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Let D be a product of irreducible bounded symmetric domains in the complex
number space and let I be a properly discontinuous group on D with the property
that vol(D/T") is finite.

If one execludes that D has any components of complex dimension 1, it is gen-
erally suspected (cf. [15]) that any such group must be commensurable to an arith-
metic group. ‘

In particular, if this is the case, there will be no other families of discontinuous
groups containing I' except those obtained by operating on I’ by a family of inner
automorphisms of the Lie group G'= Aut(D)

Under the more stringent assumption that D/I’ be compact, this has proved to
be the case in [15] and in [7] as a consequence of a more general rigidity theorem.
That result has been extended by A. Weil [21] to the case of all “reasonable” semi-
simple Lie groups (i.e., a semisimple Lie group without compact components whose
Lie algebra has no simple factor of dimension 3).

In the case where D/T' is not compact it has been stated by A. Selberg (in a
conversation with one of the authors at the international congress in Stockholm) that
at least the following should be true:

Let us suppose that I', and I', are two properly discontinuous groups on D and
suppose that (a) I'; is an arithmetic group, (b) there exist fundamental domains ¥,
F, for I';, Iy respectively, such that, outside of a compact set K< D, F,—F, N K
=F,—F,n K. Then I', must be commensurable with T',.

Again, if this is the case, there will be only trivial families of discontinuous
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groups I', containing the arithmetic group I, and keeping the part at infinity of
D/T rigid.

This statement can be formulated in precise terms following a pattern similar to
that used by A. Weil in [20]. We do this in § 2, where we introduce the notion of
a family of uniformizable structures on D, rigid at infinity.

In this paper we show that any such family is a locally trivial family provided
one of the fibers D/T' behaves at infinity as if I' was an arithmetic group. Precisely
we will assume that (i) D has no component of complex dimension 1, (ii) I is finitely
generated, (iii) D/T" is a strongly pseudoconcave space. Both of the latter two con-
ditions are satisfied by arithmetic groups. The concavity assumption has been verified
in particular cases in (1], [18] and by K. G. Ramanathan (unpublished). It has been es-
tablished in general by A. Borel (unpublished).

The main tools of the proof are the following:

(¢) If D/T is strongly pseudoconcave, then for a sufficiently large relatively com-

pact open set B<D/T' its counter image B in D has D as envelope of holomorphy.
(#) On any quotient of D by a properly discontinuous group I', the tangent
bundle, with respect to the Bergmann metric, is W-elliptic in degree (01).

From () one first deduces that, by a generalization of the differential geometric
methods used in the compact case (and because the family is rigid at infinity), one
can locally deform trivially inside the family any compact subset of any fiber. The
assumption («) is what makes it possible to “extend’ this partial trivialization to the
family itself.

We remark that in the framework of this theory complex analytic families and
differentiable families behave quite differently (cf. Theorem 2).

We have assumed throughout this paper that all discontinuous groups considered
act without fixed points on D. This is no restriction since assumptions (ii) and (iii)

are stable by commensurability and by virtue of a theorem of A. Selberg ([15] p. 154).

§ 1. On pseudoconcave manifolds
1. Preliminaries. (a) Let X be a complex manifold of pure complex dimension =.
A real valued O function ® on X is said to be strongly g-pseudoconver at the
point x,€ X if the Levi form
2
co-3(LL) o

02, 075
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(where 2z, are local holomorphic coordinates at x,) has n—g positive eigenvalues at
least.

More generally a real valued continuous function ® on X will be called strongly
g-pseudoconver at the point x,€X if

(i) we can find a neighborhood U of z, in X and finitely many real valued C*
functions in U, @, ..., D, such that

®O(z) =sup (D, (), ..., D, (x)) Vz€U;
(ii) we can find a biholomorphic imbedding \
T: DU
of the disk D" 9={t=(t,....,tn_ o) EC" Y| St} <1}
such that 7(0) =z,
for each ¢, 1<i<k, the Levi form of ®; o7 is positive non-degenerate at t =0.

This more general class of functions seems to appear naturally in the study of
discontinuous groups which do not rvequire, for the purpose we have in mind, any

additional complication.

The following properties of strongly g¢-psendoconvex functions will be of constant
use in the sequel.

(@) If ® is a strongly gq-pseudoconvex function at x,€X, then there exisis a neigh-
borhood U(xy) of xy in X such that @ is sirongly q-pseudoconvex at each point x € U(x,).

(B) Let O be strongly q-pseudoconvex at each point of the coordinate neighborhood
U (where z,,...,2, are the holomorphic coordinates). For any compact set K< U we can
find a constant c(K)>0 with the following property:

for any C% real valued function o on U satisfying

2

2 @)

supp «< K, sup > P
v

zeU . 8

<c¢(K)

the function @+ o is again strongly q-pseudoconvex in U.

(p) If ® is strongly g-pseudoconvex at x,, 0<qg<n—1, then for any neighborhood
Uxy) of g in X

D> O(x,),
g @ o)

(ie., @ cannot have a relative maximum af ).
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The proof of these statements reduces to the case where ® is a C* function;
in this case they are known and easy to prove.

(b) Let X be a complex manifold.

DeriNiTioN. We say that X is strongly q-pseudoconcave if we can find a com-
pact set K< X and a continuous function @ : X —R such that

(i) at each point of X — K, ® is strongly q-pseudoconver,
(ii) for any c>infx @ the sets

B,={xeX|®(z)>c}
are relatively compact in X.
We will always assume that ¢ ranges between 0 and n—1.
If X is strongly g-pseudoconcave, so is each one of its connected components.
The following lemma is a consequence of the maximum principle (y):
Lemma 1. Let X be strongly q-pseudoconcave and connected (0<q<n—1); then
(@) for ming @ >c>infy ® the closure of B, in X is
B ={zeX|®(x)>c},
(b) there exists a ¢,, ming ®>c¢,>infy @, such that for c<c, the sets B, are con-

nected.

