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Let  D be a product  of irreducible bounded symmetric domains in the complex 

number  space and let F be a properly discontinuous group on D with the proper ty  

tha t  vo l (D/F)  is finite. 

I f  one excludes tha t  D has any components of complex dimension 1, i t  is gen- 

erally suspected (cf. [15]) tha t  any  such group must  be commensurable to an arith- 

metic group. 

In  particular, if this is the case, there will be no other families of discontinuous 

groups containing F except those obtained by  operating on F by  a family of inner 

automorphisms of the Lie group G=Aut(D) 

Under the more stringent assumption tha t  D/F be compact,  this has proved to 

be the case in [15] and in [7] as a consequence of a more general rigidity theorem. 

Tha t  result has beeff extended by  A. Weil [21] to the case of all "reasonable" semi- 

simple Lie groups (i.e., a semisimple Lie group without compact components whose 

Lie algebra has no simple factor of dimension 3). 

In  the case where D / F  is not  compact it has been stated by  A. Selberg (in a 

conversation with one of the authors a t  the international congress in S tockho lm) tha t  

at  least the following should be true: 

Let  us suppose tha t  F 1 and 1" 2 are two properly discontinuous groups on D and 

suppose tha t  (a) F 1 is an arithmetic group, (b) there exist fundamental  domains $'1, 

$'3 for F 1, F~ respectively, such that ,  outside of a compact set K c D ,  $'1-$'1 N K 

= F z - $ ' 2  N K. Then F 2 must  be commensurable with F r 

Again, if this is the case, there will be only trivial families of discontinuous 
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groups F, containing the arithmetic group F 1 and keeping the part  at  infinity of 

D/r rigid. 
This statement can be formulated in precise terms following a pat tern similar to 

tha t  used by A. Weil in [20]. We do this in w 2, where we introduce the notion of 

a family of uniformizable structures on D, rigid at  infinity. 

In this paper we show that  any such family is a locally trivial family provided 

one of the fibers D/F behaves at infinity as if F was an arithmetic group. Precisely 

we will assume that  (i) D has no component of complex dimension l, (ii) F is finitely 

generated, (iii) D/F is a strongly pseudoconcave space. Both of the latter two con- 

ditions are satisfied by  arithmetic groups. The concavity assumption has been verified 

in particular cases in [1], [18] and by K. G. Ramanathan (unpublished). I t  has been es- 

tablished in general by A. Borel (unpublished). 

The main tools of the proof are the following: 

(a) If D/F is strongly pseudoconcave, then for a sufficiently large relatively com- 

pact open set B cD/F its counter image B in D has D as envelope of holomorphy. 

(fl) On any quotient of D by a properly discontinuous group F, the tangent 

bundle, with respect to the Bergmann metric, is W-elliptic in degree (01). 

From (fl) one first deduces that,  by a generalization of the differential geometric 

methods used in the compact case (and because the family is rigid at  infinity), one 

can locally deform trivially inside the family any compact subset of any fiber. The 

assumption (a) is what makes it possible to "extend"  this partial trivialization to the 

family itself. 

We remark that  in the framework of this theory complex analytic families and 

differentiable families behave quite differently (cf. Theorem 2). 

We have assumed throughout this paper that  all discontinuous groups considered 

act without fixed points on D. This is no restriction since assumptions (ii) and (iii) 

are stable by commensurability and by virtue of a theorem of A. Selberg ([15] p. 154). 

w 1. Oil pseudoeoncave manifolds 

1. Preliminaries. (a) Let  X be a complex manifold of pure complex dimension n. 

A real valued C ~ function �9 on X is said to be strongly q-pseudoconvex at  the 

point x 0 E X if the Levi form 

s . - - /  u~a ~ 
\~z~ ~Mx. 
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(where z~ are local holomorphic  coordinates  a t  x0) has  n - q  posi t ive eigenvalues a t  

least. 

More general ly a real va lued  cont inuous funct ion (I) on X will be called strongly 

q-pseudoconvex a t  the  poin t  x o E X if 

(i) we can f ind a ne ighborhood U of x o in X and  f ini tely m a n y  real  va lued  C ~ 

funct ions in U, (I):, ...,(I)k, such t h a t  

r  = sup (r (x), . . . ,  ek  (x)) V x e U; 

(ii) we can f ind a biholomorphic  imbedding 

T : Dn-q--> U 

of the  disk D ~-q = {t = ( t : , . . . ,  t~_q) e (~-q  I E t~ ~ < 1} 

such t h a t  T(O) = x o, 

for  each i, 1 <~ i <<. k, the  Levi  fo rm of (I)~ o T is posi t ive non-degenerate  a t  t = O. 

This more  general  class of funct ions seems to appea r  na tura l ly  in the  s tudy  of 

discontinuous groups which do no t  require, for  the  purpose we have  in mind,  a n y  

addi t ional  comphcat ion .  

The  following propert ies  of s t rongly q-pseudoconvex funct ions will be of cons tan t  

use in the  sequel. 

(o~) I f  @ is a strongly q-pseudoconvex /unction at x o E X ,  then there exists a neigh- 

borhood U(xo) o/ x o in X such that ~ is strongly q-pseudoconvex at each point x E U(xo). 

(fl) Let r be strongly q.pseudoconvex at each point  o/ the coordinate neighborhood 

U (where Zl . . . . .  zn are the holomorphie coordinates). For any compact set K c U we can 

lind a constant c ( K ) >  0 with the /ollowin9 property: 

/or any C r162 real valued /unction zr on U satis/ying 

_ ~2~ (x) < c ( K )  

the /unction ~ + a is again strongly q-pseudoconvex in U. 

(7) I /  ~ is strongly q-pseudoconvex at xo, 0 ~ q <<. n - 1 ,  then ]or any neighborhood 

U(xo) o/ x o in X 
sup (I) > (I)(x0), 
U(x~) 

( i .e . ,  (I) cannot have a relative m a x i m u m  at xo). 
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The proof of these s ta tements  reduces to  the case where (I) is a C ~ function; 

in this case t hey  are known and easy to prove. 

(b) Le t  X be a complex manifold. 

Dr, FINITION. We say that X is strongly q-pseudoconcave i/  we can f ind a com- 

pact set K c X  and a continuous /unction gP : X---> R such that 

(i) at each point  o] X - K ,  (P is strongly q.pseudoconvex, 

(ii) [or any  c > infx  ~P the sets 

Bo = e X I r  > c} 

are relatively compact in X .  

We will always assume tha t  q ranges between 0 and n - 1 .  

If  X is s t rongly q-pseudoconcave, so is each one of its connected components.  

The following lemma is a consequence of the max imum principle (y): 

L~,MMA 1. Let X be strongly q.pseudocoucave and connected ( O 4 q 4 n - 1 ) ;  then 

(a) /or min~ (l)> c >  infx (I) the closure o] Br in X is 

(b) there exists a cl, mink ~P > c I > in fx  ~P, such that [or c < c 1 the sets Bc are con- 

nected. 

Proo[o[  (a). One has in any  case B c ~ ( x e X [ r  However ,  if c < m i n K  (P, 

a t  the point  x 0 of {(I)(x)= c} (I) is s t rongly q-pseudoconvex and thus,  because of (y), 

x o is an accumulat ion point  of the set {(I)(x)> c}. 

Proo] o[ (b). The sets /~c being compact ,  t hey  have a finite number,  s (c )of  con- 

nected components  K~ (c): 
Be = K 1 (c) tJ ... U g,(e)(c). 

For  mink (I) > ~ > fl > infx (I) we have B~ ~ BZ so t ha t  for  any  component  K~ (~) there  

is a uniquely defined component  K~(~)(fl) containing it. 

We first show tha t  
: {1 . . . . .  s(or --> {1 . . . . .  s(~)} 

is surjective so t h a t  s(fl) <s(~).  

In  fact  if ] ' ~ Im v, then  Kj (/3);~ B~ = 0 so t ha t  

g j  (fl) c {x e X [ a > (1)(x) >/fl}. 
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Le t  m=maxKj(p)r and  let  xo~Kj(fl) be such t h a t  dP(xo)=m. I n  any  neighbor-  

hood U(xo) of x 0 there  is a t  least  one point  p where (I)(p)> m. B y  the  ve ry  definit ion 

of m, p~ 'Kj ( f l ) ,  bu t  since m>~fl, p e / ~ p  i.e., p e  U**jKt(f l ) .  This shows t h a t  x0 mus t  

be in (the closure of) LJ~,jK,  (/~), and  this is not  possible. 

We can thus  find Cl, min~ q )>  c~ > infx (I), so t h a t  for ~ <c~ the  n u m b e r  of con- 

nec ted  components  of B~ is a cons tan t  s o independent  of x. 

I n  order to prove  t h a t  s o = 1 we make  use of the assumpt ion  t h a t  X is connected.  

Le t  

/~ ,  = K 1 (c~) O ... U K~~ 0.  

Le t  aeKl(Cl)  , beK~o(c 0 and  let  ~:I--->X where I = { t e R l 0 < t , . < l }  be a p a t h  in X 

with  end points  ~ ( 0 ) ~ a ,  ? ( I ) = b .  Since ~ is continuous,  ~ ( I ) i s  compac t  and  for 

a<minr(z) ( I )  we have  y ( I ) ~ / ~ .  This shows t h a t  a, b are in the  same connected 

componen t  K, (~) of B~. Since z :  {1, . . . ,  s(c~)}-> {1, . . . ,  s(a)} is bijective, we mus t  have  

K 1 (%) = K~o (cO, i.e., s o = 1. 

We now r e m a r k  t h a t  for c < c~ the sets 

Cl>~C'>C 

as an  increasing union of connected sets, are connected.  

We will also need the  following 

LV.MMA 2. Let X be strongly q-pseudoconcave and connected (O<<.q<.n-1); let 

~ : X---> X be the universal covering space o/ X .  

We assume that the /undamental group ~1 (X) of X is finitely generated. 

Then there exists a %, mink (I)> c~ > inf x ~ such that /or c< c~ the sets 

~-~ (Bo) ~ 
are connected. 

Proo]. Le t  7 i : I - + X  l < i < r ,  

where  I = {t Et t  ] 0 <~ t ~ 1}, be a set  of genera tors  for  ~1 (X). 

We  select c 2 so t h a t  c2<c 1 (as defined in L e m m a  1) and  so t h a t  ~ t ( I ) c B c ,  for  

l ~ i  <~r. 

For  c < c~ we set  Bc = ~-1 (Be). Since ~1 (~7)= 0, we have  the  exac t  sequence for 

the  pair  (X, B~): 
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Now we have ~r 1 (X, Be) --- zrt (X, Be) ([16], p. 266). Moreover, for the pair (X, Br 

we have the exact sequence 

gi  (B~) --> ~1 (X) --+ ~1 (X, B~) --> n 0 (B~). 

By construction gl  (Be)->~i  (X) is surjective; by Lemma 1 g0 (Be)=0. Hence 

~r i (X, Be) = 0 = ~h (X, Br 

From this we obtain ~r 0 ( /~ )=  0 as we wanted. 

2. Analytic completions, a) Let  X be a complex manifold and let O denote the 

sheaf of germs of holomorphic functions on X. 

Let  A be an open subset of X. We say tha t  X is an anal#tic completion of A 

if the restriction map  
r : H  ~ (X, O) --> H ~ (A, O) 

is an isomorphism. 

L E p t A  3. Let X be an analytic completion o/ A and let Y be a holomorphically 

complete mani/old. Then any holomorphic map 

/ : A - +  Y 

extends, in a unique way, to a holomorphic map 

[:X--> Y. 

Proof. I f  Y = (J, this is the definition of an analytic completion. I t  follows tha t  

the lemma is true when Y = C  N. 

In  general we m a y  assume Y imbedded as a closed subset of {I N. I f  :~(Y)is the 

sheaf of germs of holomorphie functions in C N, vanishing on Y, we have 

Y=(zeeV[g(z)=O V g e H ~  

Now J extends to a mapping ] of X into t~ N. Since for every 9 e H ~  Y(Y)),  

g o / = 0  on A, then also g o } = 0  on X, and therefore the image of ] is in Y. 

