) is a finite set.
For every H €l,(0), select two open, convex neighborhoods Uy, Vg of H in Bj; such
that Cl Uy Vy<h;(l) and VN Vg =0 for H+H' (H,H €};(0)). Put

U= U Uy V= U Vg
Hel,(0) HeD,(0)

and select oy €C,*(Vy) such that ay=1 on Uy (HE€},(0)). Define

o= 54
Heh(0)

a,nd put Gi=CiER, 104 (Si(D) (I’,-, gi, = Er, 10 6,(D) (ﬂi q),-).

Then it follows from [2 (j), Theorem 17, [2 (1), Theorem 2] and [2 (1), § 4] that ¢, and
g;' are functions of class C* on the closure of each connected component of b, (R).
Now choose £>0 so small that f(e)=U; (1<i<r). Then if f€C,®(Q(e)), it is

clear that Supp ;< U,. Since «;=1 on U,, it follows that

Iy ()= ;f{a(wipi) Yrit i~ O(P:) ¥r.1 - (@) gi} d;H
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and J'(f)= ; f{@(w,) Vi 9 — Vi 0(wy) g/'yd;H

for f€C,2(Q(e)). Moreover Q(e) being completely invariant, we can choose an open
neighborhood ¥V of X, in g such that Cl(V°)c=Q(e). Now J=J, and therefore it
follows from Lemma 7 and {2 (k), Theorem 5] that J,=0 on V¢ for p€I(g.). Hence
X,¢Supp J,. But X, was an arbitrary point of Q. Therefore we conclude that
Jp,=0. This proves the first statement of Lemma 6.

Similarly by applying [2 (k), Theorem 4] we conclude that J'=0. This gives the
second statement of Lemma 6 in the special case p=1. Now fix p€I(g.) and con-
sider the distribution 7'y=9(p)T. Then T, also satisfies the conditions of [2 (1), Theo-
rem 1] and therefore T,=F, where F,=2a(p) F. Put ®;=VyF, and let @y, denote
the restriction of @, on H; N Q' (1<i<r).

LEuMma 8. Oy, =3(p)P;, (1<i<r).

Let F; and F, respectively denote the restrictions of F and F, on fj; N Q'. Since

F is an invariant function, we know [2 (¢), Theorem 1] that
Fo; = m'l 3(])) (ﬂg Fi).
Therefore Dy, = 3(m) (77 For) = 8(ps ) (7 Fy) = 0(p:) Ds.

Now if we apply the result J'=0 to the distribution 7', (instead of T'), we obtain
; s fsx.t {0(wy) Wr.1* 04(D) (71, Poy) — ;.4 64(8 (w) 0 D) (7 @)} d, H=0

for f€C,”(Q). In view of Lemma 8, this is equivalent to the second assertion of

Lemma. 6.

§ 5. New expressions for J and J’

Define # as in § 2. Then n€I(g.) and 7= (—1)"x? (1 <i<r). Moreover |n|t and

||t are analytic functions on ¢'.

LeMMA 9. Define J and J' as in §4. Then

J(Hy=p.v. f {o(w) (|7]2/)- D(n| "t @) —|n|}f(@(w)oDo|y| }) ©}dX
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and J’(f)=f{3(w)]‘-D<D—f6(w) (DD)} dX
for f€C.(Q).

Since n takes only real values on g, it is obvious that |7;|*=¢n; on B where
g is a locally constant function on §,’ such that g*=1. Since ® and || ? are in-

variant functions, it follows from [2 (j), Lemma 14] that
.D’(I n INQ‘@) = 8;_175,'_161 (.D’) (I)i

on H;nQ’ for any D' €J(q,).
For any f€C,°(Q), let g, denote the function on ¢’ given by

gr=w) (|n[*))- D(In|" 2 ®)~|n[t/(@(w)oDo|y| ) ®.

Fix a function »€C®(R) such that v(t)=0 if |t|<} and v(t)=1 if |t/|>1 (¢€R). For
any £>0, put v, (t) =v(c%t) and

Ve(X) =v(n(X)) (XEQ)

Then V. is an invariant 0*° function on g and V.=1 on g(¢) (in the notation of § 2),
Put f'=V.f and f,=|gn|tf.". It is clear that f. and f’ are in C,*°(Q) and f=f, on
a(e). Hence

f grdX=1| g, dX
a(e) a(e)

= iZ s 5 &re {8 (o)) Yrpi® 0:(D) @, — yy,.16,(2 (w)o D) ®,}d;H
4

(c)
where f;(e)=0; N g(e). However it is obvious that

Yiet =~ &1 Pri
on hi(e). Therefore

jg(e) gr dX = iZ G fb . &R {3 (o) (7m97,4) * 04 D) @, — m; '/Jf.iai(a(w)°D) (Di} d;H.

0

Making ¢-—+0 we get p.v.fg, dX=J(f)

and this proves the first statement of the lemma.
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We know from the corollary of Lemma 1 that the integral
f{a(w) f-D® — fo(w) (D®)} dX

is well defined. Moreover since ® is an invariant function,
D'®=7,7,(D") (m; ®)) (D' E€F(ac))

on ;N Q' and therefore the above integral is equal to J'(f). This proves the second
statement of the lemma.

LEMMA 10. For any £>0, define the function V., as above and put
J.(f)= f Veio(@) ({71} D(|n |t @)~ |5 [ (@(w)o Doln|™t) @}dX

and J(f)= f V. {6()]- DO~ fo(w) (DD)} dX
for f€C.>(Q). Then
I =lim I, T()=lim 5. ().

Put f,=[n[t Voef. Then f,€C:(Q) and Jo(f)=J(V.zef). Hence it follows that

J{f)= Z ¢ | Ve &R 81_1{8 (wi)wfe.t : 51‘(D) o, — Vst 0;(0(w)o D) (Di} dH
where V. ; is the restriction of ¥, on [, On the other hand, it is clear that

TPfE.z(H) = g,m(H) vy, (H)

if |m(H)|>¢e/2 (HEY,). Hence
Jolf) = 21: | Ve Ez.n{a(wf) (72spr.4) - 0(D) ®; — ¥7.10:(8(w)o D) (Di} d; H.

The two assertions of the lemma are now obvious.

Lemvma 11. Put(1)
Y. =(|9[* {8(w),Vc}oDo|n| ™) @,

Y= ({a (@), Vs}OD) o
for €>0. Then

(1) See footnote 1, p. 250.
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Jé’(f)= J‘fl{fs an Js’(f)=ff‘Fe,dX
for fE€C.~(Q).

Since SuppV.<¢’, this follows from Lemma 10 if we observe that
(V.a(@)oln |t =|q[ta@)oV., (V.d(w)*=8(w)o V..

Fix a Cartan subalgebra §j of ¢ and let us use the notation introduced at the

beginning of §2. In particular ¥, 5 and wy denote the restrictions of ¥V, and w on .

Lemuma 12. For any ¢>0, we have
(To)s = ({o(wp), Ve.5}0dys(D)) Py
and (P )= (v {&(wy), Ve,p} 0 g1p(D)07t) Dy
|n]t, @ and V, are invariant C* functions on Q’. Moreover there exists a locally

constant function @ on § such that a*=1 and |5|*=ax on §. The required rela-
tions now follow easily by a repeated use of [2 (j), Lemma 14] and [2 (¢), Theorem 1].

§ 6. Proof of Lemma 7

We now come to the proof of Lemma 7. Fix a semiregular element H,€Q of
noncompact type and let 3 denote the centralizer of H, in §. Define [ and 3  as in
[2(j), §2] and put Q,=Qn3. Then Q is an open and completely invariant neigh-

borhood of Hy in 3. Fix a Euclidean measure dZ on 3 and define
j=o5§ =01,j.=0;, and j,' =0, (¢>0)

in the notation of [2 (j), Lemma 17] corresponding to G,=@ and 3,=Q;. Since J,=Y¥,
and J,/ =%, (Lemma 11), it is obvious that

) = f N2 T, i) = f HD)Y, (2)dZ
for y €C.*(£);). Moreover

i) =lm (y), §')=lm i) (rEC7)
from Lemma 10.
Now we use the notation of [2(k), §7]. In particular ¢ is the center of 3 and
a=RH'+¢, b=R(X'—Y')+0 are two Cartan subalgebras of 3. Fix Euclidean meas-
ures do, da, db on o, a, b respectively such that
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da=dtde, db=d¢do

where t=a/2 and ¢=(—1)!8/2 in the notation of [2 (k), Lemma 13]. Then do can
be so normalized that (see [2 (e), Lemma 3])

fde=1f aJ,“da+(—l)*lfﬁJ,5db
2 Ja+ 2 s

for y€C,*(3). Here
J(H)=Ju(y:H) (HEn),

JAH)=Js(y:H) (HEDH")

in the notation of [2 (k), Lemma 14], a* is the set of all points H in a where a(H)>0
and b” is the set of those H €D where B(H)+0. Therefore since ¥, is an invariant

C* function on Q, it is clear that

1 1
:i,(y) = E J;*— on,,“ (‘Fs)a da+ ( -1 )* § J; ﬂJ.,ﬁ (lFB)[, db

for y€C.*(Q,). Now apply Lemma 12 and observe that SuppV.py<hng and

(0(wg)oV,p)* =V, 58(wy) (h=a or b).
Then it follows that

) =5 | Veal0(@0) (07,9 0= aly5- 00 Do da
+ (=10 [ Vosto(00) (8,9 @ = 0+ ) G5} db
where ®q5=08,5(D)®; (§=a or b). Hence it is obvious that
)3 [ 000 (7,9 Boa= ad, 500 Ba.da
(=1 [ (0000 (82,9 Gos — 2000 Do} b

for y €C,(Q;). Now wy=w,+ |a| 2a® where w, is the restriction of w on ¢. Similarly
ws=ws+|B|"2p%. Hence (see [2 (k), Lemma 21]) it follows that

1
iy)= éT;IEf‘ﬁ_ a(er) {0 (o) (%) - Do, 0 —~ &S, 28(ct) Do, o} dat

—1)\¢
" (2 If:Il B {2(B) (BI,")- Bo5 —pI,2(B) Do, 5} db.
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Now da=dogdt, db=dod¢ and
) =%|xla/ot, a(B)=23(-1)}|B[*0/o¢
since H' =2|a|?H,, X'—Y =-2(—1)}|B8|%H;

in the notation of [2 (k), §7]. Therefore
)= ~1 [ {00 (17, Poa= - 2(e) Bu}* do

+1 f (0(8) (BT Bos— BT o(P) Do) do.

Here

w, (H)= limoua(H—l-tH'), up(H)= lim up (H+ (X'~ Y')) (HEo; ¢t HER)
t—>+ d—->+0

for two functions #, and wp on a and b respectively and (ug)." =us™ —up~. Since
a=f=0 on ¢ and |x[*=|B|® [2 (k), Lemma 13], it follows that

7(7) = % l“lzf {(be (DO,B)—+ - (Jya‘l)o.a)+} da‘

However ®,, and ®y5 are continuous functions on an€; and bnQ, respectively
and @ =y on o NQ; [2 (1), Lemma 18]. Therefore

iy =%|a |2fa {(J,0)-* =1, @oado  (y €0.2(Qy)).

But (J,%)-*=J,% on o [2(k), §19]. Hence j=0 on Q,

Now put(!) m,=a 'a, mz=p'n® and
Dy’ = dy15(D) (D)
for h=a or b. Then if y€C,2(Q;), we have
7 ( )=l o, (L) da+(—1)*1 B (¥ )s db
e \Y 9 ot ¥ e la 9 b v e )b
1

=5 LJF Ve, a {0 (wa) (727 1,0) - @y’ — 71,71, 0(0o) Do’} daa

+3(-1)t fb V.5 {0 (ws) (705~ 1J,5) - @y’ — 75727, 08(cwp) D5’} db

(1) We assume, as we may, that (n%” =% in the notation of [2 (k). § 7].
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from Lemma 12. Hence
o 1 - 1 - ’
70 = 3p L+a(°‘) {0(2) (na™,") - @’ — 70, 0(a0) Do’} it

+( Iﬁlz AP {2 (B) (mg™*J,°) - Oy’ — 757", P0(B) D'} db

=—1 f {3 (o) (ﬂz—l"ya) ‘@, — ”a_lJra 3(0()(Da'}+ do

+1 f {0(B) (w5~ T,%) - By — s~ T, 2 8(B) By} * do.

Now 7,7'J,% is a C* function on a which is invariant under the Weyl reflexion s,.
Hence o(x) (7. 'J,%)=0 on . Moreover, B) (7s 'J,%) is a continuous function on b
by [2 (k), Theorem 1] and () ®,’, 8() @5’ are continuous functions on a N Q,, b N Q, re-
spectively and they are equal on ¢ N, [2 (1), Lemma 18]. Finally @5’ is an analytic
function on b n €y [2 (1), Theorem 2]). Hence

) =1 J 7=, 0(a) By’ dor — } f (5™, )_0(8) By do

= 1f {10 — (7557 T,5) - " } 8(B) Dy’ do.

But(!) m,=nmz and J,2=(J,%)_" on . Therefore j'=0 on £;. In view of [2 (j),
Lemma 17] this completes the proof of Lemma 7.

§ 7. A consequence of Theorem 1

We now return to the notation of §2 so that g is again reductive. For any
p€I(g.), let p; denote the projection of p in I(h,) (see [2 (j), § 8]).

Lemma 13. Fixz p€l(g.). Then

2 ¢ fen,t{a (D) 9ri Oi— v 3(’“":1’1)*@1} d;H=0

1gisr

for fEC.7(Q).

We note that 9(w,)* = (—1)"8(w;). Therefore applying Lemma 5 to 8(p)f, instead
of f, we get

() See footnote 1, p. 257.
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2.6 J'Si.Ra(‘w'%Pi)Wf,i ®0;d, H= Z ¢ | e, R8Py, 10(wy) Oyd H = (— l)mfﬁ(p)f ‘[OFdX.

1

But it follows from the corollary of [2 (1), Lemma 16] that

fa(p)f- OFdX = f f-CI@(p)* F) dX.

Hence we conclude from Lemma 8 and [2 (j), Lemma 13] that

(— l)mffD(a(p)*F) dX= Ei: cifsi.wa,ia(pi mi)* Q,d; H.
The statement of Lemma 13 is now obvious.

§ 8. Some elementary facts about tempered distributions

Let E be a vector space over R of finite dimension. Define S(E.), P(£;) and
D(E,) as usual (see [2 (j), §3]). Let U be an open subset of E and T a distribution
on U. We say that T is tempered if we can choose D,ED(E;) (1<i<r) such that

G ; sup |D,f| (fe€C.=(U)).

It is clear that if 7 is tempered, the same holds for DT for any DeD(E,).
Fix a Euclidean measure dX on K and let ¢ be a locally summable function
on U. Then ¢ will be said to be tempered (on U) if the distribution

[~ [wax gecsw
on U is tempered.

Introduce a Euclidean norm | || on E.
LeMma 14. Let g be a measurable function on U such that

sup [g(X)| (L + [ X[)7" < e

for some m=0. Then g is tempered.

We can choose >0 such that

N =L(1+ IX])~" dX < oo
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Put c,=supxey|g(X)| (1 +||X|)™. Then

Ugde‘ <c,crmnr(f) (FECZ D)
where v () = sup )] (L | X[y

Since X — || X||* is a quadratic form on E, it is now clear that g is tempered.
A subset V of E is called full if tX€V whenever X€V and t>1.

LeuMA 15. Let V be a non-empty, open and full subset of E. Pui

9(X)= 3 p(X)ed® (X€EE)
I<isr
where Ay, ..., are distinct linear functions on E, and p,€P(E,) (p;=0). Then g is

tempered on V if and only if(1)
RA(X)<0
for all X€V and 1<i<r.

We recall that S(E.) is the algebra of polynomial functions on the dual space
E' of E,. Fix p€S(E.) and A€E,. Then

d(p)oe*=e€*d(p1)

where p; is the polynomial function g — p(A+u) (u€E,’). Therefore if g€ P(E,) and
&(p) (¢*q)=0, we conclude that 9(p1)g=0. Now assume that ¢=0 and let g, be the
homogeneous component of g of the highest degree. Then it is clear that p(0)g,=0
and therefore p(A)=0. We shall need this fact presently.