Proof of (a). One has in any case B,c{x€X |®(x)>c¢}. However, if ¢ <ming @,
at the point z, of {®(x)=c} @ is strongly g-pseudoconvex and thus, because of (y),
¥, is an accumulation point of the set {®(z)>c}.

Proof of (b). The sets B, being compact, they have a finite number, s(c) of con-

nected components K; (c): _
B,=K,(c)U ... UKy (c).

For ming ®>a>pB>infy ® we have B,<B; so that for any component K;(x) there
is a uniquely defined component K,y (f) containing it.
We first show that

:{1, ..., s()} > {1, ..., 8(8)}
is surjective so that 8(B) < s(x).
In fact if j¢Im v, then K;(f) N B,=0 so that
K;(B)c{zeX|a>®(x)>p}.
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Let m=maxgp ® and let x,€ K;(f) be such that ®(z,)=m. In any neighbor-
hood U(x,) of %, there is at least one point p where ®(p)>m. By the very definition
of m, p¢K;(p), but since m=>p, p€B; ie.,, p€Uis; K;(f). This shows that x, must
be in (the closure of) Uiy, K;(f), and this is not possible.

We can thus find ¢;, ming ®>c¢,> infy @, so that for o<¢, the number of con-
nected components of B, is a constant s, independent of «.

In order to prove that s,=1 we make use of the assumption that X is connected.
Let

B, =K, (c)U...U K, {c,)-

Let a€K,(c,), bEK, (c;) and let y:I—X where I={tER|0<t<1} be a path in X
with end points y(0)=a, p(1)=>b. Since y is continuous, y(I) is compact and for
a<min,;, ® we have y(I)< B, This shows that @, b are in the same connected
component K;(x) of B,. Since v:{1,...,s(c,)}—>{1,...,s(x)} is bijective, we must have
K, (¢))=K,(c,), ie., s4=1.

We now remark that for c<e, the sets

B,= U B,

cy2>¢'>¢

a8 an increasing union of connected sets, are connected.
We will also need the following

Leymma 2. Let X be strongly q-pseudoconcave and connected (0<q<n-—1); let
n: X~ X be the universal covering space of X.

We assume that the fundamental group m,(X) of X is finitely generaied.

Then there exists a ¢y, ming @ >c,>infx @ such that for c<c, the sefs

n ' (B)cX
are connected.

Proof. Let yi:l>X 1<i<r,

where I={t€R[0<¢<1}, be a set of generators for =, (X).
We select ¢, so that ¢,<¢, (as defined in Lemma 1) and so that v, (I)<B,, for
1<i<r.
For c¢c<¢, we set l~¥c=n‘1 (B;). Since 7, (2~()=0, we have the exact sequence for
the pair (5(, ﬁc): o 3
07y (X, Be) =y (B) — 0.
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Now we have x, (:Y, Bc):nl (X, B,) ([16], p- 266). Moreover, for the pair (X, B,)

we have the exact sequence
7y (Be) = 7y (X) > 0y (X, Be) = 74 (Be)-
By construction 7, (B,) — &, (X) is surjective; by Lemma 1 x,(B;)=0. Hence
7, (X, B)=0=n, (X, B,).
From this we obtain 7, (Ec)=0 as we wanted.

2. Analytic completions. a) Let X be a complex manifold and let O denote the
sheaf of germs of holomorphic functions on X.
Let A be an open subset of X. We say that X is an analgtic completion of A

if the restriction map
r:H°(X,0)— H"(A, O)
is an isomorphism.

LemMma 3. Let X be an analytic completion of A and let Y be a holomorphically
complete manifold. Then any holomorphic map

f:A—=>Y
extends, in a unigue way, to a holomorphic map
f: XY,

Proof. If Y=C, this is the definition of an analytic completion. It follows that
the lemma is true when Y =C”.
In general we may assume Y imbedded as a closed subset of €Y. If J(Y) is the

sheaf of germs of holomorphic functions in €Y, vanishing on Y, we have
Y={z€C"|g(z)=0 VgeH(C", J(Y))}.

Now f extends to a mapping f of X into €". Since for every g€H®(C", J(Y)),
gof=0 on A, then also gof=0 on X, and therefore the image of { is in Y.

If the complex manifold 4 has an analytic completion X which is holomorphi-
cally complete, this, by the previous lemma, is unique (up to isomorphisms which is
the identity on A4). We say then that X is the envelope of holomorphy of A.

b) We want to prove the following
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TEEOREM 1. Let X be a connected complex n-dimensional manifold. We assume that

(i) X is strongly q-pseudoconcave for some value of q with 0<q<n—2.

(i) 7, (X), the fundamental group of X, is finitely generated.

Let 7: X~ X be the universal convering of X. Then (with the usual notations) we can
find a constant c;>infy ® such that, for any c<c,,

7Y (B,) has X as an analytic completion.
In particular:

If X is holomorphically complete, then, for any c<c,, X is the envelope of holo-
morphy of n~'(B,).

3. Proof of Theorem 1. The proof of this theorem is based on the following:

ProrositioN 1. Let 0<q<n—2 and let ® be a strongly q-pseudoconvex func-
tion defined in a meighborhood U of the origin in C".

Let
Y={zeU|®()>D(0)}.

Then there exists a fundamental system of (closed) neighborhoods {@,},ex of 0 €C" such that

(1) each @, is connected, é,,:Q,,H, Vv€EN,

(i) the natural restriction maps

H(Q,,0)—>H'(Q,nY,0)
are isomorphisms, for ¥y EN.

This proposition can be considered as a particular case of Theorem 10 of [2]
(cf. Proposition 12 of [2]), However, here the function @ is not required to be dif-
ferentiable. This restriction can be easily removed since only properties («), (B), (y)
listed in Section 1 are requested in the proof.