I f  the complex manifold A has an analytic completion X which is holomorphi- 

cally complete, this, by the previous lemma, is unique (up to isomorphisms which is 

the identi ty on A). We say then tha t  X is the envelope of holomorThy of A. 

b) We want  to prove the following 
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THv.OREM 1. Let X be a connected complex n.dimensional mani/old. We assume that 

(i) X is strongly q-pseudoeoncave /or some value o/ q with 0 <~q <~n- 2. 

(ii) 7q (X), the /undamental group o/ X,  is /initely generated. 

Let re:X----> X be the universal convering o/ X.  Then (with the usual notations) we can 

lind a constant Ca> infx (I) such that, /or any c< Ca, 

~-1 (Bo) has X as an analytic completion. 
In  particular: 

I /  X is holomorphically complete, then, /or any c <ca, X is the envelope o/ holo- 

morphy o/ 7e -1 (B~). 

3. Proo/ o/ Theorem 1. The proof of this theorem is based on the following: 

P~OPOSITIO~ 1. Let O<~q<~n-2 and let ~ be a strongly q.pseudoconvex /unc- 

tion de]ined in a neighborhood U o/ the origin in E ~. 

Let 
y = {z ~ u [ r > r 

Then there exists a/undamental system o/ (closed) neighborhoods {Q~}~N o / 0  6E n such that 

(i) each Q~ is connected, Q~Q~+I, Vv6N, 

(ii) the natural restriction maps 

H~ O ) -~ H~ ( Q~ N Y, O) 

are isomorphisms, /or V v s 

This proposition can be considered as a particular case of Theorem 10 of [2] 

(cf. Proposition 12 of [2]), However, here the function O is not  required to be dif- 

ferentiable. This restriction can be easily removed since only properties (~), (8), (?) 

listed in Section 1 are requested in the proof. 

We give here an outline of a direct proof of this proposition which, we believe, 

will be easier to follow than that  of Theorem 10 of [2]. We divide the proof into 

several steps. 

Step 1. Set p = n - q  and let E ~ = r 2 1 5  q. We denote by  

~ = x~ + iy~, 1 ~< ~ ~< p, the coordinates in C p, 

~ = v~ + iw~, 1 ~</5 ~< q, the coordinates in r 
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We set Q'-~={~C~lx~=O, 1~[<l, 2<j~<p, ly~[<~, l~<k<p}, 

QI={~'ECP[[Xl[~<I, xt=O, 2<}~<p, y,~=O, l<]c<p} ,  

Q~={~ec~llv,[-<<l, ]w,]<l for l</~-<<q}. 

Thus Q = Q1 • Q2,-1 • Q2q 

represents the unit cube in C n. We suppose that,  as in our proposition, O<~q<n-2.  

L~.MMA 4. Let ~ be a strongly q-pseudoconvex /unction de/ined in an open neigh- 

borhood U o/ Q. We suppose that 

(i) (I) I (C" • {~/}) (~ U is stronfly O.pseudoconvex /or all ~ E Cq; 

(ii) the set 
{( 1U<0{t} • Q2p-x) U (Qt • ~Qep-~)) • Q2q 

and the closure V o/ the set 

V = {z E Q[ r < (I)(O)} 
are disjoint. 

Then H ~ (Q, O) -~ t t  ~ ( Q -  V, O) 

is an isomorphism and H r ( Q - V , O ) = O  /or O < r < n - q - 1 .  

Proo/. (~). From the exact sequence 

0 -+/~k (V, O) --->H ~ (Q, O) - + H  ~ ( Q -  V, O) --~H~ (V, O) --> ... 

(where the suffix k denotes cohomology with compact supports)since H'(Q,O)=O 

for s ~ l ,  we see that  the lemma is equivalent to the statement 

H~(V ,O)=O for r < n - q = p .  

(fl). First one establishes the lemma when q=0 ,  i.e., p =n ,  for instance by the 

following method due essentially to B. Malgrange: 

We remark that  I~ is a domain of holomorphy; thus 

H r k( l~ ,O)=0 for r * n .  

Let Q1 = { _  1 ..<t...< 1 +~}, Q=Q~•  

v~ = {~ ~ Q~ ] r < r 
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Let ~~ a ~-cIosed (or) form, compactly supported in V. For e > 0  sufficiently 

small, we may assume that  

(i) (Qi • ~ Q~n-1) n V8 = 0 

(ii) ~or is defined, R-closed, compactly supported in Vs. 

Let  :r be a C ~162 function of t such that  

[10 if t < l + e / 3  
~ =  if t >  1 + 2 ~ / 3 .  

Then setting #or+l = ~ a A ~oT, 

we have supp #or+l = {1 + e/3 ~< t ~< 1 + 2 e/3} • ~ - l .  

i c t u a U y .  Pc = { t  + < t < 1 + • 

then supp #~ c p~ fi V~. 

Let  U be a neighborhood of Q~ which is a domain of holomorphy. 

In our situation one has ([5], Lemma 29) that  

T:H~iP~ 0 V~, O ) - + H ~ ( U , O )  

is an injective map. Since T{/~~ by its very construction, it follows then tha t  

there exists a form a ~ of type (or), with compact support in P~ n V8 such that  

i .e .  ~ (~  e ~ - a ~ = O. 

5Tow the form aq~176 is compactly supported and R-closed in V~. By  the 

remark made at  the beginning one sees that:  

If r < n - 1 ,  then there is a form 7 ~ compactly supported in ~z such that  

a@or _ aor = -~,or-1. 

By restriction to V, we then obtain 

and supp ?or-i is compact in V. 

(y). One establishes then the same result for the case of a product Of the situa- 

tion considered in (fl) by  a cube (i.e,, one proves the lemma in the case in which (I) 

is independent of the variables ~). 

1 7 -  642907. Acta mathematica. 112. Imprimd l~ 4 d~combre 1964 
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This can be done by means of the Kiinneth formula. 

(~). In  the general case we consider the projection r~ of V onto the space Q~ 

of the ~ parameters.  Let  ~ be the family of closed subsets F of V on which z I F  

is a proper map. Let  ~ (0) be the s-th direct image of 0 with supports y~. Then 

H~ (V, O) is the limit of a spectral sequence whose term E~ 's is given by 

E~,S- plr ~O2q-2 218 
- - -  , . . . .  ~ (0 ) ) .  

I f  r + s < p - -  1, then s < p -  1, but  from (~) one deduces tha t  

~ ( 0 ) = 0  for s < p - 1 .  

I t  follows then tha t  0 E~'8=O and thus tha t  
r §  

H~(V,O)=O if r < p - 1 .  

This completes the proof of the lemma. 

Step 2. Let  (I) be a strongly q-pseudoconvex function defined in a neighborhood 

U of the origin in C n. Without  loss of generality, taking U sufficiently small and by  

a convenient choice of coordinates we may  assume tha t  on U, 

(I) = sup (~1 . . . .  , ~k), 

where the ~9's are C ~ functions in U satisfying the conditions: 

( i )  ~0~ (0 )  = . . .  = q0k (0 )  = d)(O)  = O; 

(ii) for 1 ~<s ~<k the Levi forms a t  the origin 

on the space C'~-"={z,~_q+l=0 . . . . .  zn=0} are positive non-degenerate. 

We restrict ~s to C'~-q; we then can write 

~ l C ~ - q = 2  Re g ~ + s  O(3), 

where 0(3) is small of third order and where 

We distinguish the following possibilities: 
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(a) all gs are identically zero or one gs is no t  identically zero bu t  has non- 

vanishing differential at  O, (dgs) o ~= O; 

(b) no t  all g~ are identically zero bu t  their differentials all vanish at  O, (dgs)o = 0 Vs. 

Case (a). We can find a holomorphic funct ion ] on C n-q such t h a t  

1(o)=o, (d/)o~O, 

{~ e c "-o n U lRe 1(~)/> o} ~ {~ e u I r >t o}. 

Withou t  restriction we m a y  assume - / ~  z 1. 

As in Step 1 we denote by  ~ = x~ + iy~ the first p = n - q  coordinates in C n, a n d  

by  ~ = v~ + iwa the last  q coordinates. 

We set 

Q2"-~(e)={#ec'lxl =o, I~,l < ~, ly~l <~, i >~2, k>~t}, 

QI(~) = { ~ e c ,  l lxd<~,  xj=0, u~=0, i>~2, k~>l}, 

Q~q(e) = { ~ e c ~  l<e ,  lwal<o, l~<~<q}. 

We can first find t > O, a > 0 such t h a t  

{t} • Q 2 " - l ( e ) c V  for Itl<,r 

{ t } •  Iq)(z)>O} for - a < t < O .  

Then  we can find ~, 0 < ~ < a such tha t  

{t} • eQ~,-~(~)~ r for [tl<O. 

Then we can find ~ > 0 such t h a t  

Q1 ((~) • Q2.-1 (e) • Q2q (e) ~ U 

and (( U {t} • Q~'-~ (e)) u (Qa ((~) • 0Q~,-~ (e))} • Q~q (e) c Y. (*) 
- ~ t ~ - d / 2  

Thus for  Q = QX (5) • Q2.-1 (e) • Q2q (p) we can apply L e m m a  1 and obta in  the  isomorphism 

H ~ (Q, O) ~ H ~ (Q N :Y, 0) .  

Let  ~ > 0  be a C ~ funct ion on Q; for ~ > 0  sufficiently small we set aP'=r 

Then  the  corresponding set Y' = {z E Q I #9' (z) > ap' (0)} will satisfy again the condition (*)~ 

We then  deduce tha t  
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H~176 n Y , O ) = H ~  fi Y ,O) .  

Since U is arbitrary,  Proposition 1 is established in this case. 

Case (b). We can find among the functions gs a holomorphie f u n c t i o n / o n  C n-q, 

not identically zero, such tha t  
/ (0 )  = O, (dl)o = 0 

{zec "-'~ n UJRe/ (z )~O}c {ze  UI (I)(z) ~> 0}. 

We may  extend / to C" by  lifting / to C '~ by  the coordinate projection Cn--~ C n-q. 

Let  us assume tha t  the closed polycylinder 

v={z c"l sup 
l ~a~n  

is contained in U and tha t  maxp [/I = l .  I~et 

Q={r I sup Ir 
O~<~<n 

and let ~ : P - ~  Q 

be the holomorphic mapping defined by the equations 

t o  = l ( z ) ,  ~1 = z , . . . ,  & = zn. 

Tile image of z is thus the submanifold of Q with the equation 

g(~ )  = t 0 - / ( ~ 1  . . . . .  &) = 0 .  

L e t  r (~) = 2 R e  g(~) + ~8 ( ~  . . . . .  ~ )  + [g(~)[L 1 < s < 

and set ~) = sup (~1 . . . .  , ~k). 

Then (P(~0 . . . . .  ~ )  = (b(~x, ..., ~ )  + 2 Re g(~) + ]g(~)]~, 

so tha t  ap = q) o v. 

Consider the linear space fY~-q+l={~efJ"+ll~,,_q=...=~,,=O } and on it  the 

functions 
~1 . . . . .  ~:.-~, g" 

Since (d/) o = O, these functions can be assumed as local coordinates near the origin. 

Then each ~s, restricted to C "-q+l, is strongly O-pseudoeonvex at  the origin. 

Therefore ~) is a strongly q-pseudoconvex function in a neighborhood W of the origin 

in C '~+I. 
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Le t  us suppose t ha t  [ =  gl (as we can by renumbering the functions ~ ) .  Then  

we have o n  ~n-q+l 

@~ = 2 Re (}o - gl) + 2 Re  gx + s o + I g [ ~ + O (3) 

= 2 Re  eo + ~(~ , )o  + Ig I ~ + 0 (3). 

Thus if W is sufficiently small, we have 

{~ec ~-'+' n w l~e  ~0~0} ~{~e wl 6(~)>~o}. 