Let us now turn to the proof of Lemma 15. If R2,(X)<0 for X €V and 1<i<r,
it follows from Lemma 14 that g is tempered on V. To prove the converse we use
induction on r.

So let us assume that g is tempered on V. It would be enough to show that
R1(X)<0 for X€V. First suppose that r>2. Then A #+ 4, and therefore we can
“choose q€S(E;) such that ¢(1,)=0 while ¢(4,)+0. Put p=g¢* where d>d°p,. Then

a(p) (Mp)=p/ " (1<i<r)

where p,'=0(py)p;. Since p(4,)=g(4,)*+0, it follows from what we have seen above,
that p,"+0. On the other hand p; = (¢;)* and ¢; (0)=g(4,) =0. Therefore since d >d’p,,
it is obvious that p,/=0. Hence

(1) Rc denotes the real part of a complex number c.



DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I 261

ap)g=_ > p/ e

1i<r

Now &(p)g is also tempered on ¥V and p,"+0. Therefore we conclude from the induc-
tion hypothesis that $02,(X)<0 for X €V.

Thus it remains to consider the case r=1. Fix X, €V and write A and p instead
of 4, and p, respectively. Then we have to prove that RA(X,)<0. If X, =0, this
is obvious. So let us assume that X,=+0. Choose a linear subspace F of E com-

plementary to RX, and an open convex neighborhood U of zero in ¥ such that
X,+UcV. Then
tX, +U=HX,+t0)cyX,+ U)cV

for t>1. Let J denote the open interval (I, o) in R. Fix « €C,*(U) and for any
pEC.=(J), consider the function yz€C, (V) given by

Y, + X) = pO)a(X,) (R, X,EP).
Put o)= [reax = [poax)gex,+ Xz,

where dX, is the Euclidean measure on F normalized in such a way that dX =dtdX,
for X=¢X,+X,. Then

o(f) = f eq) )it (BECHW))

where ¢=A(X,) and q(t)= J‘p(tX1 + X,) (X,) **? dX,.

Since p#O,'cx can obviously be so selected that ¢=+0. Moreover since g is tempered
on V, it is easy to see that ¢ is a tempered distribution on J. Hence it would be

sufficient to prove the following lemma. .

LremMa 16. Fiz c€C, t,€ER and let ¢+0 be a (complex-valued) polynomial func-
tion on R. Then if the function ¢(t) e (£ ER) is tempered on the open interval J = (£,,c0),
we can conclude that Re<O0.

Put T = Jﬂ(t) glt)etdt (BEC(J))
and D=d/dt. Let Ty=(D—c)*T

where d=d%. Then T, is also a tempered distribution on J. But
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(D — c)d (qect) —_ ecthq = qect

where a is a nonzero constant. Hence it would be enough to consider the case when

g=1. Then T being tempered, we can choose a number 4 >0 and an integer >0

such that
f «(t) et dt

for x€C.°(J). Let ¢=2¢,+(—1)t¢, where ¢;ER (¢=1,2). We have to show that

¢, <0. So let us assume that ¢, >0. Put

<A Y sup |i"D"a|

0<m,n<r

where ¢’ =¢,+(—1)tc, and f€C,*(J). Then
| D a| =€~ |(D—¢')"B|.

Therefore we can select a number 4,>0 such that

‘fﬂ(t)ec‘tdtl<Al > sup e "D B|
o<m, n<r
for all B€C.>(J).
Now fix a function fEC®(R) such that 1) 0<f<1, 2) f(t)=0 if {<0 and 3)

f@)=1if ¢>1. For any M >t,+2, define

Bu®)=fE—t,~1)[(M+1~1t) (tER).

M
Then By €C,*(J) and fﬂM(t) ertdt> f etdt.
to+2
On the other hand sup |e " D" By | < an by
where an=sup |t"e |, b,=2" max sup |D¥f|>
t>t o<k<n
Therefore 'fﬂM(t) ec‘tdtlsA’ > am 2 b,=B (say).
osmgr o<ngr
M
This proves that B> f entds,
to+2

But as M — + oo, the right side tends to + oo giving a contradiction. This completes
the proof.

Let U be an open subset of £ and C(U) the space of all C* functions f on U
such that
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vp(f) = sup | Df| <

for all DeD(H,). The seminorms v, (DE€D(E,)) define the structure of a locally con-
vex space on C(U).

It is well known (see [3, p. 93]) that the inclusion mapping of C.*(E) into C(E)
is continuous and the image is dense in C(E). Hence tempered distributions on E

are the same as continuous linear functions on C(Z).

§ 9. Proof of Lemma 17

We now return to the notation of §2. Let ) be a Cartan subalgebra of g and
define ¢ as in [2 (1), Theorem 2].

Lemma 17. Suppose T is tempered on Q. Then we can choose an integer ¢ >0
such that nlg is tempered on QNY .

Let 4 be the Cartan subgroup of G corresponding to f) and z— z* the natural
projection of G on G*=G/A. The group W, operates on G* on the right in the
usual way (see [2 (1), §9]). Fix an invariant measure dz* on G* and a function
%y €C,~(G*) such that

fao(x*)dx* =1.
Put wz")=[Ws]™' 2 (" s).

Select a compact set C in @ such that Supp «<C* and C*s=C* for s€W, and, for
any B€C.”(Y’), define a function f;€C,”(g) as follows.
fo(a*H)=[Ws] ' a(z*) 2 B(s7'H)

seWeg

for z*€C* and H€Supp B and Supp fs< (Supp B)°".
Now define f(z:X)=f(X*) as usual (x€@G, X €g) for any f€C™(g). Fix DeD(g.).
Then
{aH; D)=(w: H; D*) (HEN)

and it is clear that D=3 a@)D: (zEQR)

1<i<r
where a,,...,a, are analytic functions on ¢ and D,, ..., D, are linearly independent
elements in D(g,). Hence

{(«H; D) = iZ a;(x) f(x : H; D).
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On the other hand if gq=[}),qg], we can choose (see [2(j), §2]) an integer m >0
and elements ¢,;€S,(q.), &;€D(D.) (1<j<N) such that

f(x:H;Di)=n(H)""jZf(x; qy:H; &) (1<i<r)
for f€C®(g), x€G and HEY. Put a(x)=af{z*) (x€Q). Then if 2€C and HEY’, we get
fo(wH; D) =a(H)™ 2. a,(x) (23 qu) Bol(H; &)
where BoH)=[Wo]™ 2 pls™H).
Since C is compact, it is obvious that
sup | Dfs| < BZ sup 27" £yl (BECT(H)),

where B is a constant which depends only on D. Thus we have obtained the follow-
ing result.

Lemma 18. For any DED(g.), we can choose an integer m >0 and a finite number
of elements £€D () (1<i<N) such that

sup | Dfg|< Y sup |z "&B]
1IN

for all BEC ().

Now we come to the proof of Lemma 17. Since 7' is tempered, there exist
D,eD(g.) (1<i<7) such that
|7(7)| < 3 sup | Dif|

for all f€C,”(Q2). Therefore by Lemma 18, we can choose an integer m,>0 and ele-
ments £,€D(),) (1<j<N) such that

|T(fﬁ)|<m§:<rsup | Difsl< X sup |n™&B|

I<iSN

for B€C.=(QNY). On the other hand

T(fﬂ)=ffﬁFdx=cstw,ﬂgdH

where ¢=¢(f)) in the notation of § 2. Moreover

) = e (B () [ 1o ) = () () BolED) (L€
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Hence T(fs)=c fnﬁogdH =c|npgdH
if we take into account the fact that g°=e(s)g (s€EW;). Put y=a""'8 (m>1). Then

lfﬁn’"gdﬂl = 1T(t,)| < |c|‘1; sup |~ ™& (=" B)|

for BEC7(QNY). If m is sufficiently large, it is clear that 7~ ™ &0n™ ' €D (f)). This
shows that n™¢ is tempered on QnY’ .

Fix a Euclidean norm ||X|| (X€g) on g and for any Cartan subalgebra [ define
g% as in [2 (1), Theorem 3].

Lemma 19. Suppose for every Cartan subalgebra ) of g we can choose numbers

az0 and m=0 such that
lg®(H)| <a(l +[|H])"

for HEQNY (R). Then T is tempered.

We use the notation of Lemmsa 5 and put g,=¢% (1<i¢<r). Then

T(f)=ZC, eri iy H (f€C.7(Q)).
Therefore we can choose ¢>0 and an integer M >0 such that
(<o S sup 1+ LD D)

for f€C,*(Q). Our assertion now follows immediately from [2 (d), Theorem 3].

§ 10. An auxiliary result

Let g be a reductive Lie algebra over C, §) a Cartan subalgebra of g and W the
Weyl group of (g, §)).

LEMMA 20. Let A be a linear function on Yy and « a root of (g, f)). Suppose
sh=2A—co for some s€EW and c¢=0 in €. Then(l) sA=s,4.

Tor the proof we may obviously assume that g is semisimple. Let {§ be the real

vector space consisting of all linear functions u on f) such that(?) u(Hg)€R for every

(Y) As usual s, denotes the Weyl reflexion corresponding to .
(3) Hpg has the same meaning as in [2 (k), § 4].
18 — 652923. Acta mathematica. 113. Imprimé le 11 mai 1965.
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root B. Fix an order in §§ and first assume that A€{. Then o A€ for every c EW.
Select 0, €W such that 0,10 for all ¢ €W. Then if we put A’ =04, &' =0, 0, and
o' =00, we obviously get s'A’=A1"—ca’. Moreover the relation si=s,1 is equivalent
to 8’2’ =s,4. Hence without loss of generality, we may assume that 1> ¢4 for all
o€W. Since A and sA are both in §, it is clear that ¢c€R. Replacing o by —a, if
necessary, we may assume that «>0. Then ¢>0 since A>sA. Now consider

Sy3A=8, Atca=1—c a

where ¢’ =2(A(H,)/a(H,)—c¢c. We claim ¢'=0. For othemise ¢ >0 since s,sA<A

Moreover
s A=A—(c+c)a=sA—c a.

Therefore sls, A=A—c¢'s'a, s'A=A+csla.

Since ¢ and ¢’ are both positive, it follows that at least one of the two elements
s7's,4, s12 is higher than A in our order. But this contradicts the condition that
A>od for all ¢€W. Hence ¢’=0. This shows that s,sA=21 and therefore si=gs,A.

Now consider the general case. Then A=A+ (—1)*1; and c=a+ (—1)}b where
Ar, A, EF and a,b€R. The relation sA=1—co implies that

83.3=ln—-aoc, 811=l,~bac.

Hence if ab+0, we get slz=s,4z, $A;=8,A; from the above proof. Therefore si=s,1
in this case. Now suppose ¢=+0, b=0. Then slp=s,4; and si;=A; again from the
above proof. Let W, be the subgroup of all ¢ €W such that ¢i;,=4;. For u,, 4, €F,
let {u,, u,> denote the usual scalar product defined by means of the Killing form of
§ so that

Sty o> = pz 1 (Hp) ps (Hp)

where B runs over all roots of (g, §)). Then {ou,, uy> = {fy, 0~ "y for o €W. Hence

{8Ag, Aty = {Ar, 871 Ay =< Ap, Ap)-

But Az —sip=ax and a+0. Therefore {a, A;> =0 and this implies that s,A;,=4,. Hence
sA=s,A. The case a=0, b=+0 can be reduced to the one above by replacing 1 by
(-1 1. ’

We shall need the above result for the proof of Lemma 26.
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§ 11. Proof of Lemma 21

We return to the notation of §2. So g is a reductive Lie algebra over R and
g,=0g,6]. Let a be a Cartan subalgebra of g and aj the set of all points of a;=a ng,
where every root of (g,a) takes a real value. Similarly let a; be the set of those
points of a where all roots of (g, a) take pure imaginary values. Define 6,f,p and
K as in [2 (m), §16] corresponding to a. Then it is clear that az=anp, a,=anfand
therefore a=ag-+q;, where the sum is direct.

Define a’(R) as usual (see [2 (k), §4]) and fix a connected component ap* of
a'(RyNag. Let Pr be the set of all real roots of (g, a) which take only positive
values on az*. We can introduce compatible orders (see [2 (d), p. 195]) in the spaces
of real-valued linear functions on ap and az+(—1)*a; in such a way that all roots
in Py are positive. Let P be the set of all positive roots of (g, a) under this order.

Let m be the centralizer of a; in g. Then m is reductive in g (see [2 (m), Cor. 3
of Lemma 26]) and it is obvious that Py is the set of all positive roots of (i, a).

LeMMa 21. Suppose g has a Cartan subalgebra Y) such that every root of (g, §) is
imaginary. Then 0p is a Cartan subalgebra of m,=[m, m] and a, is the center of m.

We can choose x€G such that h* ¥ (see [2 (d), § 8]). Since §)* is maximal abelian
in t and a,<f, we can select k€ K such that §**>qa,. Hence without loss of generality

we may suppose that a,cfh<F.

Let @ be the set of all positive roots of (g, §)) and @, the subset consisting of
those 8 €@ which vanish identically on a;. Then it is clear that

m.=1h. + % (CXs+CX_p)

in the usual notation (see [(2 (k), §4]). Since §<¥, both ¥ and p are stable under
ady and therefore, for any root y, X, lies either in f, or in p.. Hence it is obvious that

[mc, mc] o [f)c, mc] Zﬁgq (CXﬂ + CX_ﬁ) omy N pc.

This shows that m, O>mNPpoag.
On the other hand let ¢, denote the center of m and put I=rank g. Since acm,

it is clear that
l=rank m=dim ¢y, + rank m,.

But a;,<c¢y, apcm, and dim a,+dim a;=dim a=1. Therefore we conclude that ¢y, = a;
and azp is a Cartan subalgebra of m,.
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Select a fundamental system (a;, ...,a,) of positive roots of (1, a) and let W be
the subgroup(!) of W(g/a) generated by (2) s, for 2 € Ps. Then s,,, ..., s, generate Wy

and m=dim a; from Lemma 21I.

LeMma 22. Let pu be a linear function on a, which takes only real values on
ag+ (— 1)t a; and suppose u=syp (1<i<m). Then u>su for s€Wy and u(H)=0 for
Heaj,.

Define linear functions g; (1<j<m) on a as follows.
Sa, pt; = phi— 050, (L<i<m)
and p; =0 on a,. Then p;>su; (sE€Wz) and u;(H)>0 for H€az" (see [2 (g), p- 280]). Let
Sy h == Ci % 1<e<<m)
where ¢, €ER. Then ¢;>0. Put yy=>,c;u;. Then y=pu, on a,. Therefore it is clear that

W= Sp=po—Shy=0 (sEWp)

and u(H)= po(H)>0 for HEaz".

§ 12. Recapitulation of some elementary facts

Fix a Cartan subalgebra § of g and let j=j; denote the Chevalley isomorphism
p—py of I(g;) onto I(.,) [2(j), §9]. Let A be a linear function on f.. Since every
element ¢ of S(f),) is a polynomial function on the dual space of ., we can consider
its value ¢(1) at A. Let X1=X:" denote the homomorphism p — py (1) (p € I{(g.)) of 1(g.)
into C. L '

Let W= W(g/5). Then W operates on D(f).). We say that A is regular if sA=2"=+1
for s#1 in W. It is well known that A is singular or regular according as @w(1)=0
or not. Moreover if A’ is another linear function on ), then X;=2X; if and only if
A =s) for some s€W.

Conversely -let ¥+0 be a homomorphism of I(g.) into €. Then E:q—>XG1(9)
(g€I(f,)) is a homomorphism of I(f)) into C. Since S(f) is a finite module over
I(h,) (see [2(c), Lemma 11]), & can be extended to a homomorphism of S(f.). Hence
there exists a linear function A on [, such that £(¢)=gq(4) for all g€I(l,). This shows

() W(g/a) denotes the Weyl group of (g, a).
(%) See footnote 1, p. 265.
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that x=1X;. Moreover, as we have seen above, A is unique up to an operation of W.
We say that x is regular if A is regular. Put py=; '(w?). Then
X(po) = w(A)*.