We give here an outline of a direct proof of this proposition which, we believe,
will be easier to follow than that of Theorem 10 of [2]. We divide the proof into
several steps.

Step 1. Set p=n—q and let €"=C” x C?. We denote by

Ex=u,+iy,, 1<a<p, the coordinates in C?,

np=vp+twg, 1<P<gq, the coordinates in C%
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We set QP ={£eC?|2,=0, |5,|<1, 2<i<p, |pl<1, 1<k<p},
Q' ={£€C?||7|<1, ,=0,2<j<p, %=0, 1<k<p},
Q" ={neC||us| <1, |wp|<1 for 1<p<g}.
Thus Q=0 x Q¥ 1 x Q¥
represents the unit cube in C*. We suppose that, as in our proposition, 0 <g¢ <n-—2.

LeMMA 4. Let @ be a strongly g-pseudoconvex function defined in an open neigh-
borhood U of Q. We suppose that

(i) ®[(C”x {}) U is strongly 0-pseudoconvex for all n€C%;

(ii) the set
(U {5 <@ U@ x a0 ) x @

and the closure V of the set

V={2€Q| () < ®(0)}

are disjoint.
Then H(Q,0)—~H*(Q-V,0)
is an isomorphism and H' (Q—V,0)=0 for O<r<n—g—1.
Proof. («). From the exact sequence
0—>HY(V,0)—~>H"(Q,0)~H(Q-V,0)~>H:(V,0)— ...

{where the suffix %k denotes cohomology with compact supports) since H*(@,0)=0

for s> 1, we see that the lemma is equivalent to the statement
H(V,0)=0 for r<n—gq=p.

{p). First one establishes the lemma when ¢=0, i.e., p=n, for instance by the

following method due essentially to B. Malgrange:
We remark that V is a domain of holemorphy; thus

HZ(T;, 0)=0 for r=*n.

Let Q@ ={—-1<t<l+e¢}, Q=@ x@"",

Ve={z€Q.| D(z) < D(0)}.
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Let ¢”" be a o-closed (or) form, compactly supported in V. For >0 sufficiently
small, we may assume that
@) (@ xa@" )nV.=0
(i) o is defined, o-closed, compactly supported in V..
Let o be a C* function of ¢ such that

1 if t<1+e/8
0 if t>1+2¢/3.

Then setting o =8a A o,

we have supp u"* < {l+¢6/3<t<1+2g/3) x Q.
Actually, if P.={l+s/4<t<l+g}x Q"

then supp u”*tc <P, 0 V..

Let U be a neighborhood of @, which is a domain of holomorphy.
In our situation one has ([5], Lemma 29) that

T H (P Ve, O)—H,{(U,0)

is an injective map. Since 7{u”*'}=0 by its very construction, it follows then that
there exists a form ¢ of type (or), with compact support in P, n V, such that
HOT+1 ='é o,or .
ie. (oo™ — o) =0.
Now the form «g° —o¢" is compactly supported and 3-closed in f’a. By the
remark made at the beginning one sees that:

If r<n—1, then there is a form y»°"~! compactly supported in V. such that
aear__ O_Dr='éyor—1-
By restriction to ¥V, we then obtain

or __ 5 or—1
. @ Y

and supp »°* is compact in V.

(y)- One establishes then the same result for the case of a product of the situa-
tion considered in (f) by a cube (i.e,, one proves the lemma in the case in which ®
is independent of the variables 7).

17 — 642907, Acta mathematica. 112. Imprimé lo 4 ddeembre 1964
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This can be done by means of the Kiinneth formula.

(8). In the general case we consider the projection 7 of V onto the space @
of the 7 parameters. Let p be the family of closed subsets F of V on which x|F
is a proper map. Let #,(0) be the s-th direct image of O with supports . Then
Hi (V,0) is the limit of a spectral sequence whose term E7° is given by

E3*=H(Q*% H, (0)).
If r+s<p—1, then s<p—1, but from (y) one deduces that
#,(0)=0 for s<p-—1.

It follows then that @& E7°=0 and thus that

r+s<p-1

H(V,0)=0 if r<p-—1.
This completes the proof of the lemma.

Step 2. Let @ be a strongly g-pseudoconvex function defined in a neighborhood
U of the origin in €". Without loss of generality, taking U sufficiently small and by

a convenient choice of coordinates we may assume that on U,
q) =Sup ((plﬁ ey ¢k):
where the @’s are O functions in U satisfying the conditions:
(i @1(0)= ... = 3 (0) = D(0) = 0;

(ii) for 1 <s<k the Levi forms at the origin

n-q 82 ¢s _
C(%)o~ % (92,, 85,3)0 Za2p

on the space €V 9={z, ¢,,=0, ...,2, =0} are positive non-degenerate.
We restrict ¢, to C*"% we then can write
@s| 0" 9=2 Re g, + L(gps)y + 0 (3),

where O(3) is small of third order and where

"2 (op 1720 ( Po )
9= ?ax (3._2::)02‘1—‘-“2_ ;aﬂ azazazﬁ ozzz{}.

We distinguish the following possibilities:
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(a) all g, are identically zero or one g, is not identically zero but has non-
vanishing differential at 0, (dg,),+0;

(b) not all g, are identically zero but their differentials all vanish at 0, (dg,),=0 Vs.
Case (a). We can find a holomorphic function f on €*"? such that
f(0)=0, (df)y+0,
{z€C" 9N U|Re f(z) 20} < {z€ U | ®(z) >0}.

Without restriction we may assume —f=z,.