Note  t ha t  ~0, being one of the coordinates in (3 n+l, has (d~o)040. We therefore have 

in 13 n+l the  si tuat ion already discussed in Case (a). 

There  is therefore a sequence Q~ of neighborhoods of 0E@ ~+1, contained in W, 

such t h a t  let t ing 

2 = {~ e w I @~) > 0}, 

w e  have isomorphic restrictions: 

H ~ (~ ,  O) = !t~ (#, n 17, 0). 

Let  :l=Og; this is the sheaf 

/3 = ~(p). Since 3 ~ O, we thus get 

n~ 

We set Q~ = x -1 (Q~), Y = x-a (17). 

of germs of holomorphic functions vanishing on 

also isomorphic restrictions: 

We have a commuta t ive  diagram: 

0 -+  R o ( 0 .  3)  _+ •o (~)~, o )  -~  H ~ (Q~, O) -~  o 

4 4 4 
O ~ H~ ( & n ~r , 3 ) -+ R ~  ( ?2~ n ?r, O ) -+  I t~ ( Q. n r ,  O ) ~ . 

If  we show tha t  the map H ~ (Q~ f3 ~', O ) - +  H~ f~ Y, O) is surjective, then  by  the  

"f ive l e m m a "  and the above remarks  it  follows tha t ,  as we wanted,  

tt~176 n Y,O). 

Step 3. We want  to  prove t ha t  (omitting the indices v) 

H ~ (r n ~, O) -~ H ~ (Q n I7, O) 

is surjective. Now we know tha t  H ~ (Q, O) ~ H ~ (Q t3 ~r, O). 
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Hence  b y  the  same reasoning as in Step 2, Case (a), i t  will be sufficient to 

p rove  t h a t  

H~ n ~,O)--~ H~ N ~' ,0)  

is surjective.  This amoun t s  to showing t h a t  H 1 ((} n ~,  3 ) = 0  or, since Y_~ O, t h a t  

/ P  (Q n Y, O) = o. 

B u t  this is a consequence of L e m m a  1 since we now work  in C "+1 and,  f rom 

q<~n-2 ,  we get  l < ( n + l ) - q - 1 .  

Remark. The construct ion given for  the  neighborhoods Q, sat isfying conditions 

(i) and  (ii) of Proposi t ion 1, also satisfies the  following condition: 

(iii) For every v there exists e~ > 0 such that i/ r is a C r ]unction on U satis[ying 

sup f < 
zEQv I 2 

then, setting O'  = �9 + a, Y'  = {z e U [ (I)' (z) > O '  (0)}, we have that 

H ~  (Q,+I ,  0 )  ----> H o (Qu+l r~ Y ' ,  O )  

is an isomorphism. 

4. We now conclude the  proof  of Theorem 1. 

(a). We choose c a = i n f  (cl, c~),c 1,c~ being defined as in L e m m a s  1 and  2 of 

Sec t ion  1. 

Choose c wi th  c a > c > infx �9 and  a covering IU = {U~}~I of abe b y  open coordi- 

n a t e  balls in X. 

For  every  xoE~Bc we choose a coordinate  ball U~3x o and, as in Proposi t ion l ,  

we can find a closed connected neighborhood Q,+l=Q(xo) in U~ sat isfying condit ions 

(i), (ii) of Propos i t ion  1 and  (iii) of the  R e m a r k  a t  the  end of Section 3. 

Since ~Be is compact ,  we can find a finite n u m b e r  of such neighborhoods Q1 . . . . .  Qt 

Such t h a t  
t o 

~Bcc UQs. 
8=1 

N o w  let ~ be a C ~ funct ion on X with  the  proper t ies  

0~<~s~<l, 

SUpp as  C Qs, 

~8(x) > 0 V x ~ B c .  
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Ca (x) = r  + el  a l  + . - .  + e, as, 

(I) 0 (x) = r  

We can select e~ > 0 one after the other, sufficiently small, such tha t  for each s the 

function q)8 is strongly q-pseudoconvex. 

We define B~ = {x e X [ r (x) > c}. 

We then have Be = B~ ~ c B~ c . . .  c B~ (a) 

since ~8+1 >~ r  

Also, since (I)s+l - -  { ~  s ~ E8 + l ~s+l, 

w e  h a v e  R s + l  ]q8 ~ --~ - - - c c  <Q,+I. (b) 

Furthermore,  since ~ ~8 as(x) > 0 on ~Bc, 

we have Be~  cB~.  (c) 

Now conditions (a), (b), (c) will be satisfied for all choices of ~ > 0 sufficiently small. 

By  condition (iii) of the remark quoted before, we m a y  also assume tha t  

R s + l  H ~ , 0 ) - ~ H  ~ 0)  for 0~<s~<t -1  (d) 

is an isomorphism (and indeed both groups will be isomorphic with H ~ (Q~+I, 0)) .  

We finally choose a > 0 such tha t  

B~_o c B~. (e) 

This is possible since /~c = {x fi X [ (I)(x) >~ c}. 

(/3) Now let P = ~ I ( X )  be considered as the group of automorphisms o f  the 

universal covering g : 2 --> X of X. 

For l~<s~<t the set ~-X(Qs) has as many  connected components as there are 

elements in ['. Let  Q8 be one of these components; then 

The component Q8 and each one of its transforms is mapped isomorphically by  

onto Q~. 
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Now let ~ e l l  ~ (z  -~ (B~), O) 

be a holomorphie function on ~- l (Bc)=/~c.  

~s - 1  s Let Bc = ~  (Be). By  condition (b) we have 

By condition (d) it then follows tha t  ] can be extended to a holomorphie function 

l~ on ~. 
Repeating the argument  w i t h / ~ ,  / ~  instead of B~, ~ and so forth, we prove tha t  

H" (h~, o) ~ B ~ (ho, o) 
is a surjeetive map. 

Consequently, by (e), setting ~- l (Bc_. )=J~c_ . ,  

H~ 0)  -*B~ (/~o, 0)  

is surjeetive, and therefore an isomorphism, since both /~c and -Be-,, are connected. 

(y) We have proved the following statement:  

Given any  c, ca>c > infxCP, we can find a > 0  such tha t  the restriction map  

H~ (/~c-,, O) -+H~ (/~c, O) (*) 
is an isomorphism. 

Let  us now consider the set A of real numbers a, 0 ~< a < c -  inf x �9 such tha t  (*) 

is an isomorphism. 

I f  aoEA, then any  a with 0 ~<a < a o also belongs to A. 

I f  ~ , / a  o and a, EA for every v, then a oEA. 

I f  a 0EA, there is an e > 0  such tha t  a o + e E A .  

These three statements follow from (*) and from the fact tha t  all Bc's with c < c 3 

are connected. This implies tha t  A is a closed and open subset of 0~<a < c - i n f  x q); 

thus A coincides with tha t  interval and we then have tha t  

is an isomorphism. 
H ~ (~, 0)  -* ~P (Bo, 0)  
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w 2. On deformations of non-compact complex manifolds 

5. Di//erentiable /amilies o/ complex mani/olds, a) B y  a di//erentiable /amily o/ 

complex mani]olds, we mean the set of the  following data:  

a differentiable manifold M,  

a differentiable manifold ~,  

a differentiable surjective map  ~ : ~ --> M 

satisfying the  following conditions: 

(i) ~ is of maximal  rank  a t  each point,  

(ii) for every point  x E ~q we can find: 

a neighborhood W of x in ~0, 

a neighborhood U of ~ (x) in M, 

an  open set S in some numerical  space C n, and 

a diffeomorphism ~0:U • S - > W  such t h a t  

(~) prv= ~ o q) 
(fi) if cf~:U~• i = 1, 2, are any  two such diffeomorphisms, then  ~0~ 1 o~% is 

an isomorphism of ~0~ 1 (W 1 N W~) a nd  ~ 1  (W 1 N W2), endowed with the struc- 

tural  sheaves of germs of C ~ functions holomorphic on the  fibers of the pro- 

jection prv~ (i = 1, 2). 

I t  follows then  that ,  for every t EM, ~-1 (t)=Xt has a na tu rM structure of a 

complex manifold. We will take  as s t ructural  sheaf on ~ the sheaf of germs of C ~ 

functions holomorphic on the  fibers of ~ .  

Analogously one defines a complex analyt ic  (or holomorphic) family of complex 

manifolds, cf. [3]. 

b) Le t  X 0 be a complex manifold. B y  a (differentiable) de/ormation of X o we 

mean  the da ta  of 

a differentiable family of complex manifolds (~, ~ ,  M), 

a point  m 0 E M,  

an  isomorphism i : X 0 --> ~ - 1  (m0)" 

Analogously for a complex analyt ic  deformation.  

The  definitions of equivalent  deformations,  locally equivalent  deformations and  

classes of local deformations are as in [13]. 
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Given M ,  m o E M ,  any deformation (~9, W, M) of X 0, which is equivalent to the 

deformation (X o • M ,  pr~t, M )  is called a trivial deformation of X 0. 

e) We set the following definitions. 

D ~ F I ~ I T I O ~ .  A deformation (~, W,M) of X 0 is called pseudotrivial if for every 

relatively compact open set A c c X  0 we can find an isomorphism 

g,4 : A x M ---> ~ 

onto an open subset of ~ such tha t  ~ o gA = prM. 

One then derives from this the notion of a locally pseudotrivial deformation. 

])EI~INITIOI~. A deformation (~9, ~ ,  M) of X 0 is called rigid at in]inity if we can 

find a compact set K o c X 0 and an isomorphism 

g : ( X o -  Ko) x M--> ~9 

onto an open subset of ~9 such tha t  

(i) ~ og  =prM, 

(if) ~ ] ~ 9 - - I m  (g) is a proper map. 

One then defines the notion of deformation locally rigid at in/inity.  

6. a) Let  (79, ~ ,  M) be a differentiable family of complex structures. The bundle 

O of holomorphic tangent vectors to the fibers of ~ is defined. I t  is a differentiable 

bundle on ~9 whose restriction to any  fiber of ~ is a holomorphic bundle. 

Let  . 4 ( 0 )  be the sheaf of germs of C ~ sections of O which are holomorphic on 

the fibers of ~ ,  and lat  A ~'~ (@) be the sheaf of germs of C ~ sections of the bundle 

6) | 6),r|  ~ , s  where O* denotes the dual bundle of 6), 6),r its exterior power r-times, 

and the bar denotes the passage to the complex conjugate bundle. 

The operator of exterior differentiation along the fibers with respect to anti- 

holomorphic local coordinates defines a sheaf homomorphism 

: Ar.s (6)) _+ Ars+l (6)), 

and one obtains a fine resolution of the sheaf ~4 (O): 

0 -+ A (O) Z> AOO (O) ~ A ~ (O) - ~  . . . .  

In  particular Hq(~9, A(6))) is isomorphic to the qth cohomology group of the 

complex (@,~>o F (ZO, A~ ~}. 
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Let ~ be the family of closed subsets iv of ~ such that ~ [ F  is a proper map. 

Substituting the functor F with F~ we also obtain that H$ (~, A (| is isomorphic to 

the qth eohomology group of the complex {O=~>0F~(~q, A~ ~}. 

b) Let T denote the differentiable tangent bundle to M and let ~ be the sheaf 

of germs of C ~ sections of T. Then the map 

~M : H a (M, E) --> H* (~9, A (O)) 

is defined (cf. [13]). 

way through 

If the family is rigid at infinity, this map factors in a natural 

~M : H ~ (M, ~) --> H i ('~, A (0)) 

so that one has the commutative diagram 

o O~ I H (M, E) --> H (~, A (0)) 

5=~ / i  

H i (V, A (O)), 

i being the natural homomorphism. 

e) Let us now suppose that (~9, ~ ,  M) is a differentiable family of deformations 

of X0-~-l (m0).  By localization around the point m 0 of the previous considerations 

one obtains first the mapping of Kodaira-Spencer 

~:8=.--~ R~ ~(0), 

where ~l~y(O) is the first direct image of the sheaf A(O) for the projection z~. 