Hence X is regular if and only if X%(p,)+0. We note that p, is actually independent
of §) and therefore the concept of the regularity of ¥ does not depend on the choice of §.

Let a, b be two Cartan subalgebras of ¢ and y an element of the connected
complex adjoint group G, of g, such that b.=(a.)Y. Then y defines an isomorphism
D—D? of D(a,) onto D(b,).

Lemma 23. Let 4 be a linear function on a.. Then
0= AP,
This follows from the obvious fact that js(p)=(ja(p))’ for p€I(g,).

LemMA 24. Let U be a non-emplty open connected subset of ) and A a regular
linear function on 0. Suppose g is an analytic function on U such that d(g)g=q(A)g
for all q€I(Y.). Then there exist unique complex numbers c,(s€W) such that

g(H)= Zws(s)csel‘s””) (HeD).

For a proof see [2 (c), p. 102].

§ 13. Proof of Lemma 26
Let 3 be a subalgebra of g such that 1) 3} is reductive in g and 2) rank 3 =

rank g. Let Q, be an open and completely invariant subset of 3 and X a regular
homomorphism of I(g.) into €. Let E denote the analytic subgroup of & corresponding
to 3 and define the isomorphism p —p, of I(g.) into I(3.) as in [2(j), §9]. Consider
a distribution T, on Q, such that

1) 7'y is invariant under E,
2) o(py) Ty=2(p) T, for all pel(g).

Fix a Euclidean measure dZ on 3 and let (), denote the set of those points of
Q) which are regular in 3. Then by [2 (j), Lemma 19] and [2 (1), Theorem 1], 7', coin-
cides with an analytic function on Q. We denote by T,(Z) the value of this func-
tion at any point Z€Q,'.

Let ) be a Cartan subalgebra of 3, P the set of all positive roots of (g, §j) and
P; the subset consisting of all positive roots of (3, §j). Put
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= I;Ioc, g;(H)=m,(H)T,(H) (HEQ, nh).
xE 3

Let b’ (3:R) denote the set of those points of §) where no real root in P, takes the
value zero. Then by [2 (1}, Theorem 2], g, extends to an analytic function on Q, N}’ (3: R).
Put W=W(g/h)) and select a linear function A on . such that x =%, in the notation
of §12.

LeMMmA 25. There exist locally constant functions ¢, (s€W) on Q, N} (3: R) such that

g,= 2 e(s)c,e”

seW

on QnY (:R)
Since (8 (p;) — X2 (p)) T =0 (p € I(g,)), it follows (see the proof of [2 (1), Lemma 1]) that

@(9) —9(A)g;=0 (g€1(h.)).

Hence our assertion is an immediate consequence of Lemma 24.

Put ((Z)=det(ad Z)y, (Z€g) and fix an element H,€j such that ((H,)+0.
Then the centralizers of H, in 3 and g are the same. Hence H, is semiregular in
if and only if it is so in §. Now assume H,€Q;, {(Hy)+0 and H, is semiregular of
noncompact type. We shall now use the notation of [2 (k), § 7] without further
comment. Then it is clear that a and b are Cartan subalgebras of 3. Put W= W(g/a)
and choose a linear function A on a, such that ¥=x;°. Define G, as in §12 and let
Z, denote its complex-analytic subgroup corresponding to adj.. Then it is clear
that the element » of [2 (k), § 7] lies in =, We assume that the orders of roots are
so chosen that(!) (@®)=w® and (%)’ =n. Then it follows from Lemma 24 that

o(w) gt =w(A) T ete
seW
on QNna’(3:R) and o(w®) g,> = w(4) 2 ¢° exp((s2))
seWw
on Q, N (3:R). Here ¢ are locally constant functions on Q, N’ (3: R) ()=a or b). Put
¢**(Hy) = lim ¢,*(Hy % tH')
t—>+0
and note that H,€Q,nb (3:R).

LeMMa 26. For any(?) s€W,

(1) Here the notation is obvious (cf. [2 (I}, Theorem 3]).
(3) See footnote 1, p. 265.
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¢ (Ho) + csasu (Ho) =¢, " (Ho) T cs,s_a (Ho) = csb (Ho) + cs,sb (Ho) .

Put ¢=anbh, m,=a'n% mz=p'a® and let U be an open and convex neigh-
borhood of H, in Q,. We assume that U is so small that 7, and ny never take the
value zero on Una and U NY respectively. Since ¢, (s€EW) is locally constant on
Q.na’'(3:R), it is clear that

¢t (H)=c,**(H,) (HEUNA')

according as «(H) is positive or negative. Similarly c¢(H)=cS (H,) for HEUND.
Moreover w®(A)+0 since A is regular. Therefore if we apply [2(l), Lemma 18] with
D =9¢(w") and recall that » leaves ¢ pointwise fixed, we get

3 o (H,) exp (A(s™ H)

= Ewcs‘“(Ho) exp(A(s H))= 2 ¢(H,) exp(A(s' H)) (HE€Una).
se sew
Let u; denote the restriction of sl on o.

LemmMaA 27. Suppose s,, s, are two distinct elements in W. Then g, = s, if and

only if s,=8,8,.

Since s, leaves ¢ pointwise fixed, it is clear that u, =y, if 8,=s,5;. Conversely
suppose u,, = ps,. Then it is obvious that s,A —s; 1 =ca for some c €C. Since 4 is regu-
lar, ¢+0. Therefore it follows from Lemma 20 that s,7's,A=s,A where y=s 1o,
But then s,=s, 's.s, and therefore s,A=s,s,4. Since A is regular, this implies that
83 =848;.

Now if we take into account the elementary fact that the exponentials of dis-
tinet linear functions on ¢ are linearly independent, Lemma 26 follows immediately

from the relations proved above.

§ 14. Tempered and invariant eigendistributions

Let ¢ be the center and g, the derived algebra of g. Fix a number ¢>0 and
put go=t,+g,(c). Here ¢, is a nonempty, open, connected subset of ¢ and g,(c) is
defined as in [2 (m), §3]. Then g, is a completely invariant open set in g.

Now take Q;=3Ng, and assume that there exists a Cartan subalgebra fj of 3
and a linear function A on I, such that 1) every root of (g, ) is imaginary, 2) 1

takes only pure imaginary values on ) and 3) X =2 in the notation of §12. Since
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(g, §) has no real roots and g,NY is connected, we conclude from Lemma 25 that

gi(H)= 2 e(s)c;exp(A(s™ H)) (Heg,nh)

seW(g/h)
where ¢,€C. Let C' denote the additive subgroup of C generated by c, (s€ W(g/h)).
Fix a Cartan subalgebra a of j and a connected component a* of g, N a’(3: R). Select
a linear function A, on a, such that x; °=2. Then by Lemma 25 there exist unique
complex numbers c,(a*) such that

gt= > e(s)es(a”) exp(sha)

sew(g/a)
on a*.
LeMMA 28. Suppose T, is tempered on 3,=3N¢, Then for a given s€W(g/a),
cs(a)=0 wunless (1)
RA(sTTH)<O

for all HeEa*. Moreover ¢;(a*)€EC.
CorOLLARY. Under the above conditions g5 =0 implies T;=0.

This is obvious from the lemma since C'={0} if g,%=0.

Fix a real quadratic form @ on g such that 1) @(X)=tr(ad X)* for X €g,, 2) @
is negative-definite on ¢ and 3) g, and c are orthogonal under @. Let U be any
subspace of g such that the restriction of @ on U is nondegenerate. Then we denote
by iy(Q) the index of @ on U (see the proof of Lemma 12 of [2 (k)]).

Since ccaq, it is obvious that the restriction of @ on a is nondegenerate. We
shall prove Lemma 28 by induction on %,(Q). Let !=rankg. It is obvious that
1(@)> —1. Now if 7,(Q)= —1, it follows that all roots of (g, a) (and therefore also
of (3, 0)) are imaginary. Hence (see [2 (d), p. 237]) a is conjugate to §) under E and
80 our assertion is obvious in this case. Therefore we may assume that ¢, (Q)> —1
so that az=={0}. Since ¢, is connected, it is clear that

at=0;Ng,+0"(3)
where a;7(3) is a connected component of a'(3:R) N ag.
LeEMmA 20. Let a,(3) be the set of points in aN[3, 3] where every root of (3, a)

takes real wvalues. Similarly let a;(3) be the set of those points of a where all roots of

(3, a) take pure imaginary values. Then azr(3) =0z and a;(3)=a,.

(!} See footnote 1, p. 260.
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It is obvious that a,;(3)>a;. Moreover we may assume without loss of generality
that a;(3) <Y (see the proof of Lemma 21). Fix H€a,(3). Since every root of (g, h)
is imaginary, it is clear that every eigenvalue of ad H is pure imaginary. Hence
Heaq, This proves that a,(3)=a; Let m be the centralizer of a; in g and put
my;=mnj Then it follows from Lemma 21 that

ax(3)=an[m, n,] < an [, m]=ag.

Since a=ap+a;~az(3)+ a,(3) and both sums are direct (see §11), we conclude that
g (3) = 0z.

Let Pg(3) be the set of all real roots of (3, a) which take only positive values
on az*(3). Then P;(3) can be regarded as the set of all positive roots of (1, a) and
if m=dim ag, we can choose a fundamental system («,, ..., o,) of roots in Pgz(3) (see
§11). Let Wg(3/a) be the subgroup of W(g/a) generated by s, (x€Pg(3)). Then
Wr(3/a) is also generated by s, (1<i<m) and 0" (3) is exactly the set of those
He€ayp where o(H)>0 (1<i<m).

Now fix ¢ and choose Hp€ay such that o;(Hg)=0, a;(Hp) >0 (j+14, 1<j<m) and
a(Hy)+0 for any real root a== +a; of (g, ). Then Hr€Cl(az"(3)) and we can ob-
viously choose a connected component a;* of a’(R) N as such that 1) az* <a,*(3) and
2) Hp€Cl(a;"). Define P and Py as in § 11 corresponding to az" and select H;Ea; N g,
in such a way that a(H,)+0 for € P unless a€ Py. This is obviously possible. Then
it is clear that H,=H;+Hy€Cl(a*) and the only root in P which vanishes at H,
is ;. Therefore H, is semiregular in 3 and ((H,)#0. Define » and b as in § 13.
Then b is a Cartan subalgebra of ; and, as we have seen during the proof of [2 (k),
Lemma 12], i5(Q)=1,(Q) —2. Therefore the induction hypothesis is applicable to b and
so it follows from Lemma 26 that

o (%) ey s (A7) EC (sEW(g/a)).

Now fix s€W(g/a). Then it follows from Lemma 23 that we can choose y€G.
such that a,= ()’ and sl,=AY. Let (B...,8:) be a maximal set of linearly inde-
pendent roots of (g, §)). Since A takes only pure imaginary values on f, we can
choose a;€ER such that

A= a;B,=0

1<isr

sho=A=3 a;;
7

on h;=hng, Hence

on @, =aNg, Since § is a root of (g,a), it follows that si, takes only real values
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on az. Moreover A=2" on ¢ and so A (s"'H) is pure imaginary for H €q,. Fix a non.
empty open subset U of a, such that 1) Uca;Nng, and 2) all the roots of (g, a)
which take the value zero on U, are real. Also fix a connected component a;" of
az*(3) Na’(R). Then it is clear that

U+tag"ca' N3

Since T'; is tempered on 3,, it follows from Lemma 17 that (7,%)%g," is tempered
on a’' N3, for some ¢>0. Fix a function y €C,*(U) and put

g, (H) = f D (e -+ H) g (H+ H) B, (H €az")

where dH; is a Euclidean measure on n;. Then it is obvious that g, is tempered on
ag™. Let u, and », respectively denote the restrictions of s, (s€W(g/a)) on az and a;.
Then it is clear that

g (H)= 3 e(s)c,(a*)e™® fV(Hz) (" (H + H)))* e #P dH,

seW(g/n)

for Heaz". Fix s,€W(g/a) and suppose u, (H)>0 for some HEaz*. Let W, be the
set of all s€EW(g/a) such that p,=u,. Then it follows from Lemma 15 that

2 e(s)es(a”) fy(ﬂz) (e (H + H;))? 5P dH = 0.

seW,

This being true for every y€C,*°(U), we conclude that

> e(s)c(at)e=0.

seW,

But since p,=u, (s€W,), it follows that
2 &(s)e,(at)eta=0.
seW,

However A, being regular, this implies that c;(a*)=0 (s€W,). Therefore in particular
¢, (a*)=0. Since az" was an arbitrary component of az*(3) N a’(R), the first assertion
of Lemma 28 is now obvious.

It remains to show that c,(a*)€C for all s€W(g/a). Suppose this is false. Let W,
be the set of all s€W(g/a) such that c,(a*)¢C. We have seen above that

cs(a")+e,, (aY)EC (s€EW(g/a), 1<i<m).

Therefore s, s€W, whenever s€W,. This shows that W, is a union of cosets of the
form Wy(3/a)s.
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Introduce compatible orders on the spaces of real-valued linear functions on ap
and az+(—1)}a, corresponding to some connected component az" of az*(3) Na'(R)
(see § 11). We have seen that si, (s€W(g/a)) takes only real values on ap+(—1)ta,
Choose o €W, such that u=gl,>sl, for all s€W,. Then u>su for all s€W(3/a) and
therefore we conclude from Lemma 22 (applied to (3, a)) that u(H)>O0 for H€az*(3).
However c,(a*)+0 since ¢ €W,. Therefore it follows from the above proof that u(H)<0
for H€az*(3). This shows that x=0 on az and therefore s, u=p (L<i<m). But
since A, is regular and m=dim az>1, this is impossible. The proof of Lemma 28 is

now complete.

§ 15. Proof of Lemma 30

We keep to the notation of §14. Let 3,,3, be two subalgebras of g and f) a
Cartan subalgebra of g such that:

1) 3: is reductive in g (#=1, 2) and 3, >3,>0.

2) Every root of (g, }) is imaginary.

3) If a is any Cartan subalgebra of 3,, then every real root of (3,,a) is also a
root of (3, a).

Define X as in § 14.
Let T; be a tempered distribution on 3 Ng, such that

oAp ) Ti=%(p) Ty (p€I(g.), =1, 2).

Consider the set P of positive roots of (g,}) and let P; denote the subset of those
pE€P which are roots of (3, §) (:=1,2). Then P>P,>P, Put m;=[leerix. Then it
is clear that m,/m, is a polynomial function on Y, which is invariant under the Weyl
reflexions s, for « € P,. Therefore by Chevalley’s theorem [2(c), Lemma 9] there exists
a unique invariant polynomial function 7, on 3, which coincides with =,/7, on §.

Put g,/ =g,Nn g’ where g’ denotes, as before, the set of all regular elements of g.

Lemma 30. Suppose T,=n,T, pointwise on fHng,. Then T,=nyT, pointwise
on 33N g,

Let a be a Cartan subalgebra of 3,. It would be enough to show that T,=17, T,
pointwise on ang,. We shall do this by induction on %,(Q) as in § 14. Let X, be
the analytic subgroup of @ corresponding to 3,. If ,(Q)= —I, then a is conjugate to
h under E, and so our assertion is obvious. Hence we may assume that 4,(Q)> —!

so that m=dim az>1.



276 HARISH-CHANDRA

We use the notation of §14 corresponding to 3=3;, 3,. In particular g,* is de-
fined corresponding to T and we put ¢%=g¢.% 7#=m" (i=1,2). It follows from our

assumptions on 3, 3, that
o' (3,: R) =0’ (3, R).