As in Step 1 we denote by &,=wx,+ 1y, the first p=n—g coordinates in C*, and
by np=1vs+ 1wz the last g coordinates.
We set
Q7 (e)={8€C|2,=0, |2)| <e, |yx| <&, 122, =1},

Q') ={£€C||z,[<9, 2;=0, 4.=0,=2, k>1},
@ (o) ={nec||vs| <, lwp| <o, 1<p<q}.
We can first find £>0, ¢>0 such that
{} x Q¥ Y e)cU for |t|<o
{t}x QP (e)cY={2€U|D(z)>0} for —o<t<O.
Then we can find §, 0<d <¢ such that
{t} x8Q¥ 1 (e)c Y for [t|<6.
Then we can find >0 such that
QO Q") x Q¥ (e)=U
and {( {t} x @7 (&) U (@' () x 2Q* ()} x @¥(p) = Y. )

—6<t< -82
Thus for @ = Q" (8) x @*?7(¢) X @*(p) we can apply Lemma 1 and obtain the isomorphism
H"(Q,0)~H'(QnY,0).

Let >0 be a O function on Q; for A>0 sufficiently small we set ® =@+ Aa.
Then the corresponding set ¥’ ={z€@Q| @’ (z) > @’ (0)} will satisfy again the condition (*).
We then deduce that
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H°(Q,0)~H*(QnY,0)~H(Qn Y, 0).
Since U is arbitrary, Proposition 1 is established in this case.

Case (b). We can find among the functions g, a holomorphic function f on C*79,

not identically zero, such that
f(0)=0, (df)y=0

{zeC"2n U|Re f(z) >0} < {z€ U | ®(z) > 0}.

We may extend f to C* by lifting f to C* by the coordinate projection C"->C"™,
Let us assume that the closed polycylinder

P={zeC"| sup |z]<1}
Igagn
is contained in U and that max, |[f|=1. Let
Q={£€C""?| sup |&|<1}
Oaxsn
and let 7:P—>Q

be the holomorphic mapping defined by the equations

fozf(z), §1=217 caey En=2n.

The image of 7 is thus the submanifold of @ with the equation

g(E)ESO_f(EJJ -'-sfn):O-

Let Ps(E)=2Re g(&) + @, (&1, ..., &) H]g&) 5, 1<s<k
and set ®= Sup (@y, - r Pro)e
Then D&y, ... &) = D(E,, ... En) + 2 Re g(&) +[g(&)
so that o=Dor
Consider the linear space C" ¢*1={f€C"*!|&,_,=...=&,=0} and on it the
functions
517 voey én—a’ g.

Since (df),=0, these functions can be agsumed as local coordinates near the origin.
Then each @, restricted to C""?*l, is strongly O-pseudoconvex at the origin.

Therefore @ is a strongly g-pseudoconvex function in a neighborhood W of the origin

ill Cn+1
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Let us suppose that f=g, (as we can by renumbering the funections @s). Then

we have on (" ?+!

@1 =2Re (§,—91) +2Re g, + Ly + 1912+ 0(3)
=2Re &+ L(py+ g +0(3).
Thus if W is sufficiently small, we have
{z€C" 1 0 W [Re £,>0} < {z€ W| O(z) > 0}.

Note that &, being one of the coordinates in €"*?, has (d&,),==0. We therefore have

in C"*! the situation already discussed in Case (a).

There is therefore a sequence Qv of neighborhoods of 0€C"*!, contained in W,

such that letting . -
Y={ze W|®(z) >0},

we have isomorphic restrictions:
H'(Q.0)~H(Q,n¥,0).

Let J=0yg; this is the sheaf of germs of holomorphic functions vanishing on

ﬁzr(P). Since J~0, we thus get also isomorphic restrictions:
H* (@, 9) ~H* Q0 Y, ).
We set Q,=71(Q,), Y=v"2(¥). We have a commutative diagram:

0—>H(Q,J) —H(Q,0) —>H(@,0) —0
J y 4
0>H"QnY,N—>H@QnT,00~H QY0 .

If we show that the map HO(Q~,, nY,0)—H(Q,NY,0) is surjective, then by the

“five lemma’’ and the above remarks it follows that, as we wanted,
H(Q,0)~HQ,nY,0).
Step 3. We want to prove that (omitting the indices »)
H@QnY,0)-~H@QnY,0)

is surjective. Now we know that H° (@, O):H"(@n f’, 0).
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Hence by the same reasoning as in Step 2, Case (a), it will be sufficient to
prove that B
H(@nY,0)~H(QnY,0)

is surjective. This amounts to showing that H (Qn ¥,J)=0 or, since J~O, that
H'(QnY,0)=0.

But this is a consequence of Lemma 1 since we now work in ¢"*! and, from
gsn—2, we get 1<(n+1)—qg—1.

Remark. The construction given for the neighborhoods ¢, satisfying conditions
(i) and (ii) of Proposition 1, also satisfies the following condition:

(iii) For every v there exists e,>0 such that if « is a C* function on U satisfying

sup | D" a(z)| <&,
zeQ, |r|<2

then, selting @' =®+a, Y ={z€U| D’ (z) > D’ (0)}, we have that

H (@11, 0) > H*(Q,:,1n Y, 0)

4s an isomorphism.

4. We now conclude the proof of Theorem 1.

(x). We choose cz=inf (c,,c,), ¢;, ¢, being defined as in Lemmas 1 and 2 of
Section 1.

Choose ¢ with ¢;>c>inf; @ and a covering U={U;}i; of 2B, by open coordi-
nate balls in X.

For every x,€&B, we choose a coordinate ball U;3x, and, as in Proposition 1,
we can find a closed connected neighborhood @Q,.,=@(x,) in U, satisfying conditions
(i), (ii) of Proposition 1 and (iii) of the Remark at the end of Section 3.

Since @B, is compact, we can find a finite number of such neighborhoods @, ..., @;
Such that

t o,
0B.< U@
s=1
Now let a; be a C'* function on X with the properties
0<a;<1,

supp o; < és:
> o (x)>0 Vz€aB,.
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We set DO (2)=D(x) +&, 00+ ... T &

@, () = O(x).

We can select ¢ >0 one after the other, sufficiently small, such that for each s the

function @, is strongly g-pseudoconvex.