If we have a deformation which is locally rigid at infinity, we obtain then a 

mapping 
~:gm.~R~ ~(0), 

where ~ z~(@) is the first direct image of A (O) with supports ~v. 

One has then the commutative diagram 

g=.~R*~(O) 
&% Zi 

~1 ~(O). 

PROPOSITION 2. Let (~9, w,M) be a de/ormation o/ the complex mani/old X0= 

~ -  1 (too) ' mo  e M .  
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I /  ~ = O, then (~, v~, M) is a locally pseudotrivial de/ormation o /Xo;  actually one can 

find a neighborhood o/ X o in ~q which can be isomorphically imbedded in the product 

X o • M with a fiber-preserving map. 

This proposition was proved in [3] for a complex analytic family. The proof 

holds without any change for differentiable families. In particular, from the same 

argument one deduces for deformations rigid at  infinity the following: 

PROPOSItiON 3. Let ( ~ , ~ , M )  be a de/ormation o/ X o = v ~ - l ( m o ) , m o E M  which 

is rigid at infinity. 

The necessary and su//icient condition /or (~, ~ ,  M) to define a locally trivial de- 

/ormation is that ~ = O. 

d) Analogous considerations could be repeated for differentiable families of dif- 

ferentiable manifolds. In this case the sheaf ~4 (| would be replaced by a fine sheaf 

and analogue of the previous propositions would lead to the following conclusion ([3]): 

PROPOSITIO~ 4. Let ( ~ , ~ , M )  be a di//erentiable de/ormation o/ a di//erentiable 

mani/old X o = ~ -1  (mo) ' mo E M.  

(a) one can /ind a neighborhood o/ X o in ~ which can be imbedded in the product 

X o • M with a fiber-preserving map. 

(b) i/ (~, ~ ,  M) is rigid at in/inity, then (~, ~ ,  M) is locally trivial. 

7. Families o/ uni/ormizable structures, a) Let  (~, ~ ,  M) be a differentiable family 

of complex manifolds parametrized by a connected and simply connected manifold M. 

Let  z : ~ - - > ~  be the universal covering manifold of ~ ;  ( ~ , ~ ' o z ,  M ) c a n  be con  

sidered as a new family of complex manifolds. 

Let  D be a complex manifold; we will say that  (~, ~ ,  M) is a / ami ly  o/complex 

mani/olds uni/ormizable on the mani/old D if we can give an isomorphism 

(~ : ~--> D • M 

(with respect to the sheaves of C ~r functions holomorphic respectively on the fibers 

of ~ o ~  and pr~) so that  the following is a commutative diagram: 

~ 

~--> D •  M 
~ ~ pr~ 

~ - ~  M. 

We will always assume in the sequel tha t  ~q is connected. Hence ~ will be connected 
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and simply connected. I f  follows tha t  D must  be connected and simply connected 

and that ,  for each t EM,  
~1~00 " -1  

D • {t} -~ X~= ~ - 1  (t) 

is the universal convering of Xt. 

Let  F = ~  1 (~); this can be viewed as the group of automorphisms of the uni- 

versal covering ~ : ~ - - > ~ .  From the previous remark it then follows that ,  for each t, 

we have 
~ (Xt) ~ F. 

b) Let  A u t ( D ) b e  

manifold D. 

the group of all complex analytic automorphisms of the 

By  means of a we identify F with a - 1 F  a as a group of automorphisms of D • M. 

Every  element ~ E F represents then a map D • M--> D • M given by  equations of 

the type 
{ z--> ~ (z, t) zED,  t E M ,  

t-->t 

where, for every t E M, ~, (z, t) E Aut(D). 

We will assume that Aut(D) (with the compact  open topology) has the structure 

o/ a Lie group. (1) This is the case for instance for a bounded domain D in C ~ (cf. [9]). 

One sees then tha t  to give a family of complex manifolds uniformizable on D is 

the same as to give for every t E M a representation 

~t: F --> Aut (D) 

which is discrete, acts freely on D (i.e., without fixed points), and depends differ- 

entiably on t. 

c) As in Section 5 we define then, for a manifold X 0 whose universal covering 

is isomorphic to D, the notion of a deformation of X 0 in the class of uniformizable 

structures on D. This notion, due to A. Weil [21], is the most  natural  for the in- 

vestigation of properly discontinuous groups. 

8. Holomorphic de]ormations o/ uni/ormizable structurez. In  the definitions given 

before, we can replace differentiable families by  complex analytic families of unifor- 

mizable manifolds. 

(1) :For a complex manifold D this  m a y  no t  be the  case. Fo r  instance,  if D = C ~, the  t ransfor-  

mat ions  of type  x-->x+P(y), y-->y where P(y)  is any polynomial  in x cannot  belong all to  the same 
Lie group.  
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The condition of complex analytiei ty for the family is a very restrictive one, as 

appears from the following theorem: 

THEOREM 2. Let D be a bounded domain in Cn,. A n y  complex analytic /amily  

o/ complex mani/olds uni/ormizable on D is locally trivial. 

Proo/. Le t  (~,  v~, M )  be a complex analytic family of complex manifolds uni- 

formizable on D. 

Since the theorem is of local nature, we may  assume tha t  the parameter  space 

M is the unit  ball in Ca: 
M={tecml~lt~l~<l }. 

On the product D • M we have then given a group F of complex analytic auto- 

morphisms of type 

{ z~--+~+~(z,t) l <~<<.n 

Y =  t~ ___> t ~ l <~ t~ <. m , 

where now, by  assumption, the functions 7~ (z, t) are holomorphie in z and t. 

All we have to prove is tha t  actually the functions 7 ~ (z, t) for every ~, E F and 

l ~ < ~ < n ,  do not  depend on t. 

Now M and D are bounded domains; so we can consider the Bergmann metrics 

dS~M and ds~ of M and D respectively. One easily verifies tha t  for the product of 

two bounded domains the Bergmann metric is the sum of the metrics of the factors. 

Thus 
ds~ • ~, = ds~  + d s ~ .  

Any complex analytic automorphism of D • M is an isometry with respect to the 

Bergmann metric. 

Let  (%, to)ED • M and let ~, be given. Then 

_ I z~ --> 7 (z~, to) l <~ o~ <~ n 

is also an automorphism of D • M. We consider the automorphism 7 o7o 1. This will 

be the identi ty on D • {to}. 

We take (%, to) in the origin of the coordinates in C"• cm; then the equations 

of 7 o ~  1 will have expressions of this type: 

Iz ' = A z + B t + O ( 2 )  

~'~176 [ t'=t, 

where A and B are constant matrices. 
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Since the origin is a fixed point  and ?O?o I is an isometry for the Bergmann  metric, 

it follows then  t h a t  we mus t  have B =  0. Moreover, since for t = 0  the  mapping  is 

the identi ty,  then A = I .  Thus the linear pa r t  of 7O7o  I is the identity.  B y  a theo- 

rem of H.  Car tan [8, 9], since D x M is bounded,  it follows then t h a t  

This proves the theorem. 

7 o ?o 1 = ident i ty  i.e., ? = 70. 

Remark 1. We have actual ly  proved the tr ivial i ty of the family on any  coordi- 

nate  ball of the base space M. 

Remark 2. There are no restrictions on the dimension of D. Thus for instance 

if (~0, ~r, M) is the family of curves of genus p > 1 over the Teichmiiller space M, 

then the uniformizing parameter  on X~= ~ 1 (t) on the  Poincard uni t  circle cannot  

depend analyt ical ly on t (or ~ is no t  analyt ical ly isomorphic to the  produc t  of M 

and the uni t  circle). This fact  was first pointed ou t  to us by  L. Bers. 

w 3. Deformations of structures uniformlzable on bounded symmetric domains 

9. W-ellipticity. We gather  here some known facts abou t  the ~-cohomology t h a t  

we will need later. 

Let  X be a complex manifold of pure dimension n. Let  ~r : E - +  X be a holo- 

morphic vector  bundle on X. We denote by  CPq(X, E) the vector  space of C ~ forms 

of type  (p, q) with values in E;  by  O"q(X, E) we denote the subspaces of those forms 

with compact  support.  

Le t  h (u, v), u, v E - 1  (x) be a positive definite hermit ian scalar p roduc t  on the 

fibers of E depending differentiably on the point  x E X .  I f  on the coordinate neigh- 

borhood U, E Iv - U • C r (r = rank  E) and if u = t(~ 1 . . . . .  ~r), v = t(~ h . . . . .  ~r), then on U 

h(u, v) = t~ h~ ~, 

where hv is a positive definite hermit ian matr ix  of class C ~ on U. The local forms 

lu = h~ 1 ~ h~ 

define a ~-connection on E and  the curvature  form of this connection is 

sv = ~ 1u = ~(h51 ~ hv) 

locally given by  a r • r matr ix  of (1, 1) forms. 
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Given 90 E C pq (X, E), then 90u = 90 Iv is given by a column vector with r-components 

each of which is a scalar form of type (p, q). The exterior multiplication by sv gives 

a new column vector svA90u of type ( p + l ,  q + l ) .  One verifies that  we thus obtain 

a hnear mapping 
e(s) : C "~ (X,  E)  ~ C "+ ~' ~+~ (X,  E).  

If  E* is the dual bundle of E, then one can define an anti-isomorphism 

#: c .0 (x,  E) -~ C aT (X, E*) 

locally given by # 90~ = )~v q~. 

We now consider on X a hermitian metric ds ~. We can then define the ~- 

"operator" 
: C ~q (X, E) -~  C ~-q'n-~ (X, E) 

normahzed so that  ~e ~ = ( - 1) p+q. 

Given 90, F 6 C pq (X, E), then 

t90 A ~e # ~p= A(90, v/) dX 

is a (n,n) scalar form that  we can write as A(% v2)dX, dX being the volume ele- 

ment of the metric ds ~. 

If  90, yjEOvq(X,E), then 
@ 

(90, w) = | A ( 9 0 ,  ~) dX 
dx 

is finite and defines on ~ q ( X , E )  a complex pre-hilbert structure. We denote by 

s (X, E) the completion of ~Pq (X, E) with respect to the norm [[ 90 I[ = (90, 90)1/~. 

Since E is a holomorphic vector bundle, exterior differentiation with respect to 

complex conjugate coordinates defines a linear map 

: C ~q (X, E) -+ C ~+1 (X, E) 

with ~ =0 .  I ts  formal adjoint is the linear map 

b: C ~+1 ( x ,  E)  -+ C ~ ( x ,  E)  

given by b = - ~ # ~ # ~e. 

The Laplace-Beltrami operator is defined as 

[ ]  = ~ b + b ~: C ~ (X, E) -> C ~ (X, E). 

For compactly supported forms one has therefore 
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(D ~ , ~ ) = ( ~ ,  V1 ~) = ( ~ ,  ~ )  + (b~, b~). 

The completion of ~)~q (X, E) with respect to the norm 

N(~) = (11 ~ II 2 § II ~ v II 3 § II b ~ II 3)112 

is denoted by  W ~q(X, E). 

D~FI~ITION.  We say tha t  E is W ~q elliptic if hermitian metrics on the fibers 

of E and on X are given, so that ,  with a positive constant c >  0, one has for every 

~v E ~ q  (X, E) the inequality: 

1l~l l2-<c( l l~ l l~§  11~112). 

P R O P O S I T I O N  5 (o f .  [4] or [5]). I /  E is WPq-elliptic, then/or every/EI~'q(X,E) f) 

C~q(X, E) there exists a unique element x EW ~q(X, E)N C~q(X, E) such that 

E]x=/. 

We now assume tha t  the hermitian metric ds 2 on X is a complete metric. In  these 

conditions for any a >  0 one has the following inequality for all forms ~v E C ~q (X, E) 

(any p and q)([4] or [5]): 

] l ~ l l  2§ I [ ~ l l  2 -<~ II~ll~§ ~ II D~II  ~. (~) 

Obviously the interest of this inequality is for those forms such tha t  

Ilvll2< ~ , l l n v l l ~ < ~ .  