Fix a connected component ap*(3,) of a'(3,:R) Nar and let Py (3,) be the set of all
real roots of (3,, a) which take only positive values on az*(3,). Select the fundamental
system (o, ..., o) of roots in Py(3,) as in §14.
Choose a linear function A, on a, such that X =X; J Then by Lemma 25 there
exist complex numbers ¢, (¢) (s€W(g/a)) such that
gi= 3 es)e,(i)e’s (i=1,2)

seW(g/a)

on a*=g,Na;+ag"(3,). It is obvious that
No = A7,/ 70,

on a where a is a constant (@ = +1). Therefore it would be sufficient to show that
gt =ag,® on a’.

Fix j (1<j<m). Then (see § 14) we can select an element H,€Cl(a") such that
1) a;(Hy)=0 and 2) «(H,)+0 for any root a= +«; of (g, a). It is clear that H is
semiregular in each of the three algebras 3, 3, and g. Define » and b as in § 13.
Then bcj3, and 4%(Q)=1%,(Q)—2. Hence our induction hypothesis is applicable to b

and so it follows from Lemma 26 that

c(2)+ csafs 2)=a {cs(l) + 6,5 (1)}

for s€W(g/a).

In order to complete the proof we have to show that ¢ (2) = ac,(1) for all s€W(g/a).
Suppose this is false. Let W, be the set of all s€W(g/a) such that ¢,(2)+ac(1).
Then it follows from the above result that if s €W, the same holds for 8,8 (1 <j<m).
Define Wx(3,/a) as in §14. Then W, is a union of cosets of the form Wjy(3,/0)s.
Fix a connected component az* of az*(3,) Na’(R) and define an order in the space
& of real-valued linear functions on ap+(—1)ta; corresponding to az™ as in §11. We
have seen in §14 that si, € for all s€W(g/a). Choose ¢ €W, such that u=0la>sl,
for all s€W,. Then u>su for sEWg(3,/a). Therefore by Lemma 22, u(H)>0 for
He€ag". On the other hand since ¢ € W,, it is clear that c,(1) and ¢, (2) cannot both
be zero. Therefore it follows from Lemma 28 that w(H)<O0 for H€az*. But this
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implies that =0 on ap and therefore S pp=p (1 <j<m). Since m>1 and 1, is reg-
ular, this is impossible and thus Lemma 30 is proved.
We continue our assumption that ;=Y and define 6 as in [2 (m), §16] corre-

sponding to §.

LemMma 31. Let 3, be a subalgebra of § such that 6(3,)=3, and 3,21. Fiz an ele-
ment H,€Y) and let 3, be the centralizer of H, in 3,. Then 3, 3, satisfy all the condi-
tions required above.

Since =1 on b, it is clear that 6(3;)) =3 >0 and hence 3; (1 =1, 2) is reductive in ¢
(see [2(d), Lemma 10]). Let a be a Cartan subalgebra of 3,. Then we know from
Lemma 29 that ap(3)=az and a;(3)=a; (=1, 2). Let m be the centralizer of a;in
3. Since H, €a;,m is also the centralizer of a; in 3,. Therefore the real roots of (3;, a)
are the same as the roots of (m, a)(see § 11). This proves the lemma.

§ 16. The distribution T

Let b be a Cartan subalgebra of g and assume that every root of (g, b) is im-
aginary. Consider the space {§ of all linear functions on b, which take only pure
imaginary values on b. Define 7z, w and W= W(g/b) as usual (corresponding to b)
and let ¥ be the set of all 1€ where w(4)+0. Consider the subgroup W, = W;(g/b)
of W generated by s corresponding to the compact roots g of (g, b) (see [2 (k), § 4]).
Then W,=Wg (see Cor. 2 of [2(m), Lemma 6]) in the notation of [2 (k), §4].

TuEOREM 2. For any A€, there exists a unique distribution T, on § with the

following properties:

1) T, is invariant and tempered.

2) ap) Th=ps M T (PEI(g))

3) Ty(H)=n(H)™ S e(s)e ' (Heb).
seWgr

The uniqueness is obvious from the corollary of Lemma 28. Hence onlyv the ex-
istence requires proof.

First assume that g is semisimple. We identify g, and b, with their respective
duals by means of the Killing form of g (see [2 (j), §6]). Fix a Euclidean measure
dX on g and put

o) = f #X) exp (-1} B(X,T))dX (Y €g)
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for f€C(g). (As usual B(X,Y)=tr(ad X ad Y) for X,Y€g.) Moreover for any
H,€eb' define

=y, E) -ty | JaH)ds' (eCo)

in the notation of [2 (k), § 5] (for h=b0). Then we know from [2 (d), Theorem 3] that
the integral is absolutely convergent and 7y, is an invariant and tempered distribu-
tion on g which satisfies (see [2 (d), p. 226]) the differential equations

p) e, =p((— 1) Hy) s, (PEI(QC)).

Fix H,€Y' and let Ty, denote the space of all invariant and tempered distribu-
tions 7' on g such that
ap) T=p((—1H)T (p€l(go).

For any T €y, let g, denote the analytic function on b (see [2 (1), Theorem 2])

given by
gr(H)=n(H)T(H) (HE€).
Then by Lemma 25,

gr(H)= 3 e(s)¢,(T) exp (= 1) BsH,, H)) (HE€D)
where c;(T) are uniquely determined complex numbers. It is clear that g,*=e(f)gr
and therefore ¢;,(T)=c,(T) for teWz=W, and s€W. On the other hand the linear

mapping T — g is injective from the corollary of Lemma 28. Hence it is obvious that
dim i:gn < [W IWk].

On the other hand it is clear that 7., €Ty (SEW). Put r=[W:W,] and select

$;€W (1<i<r) such that
W= U Wksh

1<igr

Write 7,=7,y, Then we claim that 7,...,7, are linearly independent over C. Put
oi()=vs(s: Hy) (fEC(Q))-

Since f->f is a topological mapping of C(g) onto itself, it would be enough to verify
that the tempered distributions ¢, ..., ¢, are linearly independent. Since s; H, is semi-
simple, the orbit (s;Hy)® is closed in g (see [1, p. 523]). Therefore it follows from the
definition of o¢; that

Supp o; = (s; H,)“.
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Now we claim that (s;H,)° n (s;H,)°=0 if i+j. For otherwise s H,= (s, H,)" for some
z€@G. Since H, is regular, this implies that s;=ss; for some s€W,=W,. But this is
impossible from the definition of (s, ..., ). This shows that the sets Supp o, are
disjoint and non-empty and therefore the distributions o; (1<¢<r) are linearly inde-
pendent.

So it is now obvious that dim T, =r and 71,,...,7, is a base for Ty, Let a,
(s€W) be given complex numbers such that a,=a, (t€W,). Then it follows from the
above result that we can choose a unique element 7' €Iy, such that a,= ¢, (T). Hence,
in particular, there exists a distribution 7' in Ty, such that

gr(H)= GEW &(s) exp ((— 1)} B(sH,, H)).
SeEWr
This proves Theorem 2 when g is semisimple.
Now we come to the general case. Define g, and ¢ as before (see §2), put
b,=bng, and let A, denote the restriction of A on b;.. Fix Euclidean measures dC
and dZ on ¢ and ¢, respectively such that dX=dCdZ for X=C+2Z (C€c, Z€g,).

Since g, is semisimple, there exists, from the above proof, an invariant and tempered
distribution 7', on g, such that &(p) T,=ps(A) T, (p€I(a:)) and

n(H) T, (H) =SZ &(s) exp (4, (s"'H)) (HEb, ng').

eWi
Put T:(h=T.(f) (f€C:>(a))
where 11(2)= jf(Z +C)®dC (Zeg,).

Since A takes only pure imaginary values on ¢, it is clear that 7T'; satisfies all the
conditions of Theorem 2.
Fix a Cartan subalgebra a of g and an element y€G, such that (b.)'=a.. For

any A€, define the analytic function g¢;* on a'(R) corresponding to T; as usual
so that

9" (H)=n*(H)Ty(H) (Hea').

Fix a connected component a* of a’(R). Then by Lemmas 25 and 28,

gi8= > e(s)c(s:A:a*) e
sew

on a* where c(s:A:a)€Z.
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Lemma 32. For fized s€W and o', the ineger c(s:A:a") (AEF') depends only on
the connected component of A in F'.

In view of the last part of the proof of Theorem 2, it is clear that it would be
sufficient to consider the case when g is semisimple. Define 7y, as above for H €b'.

Then by [2 (1), Theorem 1] there exists an analytic function Fy, on g’ such that

s (1) =7 (Ho) = f Fu(X) (X)X (fEC ().

We know from Lemma 25 that

n“(H)FHo(H)=SE &(s) as(H,) exp ((— 1) B(sH,, y ' H))

ew

for Hea™ =a* ng'. Here a,(H,) are uniquely determined complex numbers. Moreover
we know from [2 (d), pp. 229-231] that a,, regarded as functions on b’, are locally

constant. By considering, in particular, the case a=0, we get

() Fy,(H) =3 #(s)b; (H,) exp ((—1)* B(sH,, H))

_seW
for H,H,€b'. Here b, are certain locally constant functions on b’

Now define s, =1, s,,..., s, as in the proof of Theorem 2 and put

b (Hy)= bsisj—l (s;Hy) (1<4,5<r, Hyel').

Fix Hyeb'. Since by (Hy) =b,(H,) (tEW,) and Ts5,m, (1 <t<r) are linearly independent,
it follows from the proof of Theorem 2 that the matrix (b (H,));1<i. <, is non-singular,
Let (87 (Hy)h<i.j<r denote its inverse. Put & =b" and

To= 2 V(H)vm (HyEY).

1<5%r
Then it is obvious that Tp, €T, (in the notation of the proof of Theorem 2) and

a(H) Ta(H)= 3 &(s) exp((— 1)} B(sH,, H)) (H€W)

seWr
for H,€b'. Hence it follows from Theorem 2 that 7'y, =T, where 1 is the element
of I given by A(H)=(—1)*B(H,, H) (H€H). Therefore
GAH)= 5 (H)at(H) Py () (HER)
and this shows that

c(s:A:a%)= &(s,) b (H,) ass-1(s; Ho)  (SEW).

1sisr
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Since b and a, are locally constant on b’, the assertion of the lemma is now obvious,
& being any connected component of ', we denote by c(s:F*:a*) the integer
c(s:A:0*) (AEFT). Put
pr=w(A) Vg F1 (AEF)

where F; is the analytic function on g corresponding to T'; and VY, is defined as
before (see § 2).

LeEMma 33. dr= > c(s:F:at) e

sew

on at for LEFT.

This is obvious from the definition of V, and the above formula for g;°.

For any s€W define an element s* EW(g/a) as follows:
(sHY =s'H' (HED,).

Then s—s' is an isomorphism of W(g/a) whose inverse we denote by t>p
(t€W(g/a)). Define the subgroup Wg(g/a) of W(g/a) as usual (see [2 (k), §4]). We
have seen above that W,= W= Ws(g/b).

COROLLARY. Fix seW, teWqs(g/a) and u€W,. Then
o st iuFitat) =c(s: T rat).

Fix 1€F*. Then it is clear from Theorem 2 that 7T',; = e(u) T and therefore ¢,; = ¢;.
Moreover ¢; is invariant under @ and therefore its restriction on a is invariant under

We(g/a). Our assertion is an immediate consequence of these facts.

§ 17. Application of Theorem 1 to T,

Now we use the notation of §2 and assume that §);=b. Let m;(R) denote the
number of positive real roots of (g,h,) (1<¢<r) and put m=1} (dim g —rank g). For
any A€, let ¢,,; denote the restriction of ¢z on B.

Define numbers ¢;>0 by the relation

f (X)dX = > (- 1)m(1)J‘8R.i mydiH  (f€C.7(g))
[ I<igr

where m,;(I) is the number of positive imaginary roots of (g,};) (see [2 (k), Cor. 1 of
Lemma 30]). Also put dH=d, H.

19 — 652923. Acta mathematica. 113. Imprimé le 11 mai 1965.
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LeEmMMA 34. For any f€C,¥(g) and AEF,

¢, [Wi] fba(w) yre'dH =clf;3(w) v, > et dH

seWr

=w(4) T, (H— Z (— l)rm(n) Cifbs ep,10(@}) Yri® ¢A,i d, H.

2ir

Since the number of positive complex roots of (g, f);) is even (see the proof of Lemma
9 of [2 (k)]), it follows that
m; (R) +m; (I)=m mod 2.

Hence (*U"'LI‘(X)dX:lZ ci(_'l)m‘(R)feﬂ.ini"Pf.idiH (fEC™ (g))-

<igr

Moreover &(w)y, is invariant under W,= W (see [2 (k), § 6]) and

¢1’1= Z esl.

seWr

Therefore our assertion follows from Theorem 1 and the corollary of Lemma 4, if we
take into account the fact that [F;=w(1)2F,.

Fix a connected component ' of {§'. Then for any u€CHF*), we define a
distribution T, 5+ =T," as follows:

T, (= lim T:() (1€C>(9)

where A€F'. Put g1,,=¢:.% Then

Ti(h=(- l)’”] 2 (—1ym® cifeﬂ,iwf.i gridi H

<igr

and so it is obvious that the above limit exists and

T, (Hh=(—1)" > (—1)m® Cifen.i VriGui G H

1<igr

+

where ¢,;" is defined as follows. Fix ¢ and put a=10; Then

guit = lim g2= > e(s)c(s:F :at) e
A->pu SEW

on any connected component a* of 0’ (R). We know from Lemma 28 that c(s:F*:a*)=0
(s€W) unless R(sA) (H)<O0 for all Hea* and A€F*. Therefore it is clear from the

above formulas and Lemma 19 that 7,* is an invariant and tempered distribution
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on ¢. Since &(p) T;=ps(4) T1, it follows immediately by going over to the limit that
AP) T =po()TW"  (p€I(gc)).

For any Cartan subalgebra a of g define the function (¢,%)s on a’(R) by

(b )a =sezw ofs:F:at) e

on a*,
LEmMMa 35. [(But)al < 2 lo(s:FF:ah)]
SEW
on a*.

Fix Hea". Then if 1€F", it follows from Lemma 28 that
[ (H)|< 2 |e(s:FH:a™)]
SEW

Our assertion now follows by letting 4 tend to pu.
For a=1; we denote the function (¢,*)s by ...

LeMMA 36. For any f€C,”(g),

21 [Wk]fba(’w) yredH=w(w)T," ()~ > (—1)y™® Cifsﬂ.i o(w:) Yri bus” diH.
2<ixr
Take a variable element A€J* which converges to u. Then our assertion follows

immediately from Lemma 34 by taking limits.

§ 18. Proof of Lemma 41

As in §14, let 3 be a subalgebra of g such that 1) 3> b and 2) 3 is reductive in g.
Fix a Euclidean measure dZ on 3 and let W, (3/b) be the subgroup of W(3/b) generated
by the Weyl reflexions corresponding to the compact roots of (3, b). Then W(3/b)c W
and W, (3/b) < W,. Define w, and z; as in §13 for §=D.

Lemma 37. Let a, (SEW,) be continuous functions(l) on § such that a,,=a, for
tEW, N W(E/b). Then for any AEF, there exists a unique distribution T ; on § such that:

1) T, 4 is invariant and tempered.

2) opy) Tya=ps(A) T52 (pEI(Q))
3) m, Tya= 2 e(s)as(A)e™  pointwise on 0.

seWi

(}) For most applications as will be constants.
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The uniqueness is obvious from the corollary of Lemma 28. The existence is
proved as follows. Applying Theorem 2 to (3, b) instead of (g, b), we conclude that
there exists a unique invariant and tempered distribution t; on 3 such that &(p)7,=

Po(A)72 (PEIG)) and

mT= o &(s)e?
seWr(3/b)

pointwise on b’. Put

Tya=[Wi(3/ f’)]_ISZ ed)a, M= 2 es)as(A)Ta

eWr seWr(3/B)\ Wi

where the second sum is over a complete system of representatives. Then it is obvious
that 7', ; fulfills all the conditions of the lemma.

COROLLARY.