We define B, ={zeX|®,(x)>c}.
We then have B,=B'cBlc..cB. ‘ (a)
since . LOJRR=Y () )
Also, since D — D=5, 1 541,
we have B~ Bic <(y,,. (b)
Furthermore, since Sesa{x)>0 on 8B,
we have B,c <Bt. (c)

Now conditions (a), (b), (¢) will be satisfied for all choices of & >0 sufficiently small.

By condition (iii) of the remark quoted before, we may also assume that
H® (Qse1 N B, 0)—~>H®(Qos N BS, 0) for 0<s<t—1 (d)

is an isomorphism (and indeed both groups will be isomorphic with H®(Q;.1, O)).
We finally choose ¢>0 such that

B._ ,<B.. (e)
This is possible since B,={zx€X |®(z)>c}.

(B) Now let I'=x, (X) be considered as the group of automorphisms of.the

universal covering 7: X — X of X.
For 1<s<t the set 77'(Q,) has as many connected components as there are

elements in I". Let és be one of these components; then

7 (Q)=Tq,

The component f)s and each one of its transforms is mapped isomorphically by =
onto Q.
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Now let fEH (" (B,), 0)

be a holomorphic function on 7! (B,)=B..

Let Bi=n"1(B!). By condition (b) we have
Btl: - *ég S és-

By condition (d) it then follows that f can be extended to a holomorphic function
f, on 1§§
Repeating the argument with B, B! instead of B!, B? and so forth, we prove that
H® (B!, 0)—~ H"(B.,0)
is a surjective map.

Consequently, by (e), setting 7 (Bo—o)=B._o,
H°(B._,, 0)—~H"(B,, 0)
is surjective, and therefore an isomorphism, since both éc and B,_, are connected.

(y) We have proved the following statement:
Given any ¢, ¢,>c¢ > infy @, we can find ¢>0 such that the restriction map

H°(B,_,, 0)~H°(B,,0) )
is an isomorphism.
Let us now consider the set A of real numbers ¢, 0 < ¢ <c¢—infy @ such that (*)

is an isomorphism.

If 0,€A, then any o with 0<o <o, also belongs to A.
If 6, /0, and ¢, €A for every », then o, €EA.
If o,€A, there is an £>0 such that g, +¢€A.

These three statements follow from (*) and from the fact that all B.’s with c<c¢,
are connected. This implies that A is a closed and open subset of 0<o <c¢—infy ®@;
thus A coincides with that interval and we then have that

H°(X,0)— H°(B.,0)

is an isomorphism.
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§ 2. On deformations of non-compact complex manifolds

5. Differentiable families of complex manifolds. a) By a differentiable family of
complex manifolds, we mean the set of the following data:

a differentiable manifold M,
a differentiable manifold U,

a differentiable surjective map w: ¥ — M
satisfying the following conditions:

() @ is of maximal rank at each point,

(ii) for every point €Y we can find:

a neighborhood W of = in U,
a neighborhood U of w (%) in M,
an open set § in some numerical space C", and

a diffeomorphism ¢:U X §—W such that

(@) pry=wogp

(B) if @;:U;x8;—W,, i=1,2, are any two such diffeomorphisms, then ;' o, is
an isomorphism of g1 (W, N W,) and ¢;' (W, n W,), endowed with the struc-
tural sheaves of germs of C® functions holomorphic on the fibers of the pro-
jection pry, (1=1,2).

It follows then that, for every t€M, w ' (f)= X, has a natural structure of a
complex manifold. We will take as structural sheaf on ¥ the sheaf of germs of C*
functions holomorphic on the fibers of .

Analogously one defines a complex analytic (or holomorphic) family of complex
manifolds, cf. [3].

b) Let X, be a complex manifold. By a (differentiable) deformation of X, we
mean the data of :

a differentiable family of complex manifolds (¥, @, M),
a point my €M,
an isomorphism ¢: X, — @ ! (m,).

Analogously for a complex analytic deformation.

The definitions of equivalent deformations, locally equivalent deformations and
classes of local deformations are as in [13].
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Given M, my€ M, any deformation (¥, @, M) of X,, which is equivalent to the
deformation (X x M, pry, M) is called a trivial deformation of X,.
¢) We set the following definitions.

DEFINITION. A deformation (¥, @, M) of X, is called pseudotrivial if for every
relatively compact open set 4 < <X, we can find an isomorphism

g AxXx M >V

onto an open subset of V¥ such that @ og,=pry.

One then derives from this the notion of a locally pseudotrivial deformation.

DEeriNiTION. A deformation (U, w, M) of X, is called rigid at infinity if we can
find a compact set K,<X, and an isomorphism

g:(Xg—Kp) x M-V
onto an open subset of ¥ such that
() wog=pry,
(ii) @ |W—Im (g) is a proper map.

One then defines the notion of deformation locally rigid at infinity.

6. a) Let (U, w, M) be a differentiable family of complex structures. The bundle
©® of holomorphic tangent vectors to the fibers of w is defined. It is a differentiable
bundle on ¥ whose restriction to any fiber of @ is a holomorphic bundle.

Let 4(®) be the sheaf of germs of C* sections of & which are holomorphic on
the fibers of @, and lat 4"°(®) be the sheaf of germs of C™ sections of the bundle
O®0* ®@" where O denotes the dual bundle of ©,©* its exterior power r-times,
and the bar denotes the passage to the complex conjugate bundle.

The operator of exterior differentiation along the fibers with respect to anti-
holomorphic local coordinates defines a sheaf homomorphism

3: A" (0) > A™1(0),
and one obtains a fine resolution of the sheaf A4(Q):
0—>,4(@))~i>,4°°(®)—5>,4°1(@)—5>....