Also in the case of a complete metric the space W'q(X, E) can be identified 

with the subspace of 1: pq (X, E) of those elements ~v for which the distributions ~0  

and b ~v can be represented by elements in 1: ~q+l (X, E) and s (X, E) respectively [5]. 

From inequality (1), if follows in particular tha t  if / E 1: pq (X, E) n C pq (X, E), any 

x 6 s  NC'q(X,E)  satisfying the equation ~ x = /  must  be an element of 

W ~ (X, E)N C'q(X, E). If  E is W~q-elliptic, then it follows tha t  

II~ll-<cll/ll. 

TH~ORE~ 3 ([4], [5]). I /  E is W~q-elliptic with respect to a complete metric on X,  

then/or every / ~ ~ q  ( X,  E) N C ~ ( X, E) such that ~ / = 0 there exists a unique x ~ W ~ ( X,  E) fl 

C~q(X, E) such that 
/=~bx, b~x=O. 

18 -- 642907.  Acta mathematica. 112. I m p r i m ~  le 4 d~eembre  1964 
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10. Kiihler and Einstein metrics, a) If the metric ds ~ is a Kghler metric and if 

o9 = t -TZ-1 ~ g~ dz ~ A d~ ~ 

is the associated exterior form, one can define the linear mappings 

L : C p~ (X, E) -> C ~+1'q+1 (X, E) 

A : C~+I"q+I(X, E) --> C € (X,  E), 

where L ~ = o )  A~ and A = - X - - I L - x  - is the formal adjoint of L. 

�9 One has the following identity (cf. [7]): 

[ ] -  ~ e - ~ � 9  ~e = V -  1 (e ( s ) A -  A e(s)) = V -  1 [e(s),A]. 

Now since for C E]O~q(X,E) one has 

( ~ - ' ~  ~ ~ , ~ ) = ( D  ~ r ~ ~ ) = l l ~ l l ~ + l l b ~  ~ll ~>o, 

one obtains the following inequality for any q0 E~Pq(X,  E): 

(V -  1 (e (s) A - A e  (s))~, q~) <~ I1~11 ~ + IIb ~11 ~. 

Therefore whenever we are able to establish an inequality of the type 

(Y-- ~ (e ( s ) i  - Ae (s)) ~, ~)/> c II ~ II 5 

with c > 0, we get a criterion of W-ellipticity, 

b) We consider now the special case where 

E is the holomorphic tangent bundle 0 to X, 

is a form of type (0, q) with values in O. 

Then the Kghler metric on X can be assumed as a metric on the fibers of O. We 

can compute the connection and curvature forms. One has for the 0-connection: 

l~ = ~ F ~  dz ~ where F~  = ~ gos O ~  ; 
# 

for the curvature: 
- o F ~  

s~ = ~ R ~  dz ~ Adz  r where R~ ~ = 8 

(the F's are the Christoffel symbols and /i~~162 is the Riemann tensor). 
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Since 9 is of type  (0, q), A ~  = 0. so t h a t  

V ~ -  1 ( e ( s ) A - A e ( s ) ) c f  = - ~ / -  1Ae (s) ~0. 

A 

L e t  B = (fl~ . . . .  , flq), B" . . . ,  , = (fl~ .. . .  fl,, flq); then  for 

one obtains:  

m 

q 
( /  1 A e ( s ) ~ ) ~  ~ ~ v _  - v - ~ = -  R vcfB ~ E ( - 1 ) ' R ~ v Z ~ , ~ o t i ~ ; ,  

7 i=1 fl, Y 

where R~fi = ~ R r ~  

is the Ricci tensor. 

c) We now introduce the assumption t h a t  the  metric is a K~hler-Einste in  metr ic ,  

i.e. t h a t  one has the relation: 

R 
R ~  = ~ n  g~ '  

where R = 2 ~ R~ is the scalar curvature  of the metric and  is constant  on X.  

then obtain:  

. _ __ , ,  , ~ ( - l / - 1 A e ( s ~ q ~  R ~ q - - - . ~ o ~  _ Z ~ ( - 1 ) ' R ~ , ~ ;  
i l l  fl,7 

and therefore: 

W e  

R 
- f ~  1 A  (A  e(s) q~' 9)  = - 2 n  A (cf , cf) + - -  

1 - -  

(q - 1)T ~ R~r~ c f s  cp ~'~w. (I)  
�9 ~ , f l ,  y , &  B 

Let  $ = {$~}, ~, fl = 1 . . . . .  n, ~a  = $~ represent a point  of c�89 We consider for  

every x o E X  the linear map  L(Xo) of C �89 into itself given b y  

L (Xo) : $~ -+ ~ R , ~  (x0) ~p. 
a, fl 

I d e n t i f y i n g  C �89 with the fiber of the fiber bundle of symmetr ic  tensors of the  

described type  and  using on it the metric induced by  the metric on X, we have a, 

scalar product  

( ~ , ~ ) = ~  for ~ , ~ e C  �89 

Now let (~(x0) be the smallest eigenvalue of L(xo) so t h a t  

< L ( x o ) ~ ,  ~ > ~ ~(Xo) < ~ , ~  > V ~ E C  �89 

18" -- 642907 
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By the symmetries of the Riemann tensor (R~Y~ =R~#o = R ~ )  we then obtain: 

R;,lJ~a 9~,;~, q~.os, = �88 ~ R;h~ a (9~S,& + 9;,,~') (cP ~'~" + 9 ~'~B') 

>/1 ,~(zo) Y (~oa.~. ~.r~. + ~a.~. ~"#~'). (2) 

Now we have ~ 9~,~" ~.r-"  = q ! A(~, (p). (3) 

1 
where ~0~ I~,...~,~ = q - ~  { ~  h,...~, - ~ ,aL . . .  ~, + . . .  + ~, .  ~,-.. ~-,~}- 

Therefore ~ ~ . ~ ,  ~r,~s" ~ (q _ 1) ! A(~, 9). (4) 

From (1), (2), (3) and (4) we deduce the following 

L~:M~A 5 (el. [7]). Let X be a complex n.dimensional Einstein-Kghler mani/old 

with scalar curvature R and Riemann tensor R~ara. Let, ]or x o ~ X,  ~(xo) be the smallest 

eigenvalue o] the linear trans/ormation 

L(x o) : ~ --> ~ R,~a~ (Xo) ~ (~a = ~ ) .  

I /  ~(Xo)<0, then /or any q~ ~C~ 6))) one has at Xo: 

_ 1 / _  1A~o(Ae(s)cf,~)>~{~(xo ) q + l  R }  2 2-n A~. (~, ~). 

:Now we remark that  
R = 2 ~. R~ = 2 trace L(xo) >1 n(n + 1) ~(z0) 

so that  if R <0,  then certainly (~(x0)~<0 at each point of X. 

COI~OLLARY. I /  X is n.dimensional Einstein-Kdhler with R < 0 ,  then 

~(Xo) ~< R/n(n  + 1) < 0, 

R ( 1)}> .and i] 

Shen the tangent bundle 6) is W~ 

11, Bounded domains and their quotients. a) Let D be a bounded domain in Cn; let 
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.~ = K(z) dz 1 A ... h dz n A d~ t A ... A d~" 

be the Bergmann kernel; let 

g~Z (z) dz ~ d~ ~ = ~. ~ log K(z) 

be the Bergmann metric; and let 

(�9 d X  = det (g~ (z)) dz 1 A ... Adz  n A dg t A ... A d~ '~ 

be the corresponding volume element. Clearly . ~ /dX  is a function on D invariant. 

by  analytic automorphisms; in part icular  it is a constant if D is homogeneous. Now 

since the Ricci tensor is given by  

~2 log det (g~) 
R ~  = - az ~ az ~ 

we obtain the following (cf. e.g. [12]): 

LEMMA 6. I /  D is a bounded homogeneous domain in C n, then the Bergman~r 

metric on D is Kiihler and Einstein; the scalar curvature is R = - 2  n. 

b) To a bounded homogeneous domain we can therefore apply the criterion of 

W-elliptieity given in the Corollary a t  the end of Section 10. We remark tha t  ~(x0). 

is now a constant. 

In  particular for the irreducible bounded symmetric domains, following the classifica- 

tion of C. L. Siegel [17] and the table, p. 499 of [7], we obtain the following data :  

Type of D dim cD | is W~ for 

Im.m" (l<m~<m') r a m "  O<~q<m+m'- I  

IIm (m~>2) � 8 9  0~<q<2m-3  
IIIm (m~>l) � 8 9  O<~q<m 

IVm (m>~3) m 0~<q<m-1 
V 16 0<q<  I1 
VI 27 0~< q< 17 

We note tha t  R / n ~  is not changed if we replace the given metric by  a propor- 

tional one. 

c) Let  D = D i x . . . x D r  be a product of r bounded homogeneous domains D~, 

1 ~< i ~< r. Let  R / n  ~ and R~/n~ ~ be the corresponding invariants for D and D~, 1 ~< i ~< r. 
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Then since the Bergmann metric on D is the sum of the Bergmann metrics on the 

factors, one obtains tha t  
R R~ 
n--~ = Inf  " 

n i  (~t ' 

hence from the above table and the corollary of Section 10 we deduce [7] in par- 

ticular the following 

THV.OR~M 4. Let X be a complex mani/old whose universal covering space is 

isomorphic to a product D = D 1 • ... • o/ bounded irreducible symmetric domains Dt 

(1 <i~<r).  

Let 0 be the holomorphic tangent bundle o[ X and let us consider on X the Kiihler- 

Einstein metric which on the universal covering reduces to the Bergmann metric. 

I /  d ime D~ >~ 2 /or all i (1 ~<i ~<r), then 0 is W~ i.e., there is a constant 

c = c ( D  I . . . . .  Dr) such that /or any q ) E O ~  we have 

In  particular, since the K/~hler-Einstein metric considered on X is a complete 

metric, then for every q E E ~  0 ) N C ~  0)  such tha t  ~ q = 0 ,  we can find 

~ Es176176 O) n ~~ O) 

such tha t  ~ = ~ ~p. 

12. Hermitian metrics close to the Bergmann metric. In  the sequel we have to 

consider hermitian metrics not necessarily K/thler but  close to the Einstein and K~hler 

metric of the previous section. We need to prove tha t  if the metric is perturbed 

only on a compact set and if the perturbat ion is sufficiently small, the contention of 

Theorem 4 is still valid. 

a) General hermitian metrics. We adopt  the notations introduced in Section 9 

and let 

ds ~ = 2 tdz g dz = 2 ~. g~$ dz ~ dz ~ 

be the hermitian metric on X. Let  | denote the dual of the holomorphie tangent  

bundle on X. 

We consider on E | 1 7 4  *~ (where O*v = A ~ 0 * ) t h e  connection defined by  

1 = h - l ~  h on E, the connection defined by  g- i  ~g on 0 ,  the riemannian connection on ~). 

The covariant  differential operators V and V will be computed with respect to the 

chosen connections: 
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v : c ~q (x ,  E) -+ ~ (x ,  E | 0"),  

: ~,~ (x ,  E) -+ C "q (X, E | ~)*). 

I n  t e rms  of the  curva ture  of the  chosen connections one defines the opera to r  

(cf. [7] n. 13) 
: 0 ~r ( x ,  E)  - ~  U ~" (X, E) 

(note t h a t  ~ = 0  if q=O). 

The ident i ty  we used in the  K~hler  case was 

[] - -)+-ID-)+ = V -  1 ( e ( s ) A - A e ( s ) )  (K~thler). (1) 

This  is now replaced b y  an  ident i ty  of the  t ype  (cf. [5] n. 13). 