Toa=[WeG/007" 2 els)as W) ta= 2 &(s)as(A) T
seWr s€ Wr(3/0)\ Wk
Fix a connected component F* of ' and for any u€ClF* define T,," and

T, =7, 5+ by means of the limits

Tyt ()=lm Tya(f), =t ()=)imw() (€0~ G)

where A€F". We have seen in §17 that 7,* is a tempered distribution and there-
fore it follows from the above corollary that the same holds for 7, ,". In fact the
following lemma is now obvious.
LEMMA 38. Ty." = > () () Tou s+
seWr(3/b\ Wi
Let P and P, respectively be the sets of all positive roots of (g, b) and (3, )
and let Py, denote the complement of P, in P. Put
wgy= [l a wyy= 11 H,.
xePgfy «ePgly
It is clear that m?, my; and wy, are all invariant under W(3/6). Hence by Chevalley’s
theorem [2 (c), Lemma 9], we can choose an invariant polynomial function %, on 3.
and an element gy, =q€I(3,) such that n,=(—1)x? on b and gy=wy; (Here r is
the number of roots in P,.) Let 3’ be the set of all Z€j3 where %,(Z)+0 and define
the invariant differential operator V, on 3’ as usual (see [2 (1), §9]). Fix A€{’. Then

we know [2 (1), Lemma 25] that there exists a continuous function S;.; on ; such that
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o 832 =(2) 7V, (8(qu13) Ty.2)
pointwise on 3.

Lemma 39. Fixz A€, Then(d)

w(A) Tsa(f)= P-V-fﬂ{l 84,1V (@(ae) N AZ  (fEC"(3)),

" in the notation of Theorem 1.

Put [J,=0(g,) where g, is the unique element in I(3.) such that (q,)s = w;’. Then

(9, 4 ="
the projection (see [2 (j), §8]) of @ on 3, it is obvious that @,=g¢,¢*. Therefore

. Hence if @ is the unique element in I(g.) such that @y=w? and Q, is

(0;08(9") Ts.2= 8(Qy) Ts.2= Qs (1) T = w(A)* Tya.

Hence if T=([7,00(¢q))T;.2, it follows from Theorem 1 that

w(A) Tya(f) =T@(q)* ) =w(d) {p-V-Jn{lsa.z (V5 00(9)") f dZ}

for f€C,>(3). Since w(4)=*0, this implies the assertion of the lemma.

Let a be a Cartan subalgebra of j and 8,° the restriction of S,; on a. Then it
follows from the definitions of V, and ¢ and [2 (¢), Lemma 8] that (?)

810 =w(2)"" o(w”) (2, T}.)

pointwise on a’.

On the other hand let §, be the set of all A€ where w;(4)+0 and ," a
connected component of ;. Fix a connected component a* of a’(3:R) (see §13).
Then corresponding to Lemma 32 and the corollary of Lemma 33 we have the fol-

lowing result for 3.

LeEMMA 40. There exist integers c,(s: ;" :a") (s€W(3/a)) such that

altni= 2 els)e(s: %, at)e
seW(3/a)

on a* Ny for A€F,". Moreover

: N E T A Y A ET N EF T
for tEW,(3/D).

(Y} As usual, the star denotes the adjoint here.
(%) Here y is an element in the complex analytic subgroup =, of G, corresponding to ad 3.
such that (B)’ =a.. We also assume that P’ is the set of positive roots of (3, a).
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Now write ¢,(s:F :a*)=c;(s: ;" :a¥) for any connected component F* of '
which is contained in g,". Then it follows from the corollary of Lemma 37 that

at Tya= 2 eMya(l) X e(s)ey(s:tF at) e
te Wr(3/0)\ Wk sew@/a)

on a* N3 for any A lying in a connected component F* of §§'. Therefore it follows

from the above formula for S;* that

Sit= > a(d) D cy(sitFTiar)esed?
te Wr(3/D)\ Wk seW(/a)
on a* Ny
Now fix pu€ClF*). Then as 1 tends to u (AEF™), it is clear that the func-
tions S;* converge uniformly on every compact subset of a. Hence we conclude (see
Lemma 69 of § 30) that the functions 8,; converge uniformly on every compact
subset of 3. We denote the limit function by S, ,.*. It is obviously continuous and

invariant.

LeMMa 41. Syt = > au) 2 c(sitFTat)esaw
te Wr(3/0)\ Wk seW@/a)

on a” N3. Moreover

@(u) Tyt () = P-V-J‘%_l Sy V5 @(g)* ) dZ
for f€C.2(3).

The first statement is obvious from the above formula for S;* and the second

follows from Lemma 39 if we take into account the corollary of Lemma 4.
COROLLARY. 8" =0 if a;(u)=0 (tEW,).
Now suppose 3,,3, and 7, are as in Lemma 30 (with §j=0). Then since

— — A
N T(’!l-l = Ty, Tfyzul _seZW 8(8) e
k

pointwise on b’ for A€, it follows from Lemma 30 that

T&z-l /[ Téx.l

pointwise on g’ N3,. Fix a Cartan subalgebra a of 3, and an element y in the complex
analytic subgroup Eg of G, corresponding to adje,, such that b?=a,. We may as-
sume that PY is the set of all posi.tive roots of (g, a). Then
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81 =w(A) V5, (2(qa13) Ts,.2) = w(4) ' 0(w®) F
pointwise on a’ where
FyH Hy=m(H) T2 (H) =m0 (H) T2 (H) (HEa').

This shows that S,, ;=281 on 3, and therefore we get the following result by taking
limits.

Lemma 42. Fiz u€CH(F'). Then
Ty’ =10 Ty
pointwise on ¢’ N3, and Son =8¢
on 3,

We now return to the notation of Lemma 41 and write T, 5+ =T, ,." whenever
it is convenient to do so. Let B be the analytic subgroup of G corresponding to 3

and §,,0,, ..., a maximal set of Cartan subalgebras of 3 no two of which are con-

—

jugate under E. Fix a Euclidean measure d; H on ), and define y,r: (f€C.*(3)) as
in Lemma 5 for (3, §);) instead of (g, ).

LEMMA 43. Assume that the functions a, (t€W,) remain bounded on §. Then
there exists a number C =0 with the following property. Let §* be a connected component
of & and u a point in CYF'). Then

1<igr

| Tyug+(N[<C X bl%“ldt
Let a be a Cartan subalgebra of 3. It follows from Lemmas 28 and 40 that
In;‘(H)n(H)ng les(s: " :a™)]
for HeEa" N3 and A€F*. Put
g8 (H)=mrH)T,,(H) (He€a').
Then, in view of the corollary of Lemma 37, we can choose a number g >0 such that
lg:* ()| <a

for Hea' and A€F'. Now put gz,=¢% (1<i<r). Then, as we have seen in §2,

there exist real numbers ¢,, ..., ¢, such that
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Ta,l(f) = 1§< Ci f%,f.igz.i 7% X d;H

Sisr

for all f€C.*(3) and A€, (Here &,r: is a locally constant function on f),’ whose
values are +1.) Therefore

ITa_z(f)|<01<;< I’l/)a,f,ild;H

<isr

where C'=ga max, |¢;|. The statement of the lemma now follows by letting 4 tend to

u (AEFT).

Part II. Theory on the group

§ 19. Statement of Theorem 3

We keep to the notation of § 16 and assume, moreover, that G is acceptable.
Let B be the Cartan subgroup of @ corresponding to b. Then B is connected and
therefore abelian (see [2 (m), Cor. 5 of Lemma 26]). Let B* denote the character group
of B. For any b*€B*, we denote by (b*,b> the value of the character b* at a point
beB. It is obvious that there exists a unique element A€ such that

(b*, exp Hy =™ (H€Y).

We shall denote 4 by log b*. b* is called singular or regular according as w(4)=0 or
not. We have seen that W,=W,;. Now W; operates on B as usual (see [2 (m),
§ 20]) and therefore, by duality, also on B*. Then '

B, by =%,y (b*€B*, beB)

and log (b*)°=s (log b*) (s€W).
Define 3 as in [2 (m), § 6] and let z—>p, (€ 3) denote the canonical isomor-
phism of 3 onto I(g.) (see [2 (m), §12]). For b* € B*, define

Xos(2)=2"(p.) (2€3)

(in the notation of § 12) for A=log b*. Then X, is a homomorphism of 3 into C.

Let ¢ be an indeterminate and ! the rank of ¢. For any x€(, we denote by
D(z) the coefficient of # in det ({+1—Ad(z)). Then D is an analytic function on G.
As usuval let @' denote the set of all regular elements in G (see [2 (m), § 3]). Fixa
Haar measure dx on G and let ® be a distribution on G. We say that ® is an in-

variant eigendistribution of § if 1) ®=0 (2 €G) and 2) there exists a homomorphism
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% of 3 into € such that z@=2(z) @ for all z€ 3. In view of [2 (m), Theorem 2], we
can speak of the value ®(zx) of such a distribution at a point z€G".

Let B* denote the set of all regular elements in B* and put A=Ap in the
notation of [2 (m), § 19].

THEOREM 3. Fixr an element b*€B*. Then there exists exactly one invariant
eigendistribution © on G such that:

1)) 20=Xpn(2)0 (2€3);
2) sup [ D(@) [} |0 (2)] < oo
3) O=A"1 3 &s)(d*) pointwise on B'=BNG.

§ 20. Proof of the uniqueness

In order to obtain the uniqueness in Theorem 3, it is sufficient to prove the

following result.

LeMMA 44. Fizx b*€BY and let O be an invariant eigendistribution of 3 on G
such that:

1) 20=71(2)0 (z€3);

2) sup | D(z)[}|© (2)| < oo

3) ®=0 pointwise on B'.
Then ©=0.

Fix a semisimple element a €G. In view of [2 (m), Lemma 7], it would be suf-
ficient to prove that a ¢ Supp ®. We now use the notation of [2 (m), § 4] and put
0=|v|t0e in the notation of [2(m), Lemma 15]. Since 20 = ¥, (2) ®, we conclude
from [2 (m), Lemma 22] that

U3 (R)0=Xpe ()0 (2€3).

Define g,=t¢,+g,(c) as in § 14 where ¢, is an open and convex neighborhood of
zero in ¢. Then g, is an open and completely invariant neighborhood of zero in ¢
and if ¢, and ¢ are sufficiently small, the exponential mapping of g into G is uni-
valent and regular on g, (see [2 (m), §9]). Put 3,=@, N 3.

Now first assume that a€B and let Z; denote the center of G. Then since
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B/Zg is compact [2 (m), § 16], every eigenvalue of Ad(a) has absolute value 1. Hence
if ¢ is sufficiently small, it is obvious that no eigenvalue of (Ad(a exp Z))y; can be
1 for Z€j,. This shows that exp 3, E’. Let 7 denote the distribution on 3o Obtained
from ¢ by applying the procedure of [2 (m), § 10] to § (in place of g). Since

Hals(2) 6 =2y (2) 0 (2€8),

it follows from the corollary of [2 (m), Lemma 24] and the definition of Hois [2 (m),
§ 12] that
ap)Tt=%(p)T (PEI(G)),

where 2 =%;" and A=log b*. Now bcj since a€B. Therefore T,=7 satisfies all the
conditions of § 13. Let 3," be the set of those elements of 30 which are regular in 3.
Then we know from [2 (m), Lemma 32] that

HZ)=&,(Z) |va (exp 2)|* O (a exp Z) (ZE3,).

Let a be a Cartan subalgebra of 3 and 4 the corresponding Cartan subgroup of G.
It is easy to verify that

|D(a exp H)|=|m,"(H) & (H)* v, (exp H)|
for H€a and therefore
|7s°(H) = (H)| = | D(a exp H)|*|® (a exp H)|

for H€a' N3 Hence we conclude from Lemma 19 and condition 2) that 7 is a tem-
pered distribution on 3,. Moreover if we take a=0, it follows from condition 3) that
7=0 pointwise on 3, NDb'. Therefore (see the corollary of Lemma 29), 7=0 on 3,.
This, in turn, implies that © =0 pointwise on @ exp 3,’ =G’ N (@ exp 3,). But V = (a exp 3,)¢
is open in G [2 (m), Lemma 14]. Hence ®=0 on V.

Now we drop the assumption that a € B. Define 6,f,p and K as in [2 (m), § 16]
corresponding to hj=b. Then B<K [2 (m), Cor. 5 of Lemma 26]. Let a be any Cartan
subalgebra of 3. We can choose €@ such that 6(a®)=a® and a*N¥f<b (see Lemma
45 below). Let 4 be the Cartan subgroup of G corresponding to h=a?. Then a*€A.
Let a"=a, exp H where a,€ANK and HEhNY (see [2 (m), Cor. 4 of Lemma 26]).
Since K is connected and K/Z; is compact, we can choose k€ K such that b=af€B.

Then
a*=bexp Z,

where Z,=H*€p<[g,g]. Let 3, denote the centralizer of b in g. It is obvious that
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Z,€ 3. Moreover since Zy €D, all the eigenvalues of ad Z, are real [2 (i), Lemma 27].

Hence by applying the result obtained above to b, we conclude that
@ =b exp Z,¢Supp O.

Therefore since ©® is invariant, it follows that a ¢Supp ©. This proves the lemma.

§ 21. Some elementary facts about Cartan subgroups

Let a be a Cartan subalgebra of g and A4 the corresponding Cartan subgroup
of ¢. Define az and a; as in §11.

LemMMA 45. Let A; be the subgroup of all a€A such that all eigenvalues of
Ad(a) have absolute values 1. Then (a, HY —a exp H (a € A}, H € a;) is a topological mapping
of A;xay onto A. Moreover for any a€A,;, we can choose x€G such that 1) a*€B,
2) 6(a®)y=0a" and 3) (a,)°<b. Finally, x may be selected to lie in K if 0(a)=a.

It follows from [2 (b), p. 100] that we can choose y € G such that 0(a’)=a". Then
(a7 is an abelian subspace of f. Since D is maximal abelian in f and K/Z; is com-
pact, we can choose k€K such that (a, <b. Replacing a by o, we can now ob-
viously assume that 6(a)=a and a,<Db. Then the first statement follows from the
results of [2 (m), § 16]. Moreover it is clear that 4,= A N K <K= BE. Fix a€4;and
choose k€K such that b=a*€B. Let 3 be the centralizer of b in ¢ and E the ana-
lytic subgroup of G corresponding to 3. Then o and b are two Cartan subalgebras
of 3 and af+bcznt Since b is maximal abelian in 3N ¥, we can choose £€E N K
such that (a0,)*<bh. Put z=£&k. Then a*=b*=b and (a;°<b. Moreover since x€ K,
it is clear that 6(a*)=0a®. The last statement follows from the fact that we can take
y=1 if f(a)=aq.

COROLLARY. An element a of G lies in B® if and only if 1) a is semisimple

and 2) all eigenvalues of Ad{a) have absolute value 1.

Since B< K, it is obvious that any a€B¢ fullfills these two conditions. Con-
versely suppose these conditions hold. Then by 1), a is contained in some Cartan
subgroup 4 of G [2 (m), Cor. of Lemma 5]. Therefore by 2) a€4;. But then a€ B
by Lemma 45.

We write Ap=exp az. By Lemma 45, every h€4 can be written uniquely in
the form h=h, h, (h,€A;,h,€Ay). We call h, and h, the components of 4 in 4; and
Ay respectively.
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§ 22. Proof of the existence

We now come to the proof of the existence of ® in Theorem 3. In view of later
applications, we shall consider a somewhat more general situation.

Fix a connected component %+ of ' and a point b*€B* such that
A=log b*€CL(F™).
Select an open convex neighborhood ¢, of zero in ¢ and define
Go=Co+g,(c) O<c<s<m=3.14...)

as in §14. We assume that ¢, is so small that the exponential mapping of g into &
is univalent and regular on g, (see [2 (m), § 9]).

Fix b€B and let 3=3, denote the centralizer of b in g. Define 7," =T,,* and
8,"=28,:1" in the notation of § 18 corresponding to the constants a,= {(b*)*, b> (s € W).
(Here we have to observe that b'=b for tEW, N W(3/b) and therefore a;,=a,.)