In particular HY(¥, A4 (©)) is isomorphic to the gth cohomology group of the
complex {@sz0 ' (¥, A%), 8}



ON DEFORMATIONS OF DISCONTINUOUS GROUPS 267

Let y be the family of closed subsets F of ¥ such that @ |F is a proper map.
Substituting the functor I' with I', we also obtain that Hy (¥, A (0)) is isomorphic to
the gth cohomology group of the complex {@ssoT, (¥, A%), 8}.

b) Let T denote the differentiable tangent bundle to M and let &€ be the sheaf
of germs of C* sections of 7. Then the map

o H (M, &)~ H' (U, A(0))

is defined (cf. [13]). If the family is rigid at infinity, this map factors in a natural

way through
aM:HO (M5 8) - H]q.z (vs ’4 (®))

so that one has the commutative diagram

: 14
H" (M, &) > H' (U, A (0))
Ou\ ek
Hy(, A(9)),
+ being the natural homomorphism.
¢) Let us now suppose that (¥, w, M) is a differentiable family of deformations

of Xo=w""(my). By localization around the point m, of the previous considerations
one obtains first the mapping of Kodaira-Spencer

0:En,— R & (0),

where R' w (@) is the first direct image of the sheaf 4 (0) for the projection w.
If we have a deformation which is locally rigid at infinity, we obtain then a
mapping
c:En—~ Ry @ (0),
where R, @ (@) is the first direct image of 4 (®) with supports P.

One has then the commutative diagram

Emug‘i{lw((@)
o i
R, @ (0).

ProrositioN 2. Let (¥, w, M) be a deformation of the complex manifold X,=
w1 (my), my € M.
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If 0=0, then (U, w, M) is a locally pseudotrivial deformation of X,; actually one can
find a meighborhood of X, tn VW which can be isomorphically imbedded in the product
Xy x M with a fiber-preserving map.

This proposition was proved in [3] for a complex analytic family. The proof
holds without any change for differentiable families. In particular, from the same

argument one deduces for deformations rigid at infinity the following:

ProrosiTION 3. Let (¥, w, M) be a deformation of X,=w ! (m,), my€M which
is rigid at infinity.

The necessary and sufficient condition for (U, w, M) to define a locally trivial de-
formation is that ¢ =0.

d) Analogous considerations could be repeated for differentiable families of dif-
ferentiable manifolds. In this case the sheaf 4(®) would be replaced by a fine sheaf
and analogue of the previous propositions would lead to the following conclusion ([3]):

ProrositioN 4. Let (U, w, M) be a differentiable deformation of a differentiable
mamnifold X,=w"" (mg), my€M.

(a) one can find a neighborhood of X, in W which can be imbedded in the product
Xy x M with a fiber-preserving map.

(b) if (B, w, M) is rigid at infinity, then (U, w, M) is locally trivial.

7. Families of uniformizable structures. a) Let (U, @, M) be a differentiable family
of complex manifolds parametrized by a connected and simply connected manifold M.

Let 7:W— W be the universal covering manifold of ¥; ('@, wom, M) can be con
sidered as a new family of complex manifolds.

Let D be a complex manifold; we will say that (U, w, M) is a family of complex
manifolds uniformizable on the manifold D if we can give an isomorphism

o‘:'i9——>D XM

(with respect to the sheaves of C'* functions holomorphic respectively on the fibers

of wom and pry) so that the following is a commutative diagram:

~ O
V- DxM
7y v ory
w
V- M.

We will always assume in the sequel that ¥ is connected. Hence U will be connected
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and simply connected. If follows that D must be connected and simply connected

and that, for each t€ M,
oo™t

7
Dx{t} - X,=w()
is the universal convering of X;.
Let I'=m, (10); this can be viewed as the group of automorphisms of the uni-

versal covering n:i9—>‘¢9. From the previous remark it then follows that, for each ¢,

we have

Ty (-Xt) ~T.

b) Let Aut(D) be the group of all complex analytic automorphisms of the
manifold D.

By means of ¢ we identify I’ with 67 'I'o as a group of automorphisms of Dx M.
Every element y€I' represents then a map Dx M —Dx M given by equations of

the type
{z—>y(z,t) 2€D,teM,

t—t

where, for every t€ M,y (2, f) € Aut(D).
We will assume that Aut(D) (with the compact open topology) kas the structure
of a Lie group.(t) This is the case for instance for a bounded domain D in C" (cf. [9]).
One sees then that to give a family of complex manifolds uniformizable on D is

the same as to give for every {€M a representation
g::I'— Aut (D)

which is discrete, acts freely on D (i.e., without fixed points), and depends differ-
entiably on ¢.

¢) As in Section 5 we define then, for a manifold X, whose universal covering
is isomorphic to .D, the notion of a deformation of X, in the class of uniformizable
structures on D. This notion, due to A. Weil [21], is the most natural for the in-

vestigation of properly discontinuous groups.

8. Holomorphic deformations of uniformizable structures. In the definitions given
before, we can replace differentiable families by complex analytic families of unifor-
mizable manifolds.

() For a complex manifold D this may not be the case. For instance, if D=2, the transfor-

mations of type z—ax+ P(y), y—y where P(y) is aeny polynomial in & cannot belong all to the same
Lie group.
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The condition of complex analyticity for the family is a very restrictive one, as

appears from the following theorem:

THEOREM 2. Let D be a bounded domain in C",. Any complex analytic family

of complex manifolds uniformizable on D s locally trivial.

Proof. Let (V¥,w, M) be a complex analytic family of complex manifolds uni-
formizable on D. _
Since the theorem is of local nature, we may assume that the parameter space

M is the unit ball in C™:
M={teC™| X |*|P<1}.

On the product Dx M we have then given a group I' of complex analytic auto-

morphisms of type

2Z*—=>9"{z,8) 1<a<n
f—t° 1<p<m,

where now, by assumption, the functions y*(z,t) are holomorphic in z and &.

All we have to prove is that actually the functions y*(z,t) for every y€I' and
1<a<n, do not depend on ¢.

Now M and D are bounded domains; so we can consider the Bergmann metrics
ds% and dsb of M and D respectively. One easily verifies that for the product of
two bounded domains the Bergmann metric is the sum of the metrics of the factors.