( [ ]  - -  - ) ( - - IF]  =)(-)~ : ( g - -  ~ - 1  ~-)+) (p g-F1 (p -l-F2 V q~-t- Fa V (p, (2) 

where F I F ~ ,  F a are l inear mappings :  

F1: ~'~ (x ,  E) -+ C~ (X, E), 

~'~: c ,~ (X, E | O*) --> C "~ (X,  E),  

P~: v ~ (x ,  E | 9*) -+ V "~ (X, E), 

which are identical ly zero if the  metr ic  is K~hler ,  and  in t h a t  case 

u - ++ -1 z ++ = ~ 1 (e (s) A - A e (s)) (Ki~hler). (3) 

The  local expressions of F1, F~, F a are given by  l inear funct ions in the  components  of 

~, V ~, V ~, respect ively,  wi th  coefficients which are polynomials  in the  metr ic  tensor  

ff:~ and  g:~, in the  torsion tensor  S~r, in the  components  of the connection F~+, and  

in the  covar ian t  der ivat ives  of these components .  

The relat ion between the  opera tors  u and  V and the  "Dir ich le t  n o r m "  is g iven 

b y  the  following equali ty:  

II ~ vii ~+ (~v, v ) =  II ~ II ~+ IIt)v II ~ (4) 

for  a n y  ~o E O "q (X, E) ([5] n. 15). 

L~MMA 7. For any compact set K ~ X  we can /ind a constant C ( K ) > 0  such that 

]or any q~ E ~ q  ( x ,  E) we have 
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Proo/. a) First we establish the desired inequality for forms qo ~ ]0 vq (X, E) with 

support in a given compact set K~ ~ X: 

(i) supp q ~ K1. 

From (4) we deduce first that  we get an inequality 

II ~ ~ II ~ -< II ~ II ~ + II bw 11' + v~ (K~) I] r 3 

if we choose C~ (K1) so that  

I ( ~ ,  ~)1 -< c ,  (K~) II ~ II ~- 

This is certainly possible in view of assumption (i). 

We need now an analogous estimate for I] V~][ ~- First we remark that  it is 

enough to establish such an inequality for forms of type (0, q) only. In fact, any 

~o E DPq(X, E) can be considered as an element ~ E~0~ E |  | and one has, by 

the choice made of the connections: 

II v ~  II = I1 v,~ II, II ~ II = II ~ II. 

Now if ~ E ~oq (X, E), then #~ E ~O r176 (X, E*) and 

so that  

~#~ =~#~, b#q-- 0, 

II ~#~11 ~-- ( ~ ,  #,p, #~). 

Moreover, V~ and v g q  differ only by terms not involving derivatives of the 

components of q and analogously for ~ and V#q. We then have inequalities of 

the type: 
II Vf~[I'<C~(K1)[[~[I :~+ I[ ~ r 

II ~#~ll~<c~(/~)I1~11 ~+ II v r ~, 

II v ,pl]~< O~(K~)I1~11~+ II ~#~11 ~- 

From this last inequality we get an inequahty: 

II v~ll ~+ 11 ~11~ < 11~113 + II b~lr + (c1+ 03)i1~11~+ ([]~.#~, N~). 

Also from (2) we get (since xE,//~=0) 

(~E* #~, #q0) = (D~,+#q,~egq)  + ( x + # q , + # q )  + (F1 #q, #~) 

+ (F2 v#q, #q) + (F. 9 #~, #~). 
Again by assumption (i) we get estimates: 
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[ (~ 9(-#(p, #(~)] ~ Ga (K1)[[(p [[2, 

(~'~1 #~, #~)[ <G3(KI)II~ll', 

(F,V#~,#~)I<Ca(K1){(~IIv#~]I'-t -!(y 1[~o1['}, 

for any  (~> O, while we have for any  ~E Ooq (X, E) 

We then derive, for sufficiently small ~, an inequality 

fl) Let  cpeO vq (X, E) and let K c / ~  1 where K 1 is a fixed compact neighborhood 

of K in X. Let  ff be a C  ~ f u n c t i o n , 0 ~ < f f ~ l , w i t h s u p p o r t i n K  1 and = l o n K .  We 

apply the previous inequality to /z~0 (which satisfies assumption (i)) and we get 

II v~  I1~ + II 9~  II~-<< c ,  (K,) {11 ~,v II ~ + II ~+,~ I1" + II ~),,, v lib. 

But  now we can find a constant C 5 (K~) such tha t  

II ~ff+ I1: < II e+ II ~ + c :  (Ki) II + I1:, 

lit)if+ I1: < II~+l l :+ Cs(K,)II+ll:, 
while I1~'~ I1' < II ~ I1'. 

From these inequalities the lemma follows. 

b) We consider now a deformation (~, zy, M) of the complex manifold X; we 

assume tha t  
M = { t e R " l ~  t~ <l} .  

Let  ds~ = 2  ~ g ~  (z, t) dz~d5 ~ be a hermitian metric on the fibers of lq which depends 

differentiably on the parameters  t. 

Let  Y be a closed subset of ~ such tha t  ~ ]  F is a proper map. From the pre- 

vious Lemma 7 we derive the following: 

COrOLLaRY. Let K~ = ~ ~ X~ where X~ = v~ -~ (t). We can. lind a continuous/unc- 

tion c(t) such that /or any q~e~)~q(~,~) we have 
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II v,~,ll%, + II ~,~,11%, < c(t){11~,11~ + I1~,11~ + II b~,ll~}. 

P r o o [ .  Inspect ing  the  proof  of the  previous  l emma  one sees t h a t  the  constants  

c~ (Kt), 1 ~< i ~< 5, are locally bounded  funct ions of t (i.e., given t o E M there  is a neigh- 

borhood U(to) in M and a cons tant  c o > 0 such t h a t  for t E U(to), 0 < cl (Kt) < %. Hence  

the  cons tant  e(Kt) of the  l emma  is also locally bounded.  Thus  there  exists a con- 

t inuous funct ion c(t) > e(Kt) V t E M .  

We can now prove  the  following proposi t ion t h a t  we will need later: 

:PROPOSITION 6. We assume that the hermitian metric ds ~t has the /o l lowingprop-  

erties: 

a) on X o O I.J ( X t - K t )  the metric is a K~ihler metric; 
t e M  

b) at each point x e X o U  U ( X t - K t )  we have [or any 99ECPq(X,O) 
t e M  

A t(l/~- 1 [e (s), A] ~0, ~0) ~> c o At (F, ~0) 

(where Co> 0 is a constant independent o/ t and q~). 

Then we can / ind e > 0 such that /or any q~ E O pq (X, O) and any t E M with ~. t~ < e 

w e  h a v e  

Co II ~,11, ~ < I1~,11, ~ + II b ~,11, ~. 

Proo]. F r o m  ident i ty  (2) we get  

Le t  ~ = X  o U ( ~ - F ) ;  a t  each point  of ~0 we have  b y  the  Kghle r  a s sumpt ion  a) 

~ -  + - l ~ e  = 1 / :  1 [e(s) ,A].  

F r o m  b) and  the fac t  t h a t  ~t and  + t  depend cont inuously on t we get  for a n y  

~o e D ~ ( X ,  0):  

( (~  _ + -1  x + ) ~ t ,  ~ t )  = ( ( ~  - + -1  x + ) ~ t ,  ~ t ) x , - K ,  + ( (~  - + -1  ~ + ) ~ ,  ~)~: ,  

/> Co II ~, IILK, + ~ Co II ~, IlL <~) 

provided t is sufficiently small,  say  ~ t~ < e. 

Also the  opera tors  F~t vanish  on ~/~, hence their  suppor t  is in Kt  and  we thus  

can find a cons tan t  c 1 (e)>  0 such t h a t  

l im c~ (e) = O, 

and  such t h a t  for a n y  t wi th  ~ t~ < e  we have:  
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At (Fit ~, Fit q~) <~ c 1 (e) At (~, ~), 

At (F2tV00, F2tV~) < c 1 (e) At (V~, V~), 

At (F3t ~ ,  F3t ~ )  <c~ (~) A t ( ~ ,  ~ ) .  

We then get from Schwarz's inequality for any a >  0 

C 1 (E:) I(F2t vv ,  v)l + I(F~t ~ ~, v)l ~ < ~ l l ~ l l e + - ~ ;  (11 vv l l~ ,+  II ~ l l ~ , ) .  

Moreover, by the previous lemma 

II v~11%, + II ~ v  11%, < c (t) {ll vll ~ + l i ly II e + 11 bvlle} �9 

From (~), (fl) and these estimates we thus get for ~.t~ < e: 

,coll~{{2 ~<�89 {3a +Cla (~) (1 + c(t))} [,~olle + ( cl ? : ( t ) +  1)(1,~01{2 + [[b~,le). 

Now we choose a=~gc o. When e-->O, the coefficient of ]1~0[[ e on the right-hand 

side tends to co/12 , while the coefficient of [[~[[e+llb00[[~ tends to I. Hence if e is 

sufficiently small they are less than c0/6 and 2. From this we get the result. 

13. The rigidity theorem. Let M={tERml ~t~< 1} be the unit ball in R m. We 

want to prove the following 

T~EOI~V.M 5. Let (~, ~ ,  M) be a di]/erentiable /amily o/de/ormations o/ a complex 

mani/old Xo=~-l(O).  We assume that 

a) the /amily is a /amily o/uni/ormizable structures on a bounded symmetric domain 

D none o/ whose irreducible components is o/ dimc= 1, 

b) the de/ormation is rigid at infinity, 

c) X o is a q-pseudoconcave mani/old with 0 ~q <. dimc X -  2, 

d) the /undamental group ~1 (Xo) is finitely generated. 

Then the whole de/ormation (~, v~, M) is trivial. 

Proo/. ~) From assumption b) and Proposition 4 we deduce the existence of a 

diffeomorphism 
g:Xo• M--> ~ 

with the following properties: 
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(i) g is f iber -preserv ing  i.e. prM = "6Yog, 

(ii) for a convenien t  compac t  set  K o C X o  the  m a p  

g : (X o - Ko) x M --> g ((X 0 - K o) • M),  

is an  i somorphism.  

Le t  q) be a cont inuous  funct ion  on X o which is s t rong ly  q-pseudoconvex on the  

complement  of a compac t  set  K c X  o and  such t h a t  

Bc={xexo]r ~ x  Vc>inf r 
x, 

W e  m a y  assume t h a t  K = K 0 c Bc, where c o > infxo (I). 

Le t  ~t = g  ( ( X - B  co)• M) and  set  on 

=lCo if v E ~ - . , 4 ,  

~F(v) [ (l)oprx. og -I if vE~4. 

Then ~F is cont inuous  on ~ and  i ts  res t r ic t ion  to  Xt=v~- l ( t ) ,  (teM)will be s t rong ly  

q-pseudoconvex outs ide  the  set  Kt=g(B~, z {t}). Moreover  the  sets 

B~ (t) = {x e Xt I u~. (x) > c} 

will be re la t ive ly  compac t  in Xt for c >  in/xo (I)= in~x, ~T" Ix,. 

I t  follows then  t h a t  for a n y  t EM, X~=v~-~(t) satisfies the  same assumpt ions  

requi red  for X o. 

fl) We  now r e m a r k  t h a t  the  group of ana ly t ic  au tomorph i sms  of X 0 is a Lie 

group.  This follows f rom the  

LEMMA. Let D be a connected, simply connected, bounded domain in C". Then/or  

any mani/old X whose universal covering is isomorphic to D the group Aut (X)  o/ all 

complex analytic automorphisms o/ X is a Lie group. 

Proo/ o/ Lemma. We know t h a t  A u t ( D )  is a Lie group b y  a theorem of H. 

Car tan  [9]. Le t  F = g l ( X  ) be considered as a discrete  subgroup  of' Aut(D) .  L e t  

: D --> D / F  = X be the  n a t u r a l  projec t ion .  Since eve ry  holomorphic  m a p  T ::Y--> X 

of a s imply  connected  mani fo ld  Y into  X can be fac to red  th rough  the  universa l  covering 

m a p  z : D--> X,  i t  follows t h a t  for a n y  a E A u t  (X) we can f ind ~ E A u t  (D) such t h a t  

This means  t h a t  

a o ~ ( x )  = ~ o ~ ( x )  u  

~eN(F)={aeAut (D)l~r=r~}. 
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We thus  hawe the  exac t  sequence 

e --> F --> N(F)  --> Aut  (X) -+ e. 