Let 5=5X (b) denote the analytic subgroup of G corresponding to 3. Put 3,=g, N3
and Z,(b)=E;=exp 3,. Then =, is an open and completely invariant subset of 2
[2 (m), Lemma 8]. As usual define the function &, on 3 by

£(2)=|det { (472 — %) /ad Z} | (Z€3).
Then £, is analytic and nowhere zero on 3,. Put
T (exp Z)=&,(2)' T, (Z) (Z€gyN3)

where 3’ is the set of those elements of 3 which are regular in 3. Then ®,* is a
locally summable function on =, (b).

Define the homomorphism u,=ug; as in [2 (m), § 12].

LeMma 46. P @) Dot =2ps (2) Dy (2€3)

as a distribution on E, (b).

This follows immediately from the corollary of [2 (m), Lemma 24] (applied to 3)
and the fact (see § 18) that a(p;,) T»" =ps (A) T,* for p€I(g,).
We have seen in [2 (m), § 22] that there exists an invariant analytic function

D, on 3 such that
A exp H)y=m,(H)D,(H) (HE€D).

[I]

Put By (b)=E,(b)n (37 G') and let 3’* be the set of all points Z €3’ where D, (Z)=+0.
Then it is clear that = (b)=exp (g, N3"’). Put
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®" (exp Z)=D, (Z)T,* (Z) (Z€gyN3").
Then @, is an analytic function on E;”’ (b). Similarly define
¥t (exp Z)=8,"(Z) (ZE€}).
Then ¥,” is a continuous function on E, (b).
Define vy (y) = det(Ad(dby) ' — 1), (YEE)

as in [2 (m), § 14].

LemMMaA 47. Let 'y be the set of all points Z €3 where vy(exp Z)=+0. Then there

exists a locally constant function &, on ‘3 such that e,'=1 and
£(Z) |volexp 2)|* =&, (Z) Dy (Z) (ZEY).
It would be enough to verify that
£(2) volexp Z)* =D, (Z)*

for Z€3. Since both sides are analytic functions on 3 which are invariant under =,
it would be enough to do this when Z varies in some non-empty open subset of b.

Hence our assertion follows from [2 (m), Lemma 33].

COROLLARY. |74 (exp Z)|* @, (exp Z) =&, (Z)®," (exp Z)
for Zegyny.

This is obvious.
Put 3, =go N3’ and let u be an element in G such that b*=Db.

LeMmA 48. We have the relations

Ot (exp Z)=0," (exp Z), Wu' (exp Z*) =V, (exp Z)
for Z€3,".

Since 3* is the centralizer of b* in g, it is clear that @ (exp Z¥) and W™ (exp Z%)
are defined for Z€3,”. Let ¢t be an element in W, such that H*=tH for Heb. It

is obvious that mu=yxn where y= +1. Therefore since
A" exp H*)=¢(t) A(bexp H) (HED),

it follows that Dy.(H*)=¢(t)y D, (H). But the function
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Z~ Dy (Z*)— e(t)y Dy (Z) (ZE3)
is obviously analytic and invariant under E. Hence we can conclude that
Dy (Z¥y=¢(t)yy Dy (Z) (ZE€3}).

Now for any u€J", let T',, be the distribution of Lemma 37 corresponding to the
constants a,=< (b*)°, b> (s€W,). Similarly define T, on 3* corresponding to the
constants a,={(b*)%, b*>. Then

oy (uH) Ty (wH) = 2> £(s) (B7), %) %D
= S(t)sgm &(8) (%), b) e P =g(t) 70y (H) T, u (H) (HED).
Hence TywpuH)=et)yT,,.(H) (HEY).

Now consider the distribution
Tu’:f‘_)ff(Z)Ta“.u("Z)dZ (fEC™(3))

on 3. It is obviously invariant and tempered. Moreover it is clear that p,.= (p,)*
for p€I(g;). Let dZ' denote the Euclidean measure on 3* which corresponds to dZ
under the mapping Z'=2Z* (Z€3). Then

T, 000N = [16725 o(p0") Ty 8187
- f F('s 8(pp)") Ty (2) 42
— po(y) f 1 (Z) T2 42’ =5 (@) T ()

for p€I(g:) and f€C,7(3). Here f denotes the function Z'— f(u 'Z’') (Z'€3") in
C.”(3"). Hence it follows from the uniqueness assertion of Lemma 37 that

T =et)yTyu
Therefore Tou(f)=e®)vT;.(f)

and by making x4 tend to A, we conclude that

To" () =)y To'(f) (F€C7(3)).
This proves that
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Ty (ZY) =)y Ty (Z) (ZEY).

The first assertion of the lemma is now obvious.

Define V;, V;« and wyy;, @y« as in §18. It is clear that

Vil =(Vif)

for f€C.®(3'). On the other hand wyu=¢(t) y (wy;,)". Therefore it is clear that

iy = &(t) Y (da13)"
in the notation of §18. Hence

w(p) Sy, (Z2*) = Ty, (2" Vs 00 (/) = T3, (Z5 V3 00 (qus)) = () 8.0 (2)
for Z€3 and p€F*. This shows that
Sy (Z*)=8;.4(2)

and so by making u4 tend to A, we deduce that

Sp (Z)=8,"(Z) (Z€}p).
Obviously this implies the second assertion of the lemma.

CorOLLARY. Let x be an element in G such that b*€B. Then
Ot (exp Z*)=0," (exp Z),
W't (exp Z°)=W," (exp Z) (Z€3, ).

Since b€ B, it is clear that B 'cZ. Hence b and 6°' are two fundamental

Cartan subalgebras of 3 and therefore we can choose y €E such that B =D (see
[2 (d), p. 237)). Put w==zy . Then x=wuy and b°=>* Therefore

Ot (exp Z27) = O (exp Z%) = 0," (exp Z¥)
by Lemma 48. Similarly
Wt (exp Z5)=W," (exp Z¥) (Z€3, ).

Since @," and ¥',* are obviously invariant under Z, we get the required assertion.

Since b*=0b* we have obtained the following result during the above proof.

LeMMA 49. If two elements of B are conjugate under G, then they are also conju-
gate under the normalizer of B in G.
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Now fix a€BC define 3, and Z (a) as usual (see [2 (m), §4]) and put E,(a)=
exp(dy N 3a), Zo” (@) =Ey (@) N (7' G’). Choose x€G such that a*€B and define

0, ()= 0" (¥) (YEE," (@)
and Yo" () =Y (") (yEEo ().

It follows from the corollary of Lemma 48 that these definitions are independent of
the choice of x.

We now define two functions @ and ¥* on @' as follows. Fix €6 and let
a be the centralizer of » in g and A the corresponding Cartan subgroup of G. Define
4; and Ap as in §21 and let h=5, b, (b, € 4, h, € Ag). Since every eigenvalue of ad H

—

is real for H€ap and since h is regular, it is clear that h,€5,"” (h;). We define
OF (h)=0,"(hy), W (h)=")"(hy).

(Observe that 4;< Bf from the corollary of Lemma 45.) If z€@, it is obvious that
OF (%)= 0" (h,") = O, (k) = OF (B).

Similarly W'* (A*)=¥" (k). This shows that ®* and ¥* are invariant under ¢. We

intend to prove that they are analytic on @'.

LeMMA 50. Fiz b€B. Then there exists a number ¢, >0 with the following pro-
perty. Let 3,(c,) be the set of all Z €3, such that(}) |Im u|<c, for every eigenvalue u
of (ad Z)y;,. Then

O, (exp Z)=0%(bexp Z2), W, (exp Z)=T"(bexp Z)
for all Z€gyn3,(c) such that b exp ZEG'.

It is obvious that if ¢, is sufficiently small, y,(exp Z)=0 for Z €3,(c,). Let 3,'(cs)
be the set of those elements of 3,(c,) which are regular in 3,. Then for any
Z€gyN3y(cy), the two conditions b exp ZEG and Z€g, N3, (cy) are obviously equi-

valent. Hence, in particular,
o N 36" (c5) S 8o N30

Fix Z,€g,N 3 (c;,) and let a be the centralizer of Z, in 3,. Then a is a Cartan
subalgebra of g. Since b=0(b), 3, is stable under § and therefore, by Lemmas 29 and
45, we can choose y €E (b) such that oY is stable under 6 and (a,)Y <b. Put H,=Z;".

(') Impu denotes, as usual, the imaginary part of a complex number u.
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Since 0,7, @, ¥," and ¥'* are all invariant under ZE (b), it would be enough to
verify that

0®," (exp Hy) =0O" (b exp Hy), W,*(exp Hy)=TF" (b exp H,).

So we may assume that Z,=H,, y=1,6(a)=a and a,=anfch.

Let Hy,=H,+H, where H,€a; H,€az. Then h=0bexp Hy=h, h, where k=
bexp H,€A; and h,=exp H,. (4 is, as before, the Cartan subgroup of G corresponding
to a.) It is clear that H, €3,(c,) and therefore v, (exp H,)+0. Hence 3,, < 3. Now put

31=3s 3s=3n- Then 3, is the centralizer of H, in 3 so that Lemma 31 is appli-
cable.

For u €', define the distributions T, ,=1T; , and 8;,=8, , on 3 (¢:=1,2) asin
Lemma 37 corresponding to the constants a,={(b*)%, b> (s€W;). For any f€C.”(3,),
define fq,(Z)=f(Z—H,) (Z€3,) and put

Tow' N=Teu(fm), Seu' ()=08eulfm).

Then 7, (H) T, (H)= 3 &(s) {(B*), by e H+H0 (HED').

eWg

Moreover H, lies in the center of 3, and

O, B =< (), by &2 (s€Wg).
Now suppose u tends to A (u€F*'). Then it follows from Lemma 38 that

tim T,/ () =T (/)
and similarly (see the corollary of Lemma 41)
lim 8y, ()=S0, () (/€. (Ga))-

Define T =Tya' 8 =8, (=12
in the notation of §18. Then it is clear from the above result that

Tn*(N=Ty" (fr), S’ (H=8" (fu) (FECT(3,))-
Moreover T,* =T,*, S,*=8,* by definition. Hence
OF (h) =0y, (hy) =Dy, (H,) ' T, (Hy) = Dy (Hy) ' T, (H, + H,).

On the other hand T," =#,T," pointwise on ¢’ N3, by Lemma 42 and
20 — 652923. Acta mathematica. 113. Imprimé le 12 mai 1965.
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0, (exp Hy)=D, (HO)‘1 T,*(Hy).

Hence it would be enough to verify that D,(H)n,(H)=D, (H-—H,) for H€a. Put

W(Z) =Dy, (Z—H,)— Dy(Z) 5o (Z) (ZE3y).
Then » is an analytic function on 3, which is invariant under E,=E (k,). So it would
be enough to show that v=0 on b’. But it follows from the definition of D, D,
and 7, that

v(H) =, (H— H,)"'A(h, exp (H— H,))
— 75, (H) ' Ab exp H) 7y, (H) 7, (H) ' =0 (HEY'),

since 75, (H — H,) =, (H). This proves the first statement of the lemma.
On the other hand,

1P+ (h) = Th1+ (h2) = Sh1+ (Hz) = SZ+ (Hl + H2)
=8, (H,+ H,)=8," (Hy)=¥," (exp H,)

since 8;*=8," on 3, from Lemma 42. This proves the second statement.

CoroLLARY. O and V" are both analytic on G'. Moreover W* can be extended

to a continuous function on G.

Let Q be the set of all points x,€G with the following property. There exists
an open neighborhood U of z, in G such that ©®F and ¥'" are both analytic on
UNnG and ¥* extends to a continuous function on U. We have to verify that
Q=@. Clearly Q is an open and invariant subset of @. Therefore, in view of [2 (m),
Lemma 7], it would be sufficient to verify that every semisimple element of G lies
in Q. ‘

Fix a semisimple element a €G. Then we can choose (see the corollary of [2 (m),
Lemma 5]) a Cartan subgroup A4 of G containing a. Let a=a,a, where a,€A4,,
a,€A4s. By Lemma 45 we can choose z €@ such that b=gq,* € B. Since Q is invariant,
it would be enough to verify that a*€Q. Hence we may assume that z=1 and
a=ba, where b=a,€A4,;NB. Now put V=exp(g, N3 (c)) <2 (b) in the notation of
Lemma 50. Then V is an open neighborhood of 1 in Z(b) and

O by)=0,"(y), ¥ (by)=T"(v)

for y€V'=V N} 'Q@). Moreover we note that ¥,* is continuous on V, a,€V and
v (ag) +0.
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Now let x—>z* denote the natural mapping of @ on G*=@G/E (b) and fix open
neighborhoods ¥V, and G,* of @, and 1* in V and G* respectively. If V, and G,* are
sufficiently small, we can choose an analytic mapping ¢ of G," into G such that:

1) (P (x*)* =2 (z*€G,").

2) The mapping v: (z*, y) = (by)*®” of G,*x V, into @ is univalent and regular.
This is evidently possible (see [2 (m), Lemma 14]). Put U=y(G,"xV,). Then U is an
open neighborhood of a=ba, in @ and y defines an analytic diffeomorphism of G,*x ¥,
onto U: Put V)/=VynV' and U'=UnNG'. Then it is obvious that p(G,* x V)= U".
Since .®* and W' are invariant functions, it is clear that

O (W@ y) =070y =0,"(y), ¥ (p@"y)=T" by)=¥" ()

for 2*€G,* and yeV,. However ©," and ¥," are both analytic on V’. Therefore
it follows that ©®* and ¥'* are analytic on U’. Similarly since ¥',” is continuous
on V, we conclude that ¥'* can be extended to a continuous function on U. This
proves the corollary-

Define the character &, of B as in [2 (m), § 18].

Lemma 51. Let Z; be the center of G. Then
OF (zx) = &,(2) 1 (B*, 2> OF (2), Wt (z2) =(b*, 2>V ()
for 2€Z; and z€@.

Fix h€G@' and let a be the centralizer of A in g and A the corresponding Cartan
subgroup of G. Then h=h h, (h,€A, h,€As) and we can choose y€G such that
hY€B (Lemma 45). The required result holds for x=% if and only if it holds for
x=h". Hence we may assume that y=1 and therefore %, €B. Then

O (2h) = O.n," (hy) = D, (Hz)_szhl+ (H,),
b (zh)= ‘th,+ (hz) = Szh1+ (Hz) (2€Z¢)

where (1) H,=log h,€a;. Now %, and zh, have the same centralizer 3 in g and so it

is obvious from the definitions of the various distributions that
Tzhl+=<b*,z> Th1+5 Szh1+=<b*: z> Sh1+'

On the other hand A(zb)=&,(2) A(b) (bEB).

(1) As usual log denotes the inverse of the exponential mapping of ap onto Ag.
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Therefore it is clear that
DZhl(Z)=§Q(Z)Dh1(Z) (Z€3)

and now our assertions follow immediately.
LemuMa 52. Let A be a Cartan subgroup of G and put A'=ANG. Then
sup [A,4 (k) 0" (h)] < o,
in the notation of [2 (m), § 19]. )

Since A;/Z; is compact, it would, in view of Lemma 51, be enough to prove

the following result.

LemMA 53. For any a€A;, we can choose an open neighborhood U of 1 in A

such that U> Ap and
sup |A4(ak) OF (ak)| < oo.
helU

Here U'=Unat4’.

By Lemma 45 we can select x €G such that a®€B. Hence, in view of the in-
variance of ®F, we may assume, without loss of generality, that ¢ €B. Then from

Lemma 50,
O (a exp Z)=0," (exp Z)=D,(Z)'T,* (Z)

for all Z€g,N3.(c,) such that a exp ZEG. Let a be the Lie algebra of 4. Then
A3, Put ag=angyN3.(c) and U=exp a, Then U> Ay and if a exp HEGF (H €qy),
it is clear that

|As(a exp H)O" (a exp H)|=|A,(a exp H)O," (exp H)|=|m,, (H) To* (H)]

from the corollary of Lemma 47 and [2 (m), Lemma 33]. Hence if we take into account

Lemmas 28, 38 and 40, we get
‘ sup | A4 (ah) ©* (ah)| < oo.
Lemwma 54. OF is locally summable on G and
sup | D) [} |©* ()] < oo
Teq
Moreover 2O =) (2) OF  (z€3)
as a distribution on G.