Thus
dS%)XM = ds%) + dé’%q.

Any complex analytic automorphism of D x M is an isometry with respect to the

Bergmann metric.
Let (zy,%) €D x M and let y be given. Then

>y t) 1<a<n
[ e 1<B<m

is also an automorphism of D x M. We consider the automorphism y oyg'. This will
be the identity on D x {f,}.
We take (zy,%) in the origin of the coordinates in C" x C™; then the equations
of yoys' will have expressions of this type:
, [#=Az+Bt+0(2)
YOYo = { ¢ =t,

where 4 and B are constant matrices.
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Since the origin is a fixed point and yoyg' is an isometry for the Bergmann metric,
it follows then that we must have B=0. Moreover, since for {=0 the mapping is
the identity, then A=1I. Thus the linear part of poys' is the identity. By a theo-
rem of H. Cartan [8, 9], since D x M is bounded, it follows then that

yoyy =identity i.e., y=y,.

This proves the theorem.

Remark 1. We have actually proved the triviality of the family on any coordi-
nate ball of the base space M.

Remark 2. There are no restrictions on the dimension of D. Thus for instance
if (U,w, M) is the family of curves of genus p>1 over the Teichmiiller space M,

then the uniformizing parameter on X;=w () on the Poincaré unit circle cannot

depend analytically on ¢ (or P is not analytically isomorphic to the product of M
and the unit circle). This fact was first pointed out to us by L. Bers.

§ 3. Deformations of structures uniformizable on bounded symmetric domains

9. W-ellipticity. We gather here some known facts about the 3-cohomology that
we will need later.

Let X be a complex manifold of pure dimension n. Let 7:E— X be a holo-
morphic vector bundle on X. We denote by C* (X, E) the vector space of C* forms

of type (p,q) with values in E; by D**(X, E) we denote the subspaces of those forms
with compact support.

Let h(u,v),u,v€Ex " (x) be a positive definite hermitian scalar product on the
fibers of £ depending differentiably on the point € X. If on the coordinate neigh-
borhood U, E|y ~U x € (r=rank E) and if u=4&,...,&), v=49y,...,,), then on U

h(u, v) =i hy &,
where hy is a positive definite hermitian matrix of class C° on U. The local forms
ly=hg'Ohy
define a &-connection on EF and the curvature form of this connection is
sy=0ly=2d(hy' dhy)

locally given by a rxr matrix of (1, 1) forms.
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Given @ €C™ (X, E), then gy=¢|y is given by a column vector with r-components
each of which is a scalar form of type (p,q). The exterior multiplication by sy gives
a new column vector sy A gy of type (p+1, ¢-+1). One verifies that we thus obtain

a linear mapping :
e(s): C"(X, E)— C** "1 (X, E).

If E* is the dual bundle of E, then one can define an anti-isomorphism

4:0% (X, E)—> 0% (X, E*)

locally given by #g@y=hy gu.
We now consider on X a hermitian metric ds®>. We can then define the x

“operator”
*:0"(X,E)—C"*"?(X, E)

normalized so that x % =(—1)?*9,
Given ¢,p€C" (X, E), then

oA x#yp=A(p,p)dX

is a (n,n) scalar form that we can write as A(p,p)dX,dX being the volume ele-
ment of the metric ds.
If ¢, p€e D" (X, E), then

(p.p)= LA(% p)dX

is finite and defines on D" (X,E) a complex pre-hilbert structure. We denote by
" L£(X,E) the completion of D (X, E) with respect to the norm ||g|| = (¢, )2
Since F is a holomorphic vector bundle, exterior differentiation with respect to

complex conjugate coordinates defines a linear map
9:0"(X,E)—~> C"*Y(X,E)
with 29=0. Its formal adjoint is the linear map
9:07"Y (X, E)—~> C"(X, E)
given by D= — %404 *.
The Laplace—Beltrami operator is defined as

O=8bd+23:0"(X, E)~> C"(X, E).

For compactly supported forms one has therefore
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(D@ ) =(p, Oyy=@¢,09)+ (dg, dy).

The completion of D" (X, E) with respect to the norm

Ng)=lol*+ 2@l ogl**
is denoted by W*(X, E).

DEFINITION. We say that B is W elliptic if hermitian metrics on the fibers

of E and on X are given, so that, with a positive constant ¢>0, one has for every
p€D" (X, E) the inequality:

ol <c(lo@l®+ 1ol

ProrositioN 5 (cf. [4] or [5]). If E is W*%-elliptic, then for every f€LP (X, E) N
C* (X, E) there exists a unique element x EW* (X, E) N C*(X, E) such that

Oz={.

We now assume that the hermitian metric ds®> on X is a complete metric. In these

conditions for any o>0 one has the following inequality for all forms ¢ €C* (X, E)
(any p and g) (4] or [5]):

= 1
leel*+loel* <_llel*+ol el (1)
Obviously the interest of this inequality is for those forms such that

el <eo, D gl*< oo,

Also in the case of a complete metric the space WP (X, E) can be identified
with the subspace of L£P(X,E) of those elements ¢ for which the distributions d¢
and D¢ can be represented by elements in £} (X, E) and £** (X, E) respectively [5].