Since N(F)  is a closed subgroup of Aut(D),  we see t h a t  N(F)  and  hence A u t ( X ) =  

N ( F ) / F  is a Lie group. 

~) We now r emark  t h a t  i t  will be sufficient to p rove  the  following 

P R O r O S I T I O N  7. l e t  ( ] 9 , ~ , M )  satis/y the assumptions o/ Theorem 5. Then 

(~, ~ ,  M)  represents a locally trivial de/ormation o/ X o. 

I n  fact ,  if follows first  t h a t  all fibers X t = v ~ - l ( t )  of ]9 ( V t G M )  are isomorphic 

because the  local t r iv ia l i ty  entails t h a t  (t C M [ X t  "~ X0} is open and  closed in M.  

Then  by  the  previous  r emark  and  the  local t r iv ia l i ty  if follows t h a t  (~9, ~r, M)  

is a fiber bundle over  M,  wi th  typica l  f iber X 0 and  with  s t ructure  group Aut  (X0) 

which is a Lie group. 

Since M is contractible,  (~,  ~ ,  M) is topological ly trivial ,  hence also different iably 

t r ivial  (cf. [19], p. 25). This implies Theorem 5. 

14. Proo/ o/ Proposition 7. o:) Le t  ~ / ~  (Uf} be a locally finite coordinate  covering 

of ]9 wi th  coordinate  patches  (z~, t) and  coordinate  t rans format ions  

{ z~' = h~5 (zj, t) 1 ~< a ~< n = d i m c  X 0 

t ,  = t~ 1 <<. tz <~ m. 

Le t  F = g(K o • M).  We m a y  assume wi thou t  loss of general i ty  t h a t  the funct ions 

h~ (zj, t) are independent  of t whenever  U~ fl Uj N F = O. Le t  v = ~ T  v ~ (t) ~/~tg be a C r162 

vector  field on M and let us consider a t  a poin t  p E U~ fl Uj, p = {(z~, t) = (h~j (z s, t), t)}, 

0,s ( ,, t) = 5 v" (t) - -  
at .  

Then  {0~s)EZI(~/,(~) is the  deformat ion  coeycle corresponding to the  vector  field v 

and  the  coordinate  covering ~/. 

B y  the  previous assumpt ion  we have  

supp {0ij} c F1, 

where /v 1 = g ( K  1 • M),  K 1 being a convenient  compac t  neighborhood of K 0. 

19 - 642907. Acts mathematiea. 112. I m p r i m 6  lo 4 d6cembro 1964 



2 8 6  A. ANDREOTTI AND E. VESENTINI 

Let  {Q~} be a C ~ parti t ion of unity, subordinate to ~/, and set 

~ (z,, t) = Z QJ 0~ (z,, t) on Ui. 

Oz~_ ~,_ O~ We get Z r ~ ~i - . ,  

so tha t  ~ = ~yj~ =~p~j. Oz~ 

is a (0, 1) R-closed form with values in O, and 

supp q c F:.  

The form + is the element corresponding to the class of {0+s} by  the Dolbeault iso- 

morphism. 

I f  qt=q~[Xt, then for every t E M we have 

q~t e D 01 (Xt, Or) 
where Ot = 0 I Xt. 

fl) We consider 
~ : D x  M---> ~ 

the universal covering of ~, as assumed in the hypothesis a) of Theorem 5. 

We also consider the mapping 

a:D x M---> X o x M 

defined by  ~(~, t )=(~(~,O) ,O obtained by  trivial extension of the universal covering 

map ~t :D x {0}--> X 0 induced by  ~t over X 0. 

The diffeomorphism 
g:XoxM--+  ~ 

can be lifted to a fiber-preserving diffeomorphism ~ of the universal coverings, i.e., we 

will have a commutat ive diagram 

D x M g  D x M  

X.• Y. 

Here g and ~ are only fiber-preserving diffeomorphisms but  not  morphisms for the 

structures of analytic fiberings over M. 
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Let  A =Xo-Ko ,  DA=zr-llxo(A); then by  restriction to A • M and DA • M in the 

above diagram we get a diagram in which also g I A • M and g l DA x M are morphisms 

for the structures of analytic fiberings over M. 

The holomorphic tangent bundle along the fibers of D • M can be identified with 

(D • C n) • M. The Bergmann metric on D is a function 

fl:DxC"-+R 

which is invariant  by  the operations of Ant (D) on the tangent  bundle D • C n. By 

trivial extension on D • M we then have a hermitian (K~hler and Einstein) metr ic  

along the fibers of D • M 

fl : (D • C a) • M- ->R  

invariant by  the operations of Aut (D • M ) =  differentiable maps of M into Aut (D). 

Then if F is the automorphism group of the universal covering (D x M, g, ~), w~ 

have 0 ~ {(D • C n) x M)/F  and ~ defines a hermitian (Kghler-Einstein) metric 

ds~ along the fibers of (~0, ~y, M); 

analogously if F 0 is the automorphism group of (D, Zr[D• We have @o= 

(D • C=)/Fo and fl defines a K/~hler.Einstein metric ds~ on X 0. By trivial extension 

of F 0 to D • M we get from fl a K~hler-Einstein metric 

ds~ along the fibers of X o • M such tha t  

ds~ * = prx, dso. 

On g(A • M), (ff-1)*ds~ will remain  K~hler-Einstein and "independent of tEM". 

Now let ~ be a C ~ function on X o with the properties 

1 if xEKo, 
O~<Q~<I, Q(x)= 0 if x E X o - K  1. 

Let  # = e ~  -1 

and set on ~ ds ~ = # d s ~ +  (1 - / z )  (g-l),  ds~o. 

T h i s  metric will have the following properties: 

(i) on g(K o • and g( (Xo-K1)•  ) i t  is a K~hler-Einstein metric, 

(ii) on X o ds 2 =ds~ is the natural  K~hler-Einstein metric. 



288 A. ANDREOTTI AND E. VESENTINI 

~) Let  ~t be the ~-operator on the fiber Xt  and let us denote, with respect to 

the metric ds~ just defined, by  bt and ~ t ,  the operators b and [~, for the bundle | 

By the assumption a), Theorem 4, Proposition 6, and Theorem 3, we deduce 

that  there exists a a > 0 such that ,  for ~ t~ < a, we can find one and only one element 

X t e W 01 (Xt ,  (~t) ~ "C01 (Xt ,  Or) such that  

q)t=Stbtxt (and bt-~xt=O). 

Let  U{z, t) be a coordinate patch on ~; then in tha t  coordinate patch xt is repre- 

sented by a differential form 
x t = ~ a~ (x, t) d5 ~. 

We want to prove the following regularity theorem for xt: 

(A) The coe/ficients a~ (z, t) and all their partial derivatives with respect to the fiber 

coordinates z are continuous /unctions o/ t. 

Let z~=x~+V ~-lxn+~, l ~ a ~ < n ,  and h=(h 1 . . . . .  he~)fiN 2~. We set 

alhl 2n 

We choose e ' > 0  and ~ > 0  (with 8 < a )  such that  the ball 

Br = {(x, t) e UIt=to, < r} 

is contained in U N Xa for any r ~< e' and any choice of t o with ~ (toJ)~< (~. 

For any form y~EO~+q=rCvq(Xt, Ot) we consider its expression in the local 

coordinates x~ in U ~ Xt: 
v2={~s~v~(x) dx s} l~<a~<n, 

S being a block of r = p + q  indices between 1 and 2n. We then define for a given 

e, 0 < e < e' and for any integer k >~ 0 : 

] dx 1 ... A dx2n. 

Now ~B8 has the "cone proper ty"  so that  we can apply Sobolev's inequality 

(cf. e.g. [10], pp. 232-233), i.e., we can find a positive constant c=c(e , k ,h ) such  tha t  

IDhv2~ (y) I ~<c(e, k, h)IlYJll~+k 

~or any yEB,  any h and k > n .  
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Also one has for any /c>0 the following Friedrichs inequality [11]: 

(l[vl]~+~) ~cL(~,~,k){( iIUtV ~ j (llv[[2")~}, 

where c 1 = c  1 (s, s'  k) is a positive constant. 

To prove contention (A) it is enough to show, by Sobolev's inequality, that  for 

s, t in the coordinate ball {Z t~<5} on M we have 

lim I I ~ t - ~ l l g ~ = o  
t--.~ S 

for a sufficiently large k. Now by the Friedrichs inequality we have: 

(IIx~_x~IIZ~)~<<.c~ {( I ID~(x~ .~. ~ -~)11~ ) + (llxt-~llg~)~}. (1) 

Thus it is enough to show that  both terms on the right-hand side tend to zero 

as t --> 8. 

(a) For the first term we write 

[Et(xt-xs)  = [Bt ~ t -  E]~ x ~ - ( D r -  E L ) x ~ - - ~ - ~ - ( [ ~ -  ~ )  x~. 

Thus il D~ ( ~ -  ~)IIZ~'- < II ~ -  ~IIZ~ + II(mt- a~) xollZ ~'. 

Now since ~ is C ~ in the parameters t, 

lim H % - ~" 0 ~OS k ~ �9 
t--~8 

Also [~t has C ~ coefficients in t, hence 

lim II(D~ a~) " ~ -  
t--~S 

Hence the first term on the right-hand side of (1) tends to zero for t-->8. 

(fl) I t  remains to show that  

lim ] [ x t - x ~ l l ~ ' = O .  
t-->8 

Let g t :Xt -~  X0 be the diffeomorphism defined by 

gt = p r x ,  o g - l l X  

(cf. Section 12 point ~) of the proof). If  we set 

gt~ = gZ 1 ogt  : X t  "--> X~, 
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we get a diffeomorphism which is also a complex analytic isomorphism outside Kt = 

g~x (Ko) ' Ks =g;1 (Ko) in X,, Xs, respectively. 

By  transposition the diffeomorphism g,~ defines an isomorphism g,* of the space 

of C :r forms with values in the real tangent  bundle of X~ onto the analogous space 

for X,. 

We will denote by 

1-I~ ( r=O,  1) 
P, q 

the projection operator on X, which associates to each C ~ form of degree p + q ,  with 

values in the real tangent bundle to Xt, the par t  of type (p, q) with values in | 

(if r=O)  or O, (if r = l ) .  

In  the coordinate neighborhood U, gt~ will be represented by a coordinate trans- 

formation depending differentiably upon t and s and reducing to the identity for t = s. 

From this it follows tha t  

X * n m  It s -  g -  ~sll~ '~' = o. 

v 0 1 A l s o  se t t ing  I f ,  = Yh + I ] ,  + YI~, 
10 01 10 

* r-tO * �9 v 
w e  h a v e  gt, xs = 11* g*, s + 1~, g*~ x ,  

O1 

v * X Be' a n d  lim [[ l~t r ~ ][o = O, 

since yi  ~ x, = x,. 
01 

I t  is therefore enough to prove tha t  

* X B s ' _ _  lira II ~ -  I fo  g .  s ,o  - O. 
t--~s Ol 

:Now with respect to the chosen metric on the fibers of ~9 we can consider the 

global norms defined in Section 9. The above condition will certainly be satisfied if 
* X  we can prove tha t  ][xt-l-I t  ~ gts s ll is finite and tends to zero as t tends to s. 

01 

Now we have by  virtue of the triviality a t  infinity and the special choice of the 

metric on the fibers: 

(a) I-h~ gts* s (Xs, 0~) ~ s (Xt, Or), 
O1 

(b) FNtl-I o * o * gts-I-It gt~ V]s is a compactly supported operator on Xt. 
O1 O1 
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x o * = ~ t  _ oI0-[1 * D r ( t - Y h g t s X s )  o o �9 _ ( D , l - h  g,  _ l - i 0  �9 gts [ ]  ~) x ,  gts Cf s 
O1 O1 O1 
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We set 

for 0 < r < l .  