Since there are only a finite number of non-conjugate Cartan subgroups of @, it

follows from Lemma 52 that
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sup | D(@)[H]0* (2)] < co.

Therefore ®* is locally summable on G from [2 (m), Lemma 53].
Now fix z€3 and consider the distribution

T=20"—X.(2)0"

on . We have to show that 77=0. In view of [2 (m), Lemma 7], it would be enough
to verify that no semisimple element of G lies in Supp 7.

Fix a semisimple element A€@. Then % lies in some Cartan subgroup 4 of G
f2 (m), Cor. of Lemma 5]. Let h=hh, (h, €A, h,€Ap). Then again by Lemma 45,
there exists x€(@ such that 2,*€B. T being invariant, it would be sufficient to prove
that A ¢Supp 7. Hence replacing (k, 4) by (k*, A*), we may assume that a=h, €B.
Let o7 and o+ be the distributions on E’(a) corresponding to T and ®* respectively
under [2 (m), Lemma 15]. Then

o7 =|va| o (2) (|92]  00+) — Xoe (2) 0o+

by [2 (m), Lemma 22] where u,= py;, as in Lemma 46. Let 6, denote the function
y—> 0O (ay) on E'(a). Then it follows from [2 (i), Cor. 2 of Theorem 1] that 6, is locally
summable and therefore gg+ =0, from the definition of og+. Hence it follows from
Lemma 50 and the corollary of Lemma 47 that the distribution |v,|!og+ coincides
on V=exp (G, N3.(c,)) with the locally summable function g, (0)®,*. Therefore we
conclude from Lemma 46 that or=0 on V. Since V is an open subset of E'(a) con-

taining k,, we conclude [2 (m), Lemma 15] that T =0 around h=ah, This proves

Lemma 54.
LeEMMA 55. O (B)=A®B)1 > e(s) ((B*), b
seWe
for bER'.

Fix b€B’. Then 3, =0 and therefore D,{H)=A(b exp H) and

Ty (H)=3 &(s) ((b*), b7 '™  (HED).,
seWea

Hence O (b)=0," (1) =Dy (0) T, " (0)=A®B) ™ > &(s) ((B*), b).

Wea

This shows that @ satisfies all the conditions of Theorem 3. Therefore in view

of Lemma 44, the proof of Theorem 3 is now complete.
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§ 23. Further properties of ©

Let a be a Cartan subalgebra of g and A the corresponding Cartan subgroup
of G. Put ag’'=azna’(R) and 4z =A4,n A’ (R) in the notation of [2 (m), § 19]. Let
A* be a connected component of 4’(R). Then it is obvious that A" =4, Az* where
A" is a connected component of 4; and Ax* < Ap.

Let us assume that 6(a)=a. Then by Lemma 45 we can choose k€ K such that
(4,5 < B. Hence we may suppose that 4," ©B. Let 3 denote the centralizer of A,
in g. Then a and b are both Cartan subalgebras of . Consider the complex-analytic
subgroup =, of G, corresponding to ad3,. We can choose y € E, such that b= a,. Put
W(A*)=W(3/a). Since a; lies in the center of 3, every root of (3,a) is real. Hence
(see [2 (k), Lemma 6]) every element of W(A") is induced on a by some element of
the analytic subgroup = of G corresponding to 3. Let Wz be the subgroup of those
elements of W(3/b) which can be induced on b by some element of Z. Then Wg=
Wy.(3/b) in the notation of § 18.

Put w(A4;")=Wgsn W(3/b) and write v =10(A4,") for simplicity.

LeEmMA 56. Suppose t,,t, are two elements in Wq such that

LYEW (AT,
Then t €W,

Put t=t,¢,"". Then t€(W (4")) " n We=W(/0) N We=1m.

CoROLLARY. Let r=[W;:w] and £, ...,t, a complete set of representatives in W
for W\Wg. Then the elements st? (s€W(A"), 1<i<r) are all distinct.

This is obvious from the above lemma.

LevMMma 57. Fix an element b*€B*' and define © as in Theorem 3. Then there
exist unique complex numbers cys(s:t:AY) (SEW(A™Y),tEWs) such that

1) cps(su?:ut: A%y =cpu(s:t:AY) (wEW),
2) Balhyhy) Oy k)= 3 elt) (%), hy)> > e(s) conls:t: A™) exp (s (tA) (Hy))
tew\ W seW(+)
for hy€A;", hy€ Ag*. Here A=log b* and(}) H,=log h,.
Let H €a; and H,€agz. Then since s' and y™' leave H, fixed, it is clear that

(B, exp H, > exp (s (tA) (H,)) = exp (s ((A)* (H, + H,))

(*) See footnote 1, p. 299.
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for sEW(A*) and t€W,. Since A is regular, the uniqueness is obvious from the
corollary of Lemma 56. On the other hand the existence is seen as follows. We use
the notation of §18. Put a*=a;+log Az*. Then a* is a connected component of
o' (3: R) (see § 13).

LemMa 58. Put
o(s:F ANy = 3 st IF ah)
te

=

for sEW(A™) and any connected component F+ of F'. Then
copu(s:t: A ) =c(s:tF*:4Y) (sEW(AT),tEW)
where F* is the component of logb* in F' (b* €BY).

In view of Lemma 40, the definition of c(s:{F*:4%) is legitimate and it is
obvious that
clsu’ :u ' F A ) =c(s: F: A7) (u€w).

Therefore it would be sufficient to prove the following result.

LeEmMMaA 59. Fiz b* € B* and a connected component F* of F such that 2 =log b* €C1 §§*
and define ©F, V" as in § 22 corresponding to b* and F*. Then

Ag(hy hy) o (hy ko) = te%m;s(t) < (b*)’, hl>sev%A+;8(8) c(s:tF A7) exp(s(tA) (Hy)),

and Wi h)= > < ®*), b >, cle:tFTA") exp (s ¢A) (Hy)

for hy€A;" and h,€Ag*. Here H,=log h, as before.

Fix a point b,€4,". Then we can choose H,€q, arbitrarily near zero such that
1) vy, (exp Hy)==0 and 2) every root of (Js,, @) which vanishes at H, is real. Put
b=b, exp H,. Then b€A,* and it is obvious that 3,=3. This shows that the set V

of those points b€4," for which 3,=3, is dense in A,*. Fix a point b€V. Then
from Lemma 50,

O* (b exp Z)=0," (exp Z)=D,(Z) ' T,* (Z), ¥*(bexp Z)=Y," (exp Z)=8," (Z)

for all Z€g, N3, (c) such that b exp ZEG'. Put U=a" Ngy N3 (cy) and let U’ be the
set of all points HEU where A, (b exp H)==0. Recall that P is the set of all posi-
tive roots of (g, 0). Then we may assume, without loss of generality, that P¥ is the
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set of all positive roots of (g, a). Then it is clear that
D,(exp H)=A,(b exp H)m*(H)™*

and therefore

Ay(bexp H)YO' (b exp Hy=n(H)T,* (H) (HeU').

On the other hand it follows from Lemmas 38 and 40 that

o) T, (H)y= >

€
teWg\ Weg

OB, 8> 3 ele)ey(s:tF ia") exp (s (¢) (H)

for HeU’. Now suppose H=H,+H, (H,€q; H,€a5). Since s ' and y™! leave q,
pointwise fixed, it is clear that

((b*), By exp (s (tA) (H)) =< ("), by exp (s (tA) (H,))
for sEW(A") and ¢€W,. Here h;=b exp H,. Therefore since the function
h—>AuR)O(R) (h€EA™NnA')

extends to an analytic function on 4* (see [2 (m), Lemma 31]), it is obvious that

A, (hy hy) OF (hy hy) = > &(f) <(b*)l, h]>sew§(:,4+)£(s) (s :t8’+:a+) exp (s (£A)” (H,))

teWo \Weg

for h €A,;*',h,€As". Our first assertion now follows immediately if we take into
account Lemma 40.

Similarly we conclude from Lemmas 50 and 41 that

L 20 exp H)= Sb+(H)= z <(b*)" b>sez . cb(s:t%“”:a*) exp (s ((A) (H))

teWs \Wg wit)

for HEU’'. Since ¥* extends to a continuous function on G (see the corollary of
Lemma 50), this relation holds for all HEU. Now log Az <U and V is dense in

A;*. Therefore the second assertion of the lemma is now obvious.
Lemma 60. c(s:F":A%)=0 unless Ry’ (s H) <O for every p€F* and Hea .
This is obvious from Lemma 58 and Lemma 28.
- COROLLARY. There exists a number C (independent of b* and F*) such that

D@ O* @] <0 (we@)
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and |¥*(x)|<C (x€@)

in the above motation.

Let C(4") denote the maximum of |c,(s:§F*:a")| for all s€W(4*) and all F*.
Then it follows from Lemmas 58, 59 and 60 that

|A4 (k) O (B)| <[w: W] [We:w] [W(A")] O(AT) S[WPO(AY) (h€A'nAT)
where W= W(g/b) as usual. Similarly
['¥*®)| <[WPC(A¥) (hed”).

It is clear that C(zA*)=C(A4") for 2€Z;. Therefore since A/Z; and a’ (R) both have

only a finite number of connected components,

C(A)=[W]? Sup C(4*) < oo.
A+

Here A* runs over all connected components of A’(R). This shows that
|As(h) O7(R)| <C(4)  (hEA)
and | TR <0(d) (heA).

But then since G has only a finite number of non-conjugate Cartan subgroups, our

assertion is obvious.

§ 24. The distribution 0,*

Put L=Ilog B*. Then L is a closed additive subgroup of {§ which is, in fact, a
lattice if B is compact. For any A€L, let & denote the corresponding element of
B* so that & (exp H)=e*® (H€D). Fix L€L and a connected component " of ¥’
such that A€CIF*. Then we denote by O3+ and Wi g+ respectively, the distribu-
tions @ and ¥'* of §22 for b*=¢, In particular if A€L’=L N, the component
& is uniquely determined and so in this case we denote them simply by @; and ¥';.

Now fix A€L’ and suppose that si€L for every s€ W = W(g/b). Then we intend
to study the distribution

0:"= 2 &(x) O

seW

more closely. Let us return to the notation of §23 and define

& a(hy By) =& (hy) exp (((A) (log hy)) (EEW)
21 — 652923. Acta mathematica. 113. Imprimé le 12 mai 1965.
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for h,€A4;" and h,€ A, Let m be the centralizer of az in g and put
Wo=W(m/ay .

Since a; lies in the center of 3 and aj in the center of m, it is clear that W(3/a)
and W(m/a) commute (as subgroups of W(g/a)). Therefore W(3/b) and W, also com-
mute in W.

Lemma 6l. For any connected component §* of &', define
c*(t:%+:A+)=[WG:tv]se“%/b)c(sy:s'lt%‘L:A*’) (tEW).
Then e FAT)=c":F:47)
for u€W, and tEW. Moreover,

A0 =3 ety (t:F A4 ) &2

tew
on A*. Here §* is the component of §' containing A.
Fix u€W, and t€W. Since » and W(3/b) commute, it is clear that

W FAN)=[We:w] D c(s¥:uls liFT:A4T)

3eW(3/b)
=[We:Wg] X c(:utsEF :a")
8eW(@3/b)
from Lemma 58. Define §, as in §18 and for fixed s€W(3/b) and €W, let §,* be
the unique connected component of ¥, containing s~ '¢F*. Since u ™! leaves every
root of (3, b) fixed, it is clear that « ', =,*. Hence

c(sVu s HF aT) = (¥ F T at) =y (Vs T a)

in the notation of §18. This implies the first assertion of the lemma.

Now let §* be the component of ' containing A. Then it follows from Lemma

59 that
A O =D e(w) D elt) D els)e(s':tuF A Euun
uew teim\Wa 8eW(3/b)

on A*. From this the second assertion of the lemma follows immediately.

Now assume that @, is an acceptable complexification (see [2 (m), § 18]) of ¢ and
G is the real analytic subgroup of G, corresponding to g. Let 4, and B, be the
Cartan subgroups of G, corresponding to @, and b, respectively. Then W operates on
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B, and therefore also on B. Hence L is invariant under W. Similarly W(m/a) operates
on 4. Since it maps a, into itself and leaves a, pointwise fixed, it leaves every
point in A;Nexp (—1)tap fixed and maps A,°=exp a; into itself. Therefore (see
[2 (m), Lemma 50]) W(m/a) operates on 4 and maps 4, into itself. Now if u €W,
then s=u’ €W(m/a) and

Sut(yhy) = Eun () exp ((12)" (log b)) = &ua((hy b)) GEW)
for h,€A,;", h,€Ap. Hence we obtain the following result from Lemma 61.

LeEMMA 62. Under the above conditions

AA(h)G),q*(h)=t > we(t)c*(t:%+:A+) > e(8)Ea(h)

€W, \ sewWan/a)

for hed™,

Let P, be the set of all positive roots of (g, a) which do not vanish identically
on az. Put 0=} Deer, « and

AiRy=e" T (1-&(ET) (hed)

aePy

in the notation of [2 (m), § 18). Here %, is the cdmponent of h in Ap.

COROLLARY. sup |A, (k) @z* (h)] < oo.
hea’

In view of Lemma 51, it is enough to show that A,(h)©;*(k) remains bounded
for h€EA* N A". In order to do this we can obviously assume that the set of positive
roots of (g, a) is chosen as in [2 (m), § 27). Define M, Ay and &, as in [2 (m), § 27].

Then
Ay(k)=Au(h)As(h) (REA).

Moreover, it follows from Lemma 60, that
(87 FAY)=0 (s€W(3/b), tEW)
unless (¢1)Y(H,) <0 for H,€log Ax*. Therefore it is clear from Lemmas 61 and 62 that

A@Or W< 5 |e*¢:F AN |Auh) ™" S els) Eu k)]
teW, \W seWm/a)

for h€ A’ n A" where h, is the component of A in 4,". Now choose

a€A;" nexp(—1)ta,
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such that 4;"=ad,°, Then (see [2 (m), § 23])
Ay (ah) = &y(a) Au (k)

and > &(s)Eul(@h))=Eu(a) > )E(S)Etl(hs)

seWwam/a) seWn/a

for h€ A and t€W. Therefore our assertion is obvious from [2 (b), Cor. 2, p. 139].

§ 25. Statement of Theorem 4

Fix a Haar measure dx on G and consider the distribution

0" (f)= f (0% (fEC2 (@)

as in Lemma 54. For any £>0, get G(s) denote the set of all x € G where | D(z)| > &
Suppose % is a measurable function on @' which is integrable (with respect to dz) on

G(e) for every £¢>0. Then we define (1)

p.v.fudx=lim udz

&0, G(e)

provided this limit exists and is finite.

THEOREM 4. Define @V and ¥'" as in §22 and put A=log b*. Then
w(d) O (f) =p.v.fD‘1T+VGfdx

where Vg has the same meaning as i [2 (m), § 20].

Before proceeding with the proof, we need some formulas on integrals (cf. § 2).
Let a,=Db, q,,..., 0, be a maximal set of Cartan subalgebras of g no two of which
are conjugate under @. Let A4, be the Cartan subgroup of G corresponding to a;.
Put G;*=G/A,, where A, is the center of 4; and fix a Haar measure d;a on 4; and

an invariant measure d;2* on G;*. Also let
Ai(@)=Aun(a) (@€4)
in the usual notation (see [2 (m), § 19]).

LEMMA 63. There exist numbers ¢;>0 (1 <i<r) such that

(1) See footnote 1, p. 246.
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f f@yde= 5 o
Iig Gi*

<r i

M@t diatda

for f€C.(Q) in the notation of [2 (m), § 22).

Put G;=4°nG. Then G is the disjoint union of G,, ..., G, and our assertion

is an immediate consequence of [2 (m), Lemma 41].

§ 26. A simple property of the function A

Let a be a Cartan subalgebra of g and A the corresponding Cartan subgroup
of G. Suppose a is an element of 4 and « a root of (g,a). We say that ¢ and «
commute if £,(a)=1 in the notation of [2 (m), § 19].

Put m =1} (dim g —rank g) as in §2. Then m is the number of positive roots of
(g, ). For any a€A4, define the integer m (R:a)>0 as follows. Let a=a,a, (a,€4,,
a,€Az). Then m(R:a) is the number of positive real roots of (g, a) which commute
with a@,. If o« is a real root, a(H)=0 for H€aqa;. Hence it is clear that m(R:a) de-
pends only on the connected component of a, in 4;. Therefore the function

m(R):a—m(R:a) is locally constant on A.
LEMMA 64. conj Ay(a)=(—1)"t™EDA (a) (a€A).

This result is obviously independent of the choice of positive roots. Hence we
may select compatible orders on the spaces of real linear functions on ap and
ag+(—1)*a; respectively and assume that P is the set of positive roots of (g, a) in
this order. Let % denote the conjugation of g, with respect to g. Then it is clear

that if o is a root, the same holds for na and
Ena(a)=conj &,(a) (a€A).

Let Pg, P; and P, respectively denote the sets of real, imaginary and complex roots
in P (see [2 (k), §4]). We now use the notation of [2 (m), §19]. Then

A(a)= & (@) A/ (@) A (a)
where A= T A-&@™, AS@=TI(1-&@™) (a€d)

«€Py aePy

and P, =PpU P, Since P, is invariant under 7, it is clear that A,’(a) is real. On

the other hand, ne= —a for «€P;. Therefore
conj A/ (@)= (—1)"P &, (a) A/ (2)
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where m(I) is the number of roots in P; and g;=} 2.cp,«. Now suppose a=a,a,
(@,€4,, a,€Ap). Then conj £,(a) =&,(a, " a,) and & (a,)=1. Hence

conj A(a) = (—1)"P&y(a, " ay) &z, (a,) AL (@) AL (@)
= (= 1) £ (0) ™ gy (@) A @) = (= 1™, (1) Aa)
where ¢, =} ,cp, 0. Now if 2 €P, then the same holds for & and ga=+a. Moreover,
£a(@y) &na (@) = | Eulay) = 1.
Hence Ezp, (a,) = £ap, (ay)

where QR=J2‘Z¢epROC. But for any « € Py, &.(a,) is both real and unimodular. There-
fore it is + 1. Hence

5291,(“1) = agg Eu(‘xl) =(- l)q

where ¢ is the number of roots « € Py such that £,(a,)= —1. But then ¢+m(R:a)
is the total number of roots in Pp. We have seen above that the roots in P, oceur

in pairs. Hence
gt+m(R:a)+m(l) = m mod 2.

This shows that gt m(l) =m+m(R:a) mod 2
and therefore conj Afa) = (—1)"P*?A(a) = (— 1)*™EDA(a).

This proves the lemma.

§ 27. Reduction of Theorem 4 to Lemma 66

We now come to Theorem 4. Suppose V, (0 <s<g,) is a family of measurable
functions on @ such that (cf. §2)

1) 0<V.<l and lim V.(x)=1 for z€G,
>0

2) V is invariant under G.

3) Ve(@)=0 if |D(x)|<&® (z€G).

Fix f€C,”(G) and define F;,, e5; and w; on 4, (1 <i<r) as in [2 (m), § 22] and let
m;(R) be the locally constant function on A; introduced in § 26. Since

D(a)=(—1)"Ai(a) (a€A4,),

it is obvious from Lemmas 63 and 64 that
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stD ‘I”ch dr= Z Cthe.t (— l)m‘m)é'n.i Yy Fmd,a

where V,; and ¥;" respectively denote the restrictions of V, and ¥'* on A4;. There-
fore the following lemma is now obvious (cf. Lemma 4) from [2 (f), Theorem 2].

LEMMA 65. Fix f€C,>(G). Then

lim Vs D_1W+ng da = p.v. fD“llFJ' Ve f de = [ J‘( - l)m‘(n) 83'1‘1’.¢+‘m'i Ff'i d{ a.
e—>0 1gigr
Now put T(H=w(A) O () —p.v.j D 'YWy, fdx

for feC,2(G). It follows from [2 (f), Theorem 2] and the above lemma that T is an
invariant distribution on G. We have to show that 7'=0. Hence it is sufficient by
[2 (m), Lemma 7] to verify that no semisimple element of G lies in Supp 7.
Fix a function v€C®(R) such that 0<w<1, v(t)=0 if [t|<} and »(t)=1 if [¢|>1
(tER). For any &>0, put
Ve(x)=v(27 e 2D(x)) (zEG).

Then it follows from Lemma 65 that

lim | D'V, ¥ivefdx= p.V.JD_l ¥y fde.

e—>0
Put T, (f) = w(d) O* () — f DWW Vefde (fEC(G)

for £>0. As usual let V;* denote the adjoint of Vg on G'. Since D'V, V" is a
C* function on G whose support is contained in @', if follows that the distribution

T, is, in fact, a locally summable function given by the formula
T.=w()0" -V " (D'V, ¥).
Moreover, T(f)=lim T.(f) (f€C.=(R)).
£=>0
Fix a semisimple element a €@. Then a is contained in some Cartan subgroup
A of G and a=a,a, where a,€A4; a,€Ap. Let a be the Lie algebra of 4. By

Lemma 45, we can choose x €@ such that 6(a%)=0a%, (a,)°<b and a,”€B. Since T is
invariant under @, it would be enough to verify that a® ¢ Supp 7. Hence replacing
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(@, 4) by (a®, A%), we may assume that 6(a)=a,a;,<b and @, €B. Then a=b exp H,
where b=a,€4;NB and H,=log a,€a,. Define 3,(c;) as in Lemma 50. Then 3,=
3(c) NGy is an open and completely invariant neighborhood of zero in =3, and
Hy€3. Put E=E(b) and Z,=exp 3, Then E, is an open and completely invariant
neighborhood of 1 in & (see [2 (m), Lemma 8]) and exp H,€E,. Let ¢ and o, be the
distributions on X, corresponding to 7 and 7. respectively under [2 (m), Lemma 15].
It would be sufficient to verify that ¢=0. It is obvious (see [2 (i), Cor. 2 of Theo-

rem 1]) that o. is the locally summable function

y—=Te(by) (y€E,)
on E, and therefore

o(g) = hm 0 (9)= l)f ) O™ (by) dy—lmf:) 9(y) ¥ (by; Ve* o D7'V,) dy

for g€C,>(E,). (Here dy is the Haar measure on E.) Let 7’ be the distribution on
30 Wwhich corresponds to o under the process described in [2 (m), § 10]. Then by
Lemma 50,

f)—m(l)f&z, Z)[(Z) ©p* (exp Z)dZ — hm E( )Y (bexp Z; Ve*o D V,)dZ

for f€0.*(3,) and it would be sufficient to verify that ’'=0.
Put
S (Z)=V:.(bexp Z)WV* (b exp Z)=V.(b exp Z)S,"(Z) (ZE€3)

in the notation of § 22.
LEMMA 66. We have (1)
W (b exp Z; Vo"o D7'V.) =Dy (Z) 7 8:*(Z; 0 (gys)0 Vs 0oy ")

for Z€3, in the notation of §22 and Lemma 41.

Assuming this for a moment, we shall first finish the proof of Theorem 4. Put
t=§""D, 7" and recall that

®," (exp Z)=D, (Z)_lTb+ (2)

by definition (see § 22). Hence if we write g=gq,;, we get

()= w(h) T4*() ~lim f 1) 842 0 (@) oV omy~) A2

(*) See footnote 1, p. 285.
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for f€EC,7(35). But since 8," is a C* function on 3, and 7, is nowhere zero on its
support, it is clear that

ff(Z) 8.t (Z;8(q)oV; on, ) dZ= J"’?a_l (Vi00(q)*) f- 8" dZ.

Now as ¢-+0 the right side obviously tends (see Lemma 4) to the limit
p-V-fm“‘(Vaoa(q)*) f- 8" dZ.

Hence o) =w(@) T* (f) —p.v. f 7y (V;08(2)*) /- 8" dZ =0

by Lemma 41. This proves Theorem 4.

§ 28. Proof of Lemma 66

We have still to prove Lemma 66. This requires some preparation. Fix a Cartan
subgroup A of G and define w,, A, asin [2 (m), § 20]. Also put 4’=A4n@G as usual.

LEMMA 67. The differential operator §;* on G s invariant under G and

V") = (—1)" A (B) " f(h; wa0A%) (REA)
for fEC*(G").

Since V¢ is invariant, it is obvious that the same holds for Vs*. Fix A €4’
and an open and relatively compact neighborhood U of h,in 4’. Then V=U¢is an
open neighborhood of %, in G. Put A=A, and let us use the notation of {2 (m),
Lemma 41]. Then if g€C,™(V), it is clear that

J.g Ve'fdz = fVG g-fde= CfA'A (B)[? dhfgsg(hﬂ; Ve) f (h*") dx*
= cf )A(h)lzdhf g{x*:h; w0 A) f(x*: h) dx*
anv o
where g(z*:h)=g(h*") and fx*:h) ="'} (h€ANV,2*€G"). On the other hand
IA[2= (___ 1)m+m(a)A2

from Lemma 64 and it is obvious that

AnV= Y U*

SeW4
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in the notation of [2 (m), § 20]. Hence A NV is relatively compact in A’. Therefore
(see [2 (f), Theorem 1]) there exists a compact set Q* in G* such that 2** ¢ Supp g for
hednV and 2*€G* unless z*€Q*. Hence it is obvious that

fg Ve'fdz=c(— l)mfAnvl AP dhfa.g(h") f@*:h; A w0 A% dx”.

On the other hand, there exists (see [2 (m), § 20]) a unique differential operator V' on
G,=(4")° such that
B V') =Pl b AT w0 A%

for €@ and A€A’. Here § is any C® function on G, and B(z:h)= (k). Therefore

fgvc*f der=c(— l)mfA| AP dhfctg(h")f (B V) dz* = (— l)mfg V' fde.

This shows that V*=(—1)"V’' on V and therefore
f (Pgs Ve*)=(— 1) f (hy; A 'w,0AY).

Thus the lemma is proved.

Now in Lemma 66, both sides are C* functions on 3, which are invariant under
&. Therefore it would be enough to show that they are equal on ay)’ =a’n 3, for any
Cartan subalgebra a of 3. Fix a and let 4 denote the corresponding Cartan sub-

group of G. Since
Ve(bexp Z)YW" (b exp Z)=8."(Z) (Z€3)

and D(a)=(—1)"As(a)?® (a€A4), it follows from Lemma 67 that
W (b exp H; Vg*o D'V, )=A,(b exp H) ' 8. (H; 8(w4) (HEqy).

Let G, denote, as before, the (connected) adjoint group of g. and E. the complex-
analytic subgroup corresponding to adj.. Select y€E, such that bY=a,. P being
the set of positive roots of (g,b), we may assume that PY is the set of all positive
roots of (g, a). Then it is clear that

Ay (b exp H)y=m*(H)D,(H) (HEnq).
Hence D,(H)Y* (b exp H; Vc*o D 'V,)=8," (H; (m*) ' 8(w,)) (HEa,).
Put g=gqy; and let g, denote the projection of ¢ in S(a,) (see[2 (j), §8]). Then

wy=w = (Wl W) = oWy’
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in the notation of § 18. Therefore since S, is invariant under =, it follows from
the corollary of Lemma 2 and [2 (c), Theorem 1] that

8% (H;0(g)oV, o, ") = 8. (H; (my0) ' 0(wy))  (HEay).

This proves Lemma 66.

§ 29. Some convergence questions
We use the notation introduced at the beginning of §24. Put

Za=Xps for A=log b* (b* €B*).

LemMmaA 68. Let p be a (complex-valued) polynomial function on §. Then we can
choose an element z€ 3 with the following property. If §+ is a connected component of
& and AELNCLF", then ‘

[P0 015+ (NI < 3 o L‘IFZ,.,I da  (f€C(G)).

Here the notation is the same as in Lemma 65.

Define ¢ and g, as in § 14 and let w, be the Casimir operator corresponding to
8; (see [2 (b), p. 140]). Then w,€3. Put wy=w,— (H?2+...+ H?) where H,,..., H,
is a base for ¢ over R. Then a simple calculation shows that X, (w,) = [|A||*—¢ (A€ L),
where ¢ is a real number (independent of 1) and u — [|u|| (x €F) is a Euclidean norm
on §. Put w=1+c+w, Then X(w)=1+|1]> (1€F) and o is a self-adjoint dif-
ferential operator in 3. Now fix ' and write ©;" =0, 4+ A€L*=LnClF"). Then

01" (%) = Za(0?) B2 ()= A+ A% ©:* ()

for any integer ¢>0 (AEL*, f€C,*(G)). Define ¢ as in the corollary of Lemma 60.
Then it follows from Lemma 63 that

10:* ()] <zi c,L_|A,(a) 0:"(a) Fri(a)| dia <0§c,.L |Frildia  (f€C~(Q)).
Replacing f by w®f, we get

A+1APsI0 < S o f |F.y|dia

1gigr

where z=Cw? The assertion of the lemma is now obvious.
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Now L is a closed additive subgroup of §§. Let di denote the Haar measure
of L. It is clear from Lemmas 57 and 58 that for a fixed f€C,*(G), ©:*(f) (A€L™)

is a measurable function of A€L™.

CoROLLARY 1. For any p€S8(b,), we can choose €3 such that

f lp(l)@;.+(f)ld}»< 2 cifAlef.ildia
Lt i

1gigr

for all f€C.~(Q).

We can obviously choose an integer ¢>0 such that
« =f (14 [[A])-2dA< oo
L
On the other hand, by the above lemma, we can select z,€3 such that

A+ A1 1203 057D < S [ Farald

for A€L* and f€C.”(Q). Hence we can take 2=z,
Define ©; for A€L’ as in § 24 and let us agree to the convention that w (1) @;=0
if w(1)=0 (A€L).

COROLLARY 2. Put

()= f @Ok (€05 @)

Then T is an invariant distribution on G and, in fact, we can choose z€3 such that

701<, 3 o, [Pailta
1gigr A
for all fEC.=(Q).
The second statement follows from Corollary 1 above and the rest is obvious
from [2 (f), Theorem 2].

Now assume B is compact. Then L is discrete and therefore

T(f)= 3, w(@) O ().

el

Put ¢g=1% dim (G/K). Then g is an integer (see [2 (k), Lemma 18]) and we shall see
in another paper that there exists a number ¢>0 such that (—1)%¢T is precisely the
contribution of the discrete series (see [2 (a), § 5]) to the Plancherel formula of &
(see [2 (h), Theorem 4]). The proof of this fact depends on Theorem 4.
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§ 30. Appendix

Let g be a reductive Lie algebra over R and Q a completely invariant open
subset of g.

LeEMMA 69. Let Fy, (k>1) be a sequence of continuous and invariant functions on
Q. Then the following two conditions are equivalent.

1) For any Cartan subalgebra a of g, F, converges uniformly on every compact
subset of anQ. -

2) Fy converges uniformly on every compact subset of Q.

Obviously 2) implies 1). So let us assume that 1) holds. Let Q, be the set of
all elements X,€Q with the following property. There exists an open neighborhood
U of X, in Q such that F, converges uniformly on U. It would be sufficient to
show that Q,=Q. Clearly Q, is open and invariant. Therefore in view of [2 (1),
Cor. 2 of Lemma 8], we have only to verify that every semisimple point of Q lies in Q.

Fix a semisimple element H,€Q and an open and relatively compact neighbor-
hood U of Hy in Q. Tt would obviously be enough to show that F, converges uni-
formly on U'=Unyg’

Let a,,...,a, be a complete set of Cartan subalgebras of g no two of which are
conjugate under (. Then V,=Cl(a,N U®) is a compact subset of a; N Q (see [2 (k),
Lemma 23]). Now fix X€U’'. Then X =H® where x €@ and H € V, for some 7. Hence

Fy(X)-F.(X)=F;(H)— F(H) (j, k>1).

However, the sequence F) converges uniformly on U;«<r V; by 1) and so the required

result follows immediately.
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