Le t  

so tha t  

x, - 1-I ? g,* ~ .  E w ~ ( x ,  o , ) ,  
O1 

and therefore b y  vir tue of Proposi t ion 6, for ~ t~ < a, we have 

* ~ C  0 * g,s-l-l, gZ, G.)x.ll}. iIx_iTog,.~.ll~ {11~ _l- l ,a, .~. l l+l l(~, lT?.  o 
01 01 O1 O1 

I t  is now clear t h a t  for t--> s the  r ight -hand side of this inequali ty tends to zero. 

Contention (A) is therefore proved. 

15. Cont inuat ion  o/ the proo/,  a) Our next  step is to show t h a t  ~ as a cont inuous  

family of deformations of X o is locally pseudotrivial.  

M r = { t E M l ~  t~ < r }  

Yt  ~ ~)t Xt 

~f t = -~ Y t . 

We have seen t h a t  Yt represents a section of 0 on ~-I (M~) which is C ~ along the 

fibers and continuous on ~.  

Let  this section Yt be locally represented on the coordinate covering 

n ~ - I ( M . )  = {Ui n ;7~ -1 (M.)}~e,  

by  the vector  fields along the fibers 

{y=(z,,t)} l ~ < a < n .  
We then have on each Us: 

( ~  - y=) = 0, 

i.e., O~ (z~, t) = y)~ (zt t) - y= (z~, t) 

is a holomorphic vector  field along the fibers (continuous in t) and one has 

0 * we see t h a t  the  r ight -hand side is compact ly  supported while x t - 1 - I t  gts x8 is square 
01 

integrable. 

F rom a previous remark  (at the end of Section 9) it follows then  t h a t  
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O~ (z,, t) = ~ ~ ~z~ - 0~. 

fl) Le t  us choose in par t icular  v (t)=~/~t~; correspondingly one has a deforma-  

t ion cocycle {0;,~ (z,, t)} and vec tor  fields {0~, (z,, t)} such t h a t  

One then  ver~ies t h a t  

~z~ 
- O~t (z i ,  t ) .  

3 ~ZJ 

a 
x .  (z,, 0 = ~ - o;, (~,, 0 

is a global (continuous) vec tor  field on :z-l(M~) whose project ion on M is the  vector  

field ~/at,. 
This can be done for /~ = 1, 2, . . . ,m.  

y) We now introduce the  following notat ions:  

M~(s)={(t~ . . . . .  t ~ ) e C ' ] l t , l < r  l~</z~<s} 

I~(h) = {t~eel[t~l  <~}.  

Let ~r(s)=~-l(M~(s)), and  let  ~o={U,},~Xo be the set of those U , E ~  such t h a t  

U~ N Xo4= O. 

We can choose ~o  = {U;}~Zo and ~ = {U~'},E~o bo th  coverings of X o in V, such t h a t  

U~c c U * ~  cUt V i e I  o. 
2 

For  every  i E I o we can find s~ > 0 such t h a t  the  sys tem of ord inary  differential  

equat ions  

g, (~ ,  0 + 07,~ (g, (~, 0, 0 = 0 
atm 

has a solution gi ($, t) of class C 1 defined for 

1 a 
t e M r . ( m - 1 )  xI~,(m), r l = ~  m 

with initial  values:  

t /g~ (~, . . . . .  t~_l,  0) = $~' 1 

t l ~ < ~ < m ,  

~ E  U* N X 0 and  such t h a t  gi (~, t) E U~. 
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Moreover, we can assume t h a t  the functions g~(~, t), t will define a system of 

holomorphie  coordinates on 

u ;  n ~ - 1  ( M r , ( / -  l )  • Iei (m)) = V~'. 

Making the change of coordinates z~=g~(~,t),  we then  see t h a t  if ~ = ] c ~  (~i,t), t=t ,  

are the  new coordinate t ransformations on U~'r U]', we mus t  have 

ak ,= 0 g~ - 0 or 

This shows tha t  in the covering kJ~z~ U~' of X 0 in ~ ' t h e  change of coordinates is in- 

dependent  of the variable t m or t h a t  there is a neighborhood A of X 0 in ~0 which 

can be imbedded by  an isomorphism of class C 1 in the  produc t  ~o, 1 ( m - 1 ) •  C, the 

isomorphism being the ident i ty  on ~qr, (m--1) .  

We now replace ~ with ~4 as subset of ~ 0 r , ( m - 1 ) •  C; then the deformat ion 

eoeycle for v = ~/~m-1 will be, in the new coordinates, again wri t ten as a co-boundary  

of a co-chain locally given by  sections of (9 holomorphic along the  fibers and contin- 

uous in the parameters  t. The same will be t rue for the restrictions to  ~ r , ( m - 1 ) .  

B y  the previous a rgument  we can find a neighborhood of X 0 in ~ q r l ( m - 1 ) w h i c h  

can be CLisomorphical ly imbedded in the produc t  ~,~ ( m - 2 ) •  C where r2=�89 rl, the 

isomorphism being the ident i ty  on 29~ ( m - 2 ) .  

By  this procedure we find, after  m steps, a neighborhood of X 0 in ~ which can 

be isomorphieally imbedded in the  produc t  X o • C m by  a Cl-isomorphism. 

This proves t h a t  the local deformation defined by  ~o as a continuous (actually 

of class C 1) deformation is pseudotrivial.  

16. End of the proo/; the concavity assumption. ~) Let  us resume the  nota t ions  

of Section 13 a) and  let us set 

ca = inf �9 = inf ~F. 

F rom the  assumptions c) and  d) of Theorem 5 and  f rom Theorem 1 we deduce tha t :  

We can find a constant  % >  c:r such that ,  for  any  c, c~ < c  ~<c 3, we have:  

(i) the  sets Be (t) = {x e Xt ] xF (x) > c} are connected, relatively compact  in Xt; 

(ii) the envelope of ho lomorphy  of ~-x (Be(t)) is the  domain  D. 

We fix c 4 with co, < c  4 < %. F r o m  the (continuous) pseudotr ivial i ty  of ~ (Section 13) 

we deduce t h a t  there exists an s = s (ca)> 0 and an injective continuous map  
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Z:B~, (0) • M , ~ ,  

which is open, is a homeomorphism onto its image, is fiber-preserving, and is a complex 

analytic isomorphic imbedding on each fiber. 

If  e = e (c4) is sufficiently small, we may assume that  

(iii) Z(Bc, (0) • {t})~Bc. (t) V tEMp. 

fl) We claim that  we can find a lifting of the map Z 

Z:ze -1 (B~, (0)) • M~--> D x M, 

so that  the following diagram is commutative: 

~-I  (Be, (0)) • Me ~ D • M 

~ z~[~o • id. ~z~ 

Bc. (O) • M~ -+  "~. 
% 

Indeed Z is a homotopy of the map 

Zo :B~. (0) -+ If, 

which is given by the inclusions B~, ( 0 ) c X 0 c  ]9. 

Then Zo(z~[~c •  ) is a homotopy of the map ;~0o~[~. 

the inclusion map 
~0 :~-I  (Be, (0)) --> D, 

This can be lifted to 

D being identified with g0, the universal covering of X 0. 

The existence of ~ follows then by the lifting homotopy theorem. 

Now Z and ~ being local homeomorphisms, Z is also a local homeomorphism. 

Moreover, Z is one to one, hence ~ must also be one to one because it is a homotopy 

of ~0 which is one to one. 

Finally Zt=Z[Bc, (0)• {t} is a holomorphic map. I t  then follows also that  

~ = 2 1 =  -1 (B~, (0)) • {t} 
is a holomorphic map. 

7) Now we remark that  since D is the envelope of holomorphy of ~-1 (B~, (0)), 

the map 
Zt : ~-1 (Bo, (0)) ~ D 

extends in a unique way to a holomorphic map (cf. Section 2 Lemma 3) 
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Et:D---~ D 
having the properties: 

(a) i f  #t : F -~ Aut (D) is the family of representations of F = ~z 1 (X0) associated 

with the family (~, ~ ,  M) (el. Section 7 b)), then 

Et (~0 (~) z) = et (r) Ft (z) V z e D, V ~ e F;  
(b) the map 

F:D • Ms--~ D, 

defined by the set of mappings (Ft}teM8 , i s  continuous. 

This last assertion follows from the fact tha t  the restriction map 

H ~ (D, O) ~ / P  ( - 1  (Be, (0)), O) 

is continuous for the topology of Frdchet spaces of the vector spaces of holomorphic 

functions on D and re -1 (Bc, (0)). This restriction being an isomorphism, it is also a 

homeomorphism by the Banach Theorem. 

(5) We now show that,  for every t E M, 

Pt E Aut (D). 

For this we have to produce the inverse map of Et. 

By condition (iii), for V t E M, 

~-1 (Z (Be, (0) • {t})) = :7~ -1 (B~. (t)). 

Hence ~[1 i~-1 (Bc,(t)) extends in a unique way to a holomorphic map 

Gt:D--> D, 

because ~-l(Bc, (t)) has D as its envelope of holomorphy (condition (ii)). Now on 

~-1  (:7~-1 (Bc. (t)) we have G t o F t = identity. Hence by analytic continuation 

Gt o Ft = identity on D. 

Analogously 2' t o G~ = identity on D. This proves our contention. 

We h a v e  therefore constructed an automorphism of D, Ft E Aut (D), such that  for 

any t E M  we have 
Qt = Et o Q0 o Fil. 

Moreover, Ft depends continuously on t. 
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e) The proof of the proposition will be completed if we show that  we can choose 

a system of automorphisms of D which depends di//erentiably on the parameters  t. 

Let  us denote by G the group Aut (D) identified to a closed (algebraic) sub- 

group of some linear group GL(N, It). 

Let  Z(e0) = (g E GL(N, It) I gQ0 (r) g-1 = ~0 (r) '  V ~ E I ~} 

C(Qt)={gEGL(N,R)]geo(~)g-I=Qt (r), V$ E F}. 

Clearly FtEC(~t) so that ,  for tEM, C(~t)40. Hence 

C(et) = Ft" Z(~0). 

Let  ~1 . . . . .  y~ be a set of generators of F and let us set g~(t)=~t(y~) for l~<i~<k. 

Then C(Qt) is the set of all matrices g with non-vanishing determinants (i.e., elements 

of GL(N, It)) satisfying the linear equations 

gg,(O)=g~(t)g l <~i<~k. (1) 

Now on Itm this is a linear space, and since C(pt)=Ft Z(~o), its dimension is inde- 

pendent of tEMp. I t  follows tha t  the rank of the linear system (1)t is independent of t. 

I t  follows tha t  for any  t ~ E M~, we can find in a neighborhood of t ~  parametric 

solution g=g(t) of (1)t with the properties: 

(i) g(t~ = Fto, 

(ii) g(t) is a matr ix  with C ~ coefficients in t. 

This means the following: 

Consider the map 
: Ms --> GL(N, I t ) / Z  (qo) 

defined by the composition of F :Ms--> G, the inclusion of G in GL(N, R), and the 

natural  map GL(N, It) --> GL(N, R)//Z(Qo). 

Then T by  the above remark is a differentiable map.  

We now set Zo =Z(Qo) n G, 

and remark tha t  ~ actually, by  its very construction, factors through a map 

o:M G/Zo, 

so tha t  we have the commutat ive diagram: 
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M8 --> GL(N, R)/Z (Qo) 
a",~ 7 

a/Zo 

Now a/Zo--> GL(N, R)/(ao) is an inclusion of G/Z o as a closed submanifold of the 

l a t t e r  space.  

I t  follows then  t h a t  also a is a d i f ferent iable  map .  

W e  can now consider  the  f iber  space p : G - - >  G/Z  o. Since M ,  is cont rac t ib le ,  we 

can l if t  a:M~-+ G/Z  o to  a di//erentiable m a p  

_~:M~-->G p o _ ~ = a .  

For every t E M8 there is a unique # ( t )EZ 0 such tha t  

?(0 = F~ o~ (0. 

Then  s N G. This  comple tes  t he  proof.  
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