From inequality (1), if follows in particular that if f€ L (X, E) n C* (X, E), any
€L (X,E)nC™(X,E) satisfying the equation [Jz=f must be an element of
WYX, E)nC*" (X, E). If E is W*%elliptic, then it follows that

=l <elifll-

TuroreM 3 ([4], [8]). If E is W™%elliptic with respect to a complete metric on X,
then for every f€LP (X, E) N C* (X, E) such that 8 f =0 there exists a unique x EW* (X, E) n

C* (X, E) such that
f=0bx, Dox=0.
18 — 642907. Acta mathematica. 112. Imprimé le 4 décembre 1964
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10. Kdhler and Einstein metrics. a) If the metric ds* is a Kahler metric and if
w=V =12 ggzde" A df
is the associated exterior form, one can define the linear mappings
L:0"(X,E)—C*"" "X, E)
A:CP Y X By "X, E),

where Lo=w A¢@ and A= % "'Lx is the formal adjoint of L.
- One has the following identity (cf. [7]):

O-%"'O% =V—-1()A—=Ae(s) =V —1[e(s), Al
Now since for ¢ € D? (X, E) one has
(x'O*g,9)=(O* g *¢)=[a% p[*+][ 0% ¢[*>0,
one obtains the following inequality for any ¢ € D**(X, E):
V=TEA-Ae@)g g <logl+ ool
Therefore whenever we are able to establish an inequality of the type
V= 1(e@EA-Ae(s) g @) =gl
with ¢>0, we get a criterion of W-ellipticity,

b) We consider now the special case where

E is the holomorphic tangent bundle ® to X,
@ is a form of type (0,q) with values in ©.

Then the Kahler metric on X can be assumed as a metric on the fibers of Q. We

can compute the connection and curvature forms. One has for the d-connection:
l£=%F£B d?? where F$5=Zgg;%gz_%“;

for the curvature:

ol

oz

s2=2 Re,5dz® A d7’ where R%g;= —

(the I’s are the Christoffel symbols and R%,; is the Riemann tensor).
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Since ¢ is of type (0,¢9), Ap=0. so that
V=1(e(s)A—Ae(s))p= —V—1Ae(s) .

Let B=(By, ..., Be)» Bi=(By .., Bsr ..., Bo); then for

= % _ dzP 580 — K 3 B
12 ﬂ,<§<pq(pﬁl"'ﬂqdz Ao NdFP1=73 g2 de®,
one obtains:

q
V=TAe(s) 1§=—ZR,,<,DB > S (—1)'B%% ¢hs,

i=1 By
where Ryi=2 Ry
v
is the Ricci tensor.

c) We now introduce the assumption that the metric is a Kéhler—Einstein metric,
ie. that one has the relation:

R
Rii=3—Gu
(- 2nga:ﬁ’

where R=23,R% is the scalar curvature of the metric and is constant on X. We
then obtain:
« R g =
(=V=TAe@g)s =~ 05— 3 3 (—1) ‘B, 93,
i=1 8y
and therefore:

— R
~V—TA(Ae(s)p, )= — — A(p, @)+

m 2 R&ﬂyz_s <Pl§,7§ N

(@— D! apyros

Let &={£4}, . f=1,...,m, &5 =&, represent a point of C¥"**P, We consider for
every x,€X the linear map L(z,) of C¥"*V into itself given by

L(.’ZJO) : §«zﬂ _>n:,§;:3 R‘ruﬂ'y (xo) Eaﬁ-

Identifying C#""* with the fiber of the fiber bundle of symmetric tensors of the

described type and using on it the metric induced by the metric on X, we have a
scalar product

Enp=2, &pﬁ for & 5 € Cin®+D,

Now let d(x,) be the smallest eigenvalue of L(x,) so that

<L(x0) £E > (S(.’L‘o) <§, & v Eeci-n(n+1).

18* — 642907
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By the symmetries of the Riemann tensor (R,’”;=R,%;=R;”,) we then obtain:
SR 455507 =1 SR s (@prn + @555) (9777 + ")

> 3 8(x) S (.55 P77 + s 97 PF). (2)

Now we have 2 Vh3E (PMB' =q!A(p, 9)- ®3)

— 1 . g+1 _
2 PhyE PP =§Z<Pﬁ.$§' P~ TZW;& e,

1
where Py B §_+_1 {(P;-f}n wePs ™ PBuaBs...Ba +... i Pbe B ---Eﬂ-w_!}'

Therefore S eaa PP <(g-1)! Alp, ¢). 4)
From (1), (2), (3) and (4) we deduce the following

Lemma 5 (cf. [7]). Let X be a complex n-dimensional Einstein-Kdhler manifold
with scalar curvature R and Riemann tensor R*.5. Let, for 2, € X, §(x,) be the smallest
eigenvalue of the Linear tramsformation

L(wg) :6up—> S By (20) Eap (Eap= Eie)-
If 8(z,) <0, then for any @ €C*(X, 0)) one has at z,:

q+1 R

~V=T14,(Ae(s)g.9) > {6(%) o 5;} 4., (9,9).

Now we remark that
R=23 R:=2 trace L(z,)>n(n+1)d(x,)

so that if R<O0, then certainly d(x,) <0 at each point of X.

CorOLLARY. If X is n-dimensional Einstein—Kdihler with R <0, then

dz,) <R/n(n+1)<0,
nd 1 Inf R__ +1}>O
and if A Pr PR I  Ce

then the tangent bundle @ is W%-elliptic.

11. Bounded domains and their quotients. a) Let D be a bounded domain in €%; let
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E=K@E)d' A ... Ad2" AdFE A .. N DT

be the Bergmann kernel; let

> 9.5 (2)d2*d¥ =23 log K(2)

be the Bergmann metric; and let

dX=(%l) det (9.5 (2)dz" A ... Adz" NdZ* A ... NdE"

be the corresponding volume element. Clearly E/dX is a function on D invariant.

by analytic automorphisms; in particular it is a constant if D is homogeneous. Now
since the Ricci tensor is given by
&* log det (g,5)
Raﬁz -
02" ozf
we obtain the following (cf. e.g. [12]):

Lemma 6. If D is a bounded homogeneous domain in C*, then the Bergmanw

metric on D is Kihler and Einstein; the scalar curvature is R= —2n.

b) To a bounded homogeneous domain we can therefore apply the criterion of

W-ellipticity given in the Corollary at the end of Section 10. We remark that d(x,)
is now a constant.

In particular for the irreducible bounded symmetric domains, following the classifica- .
tion of C. L. Siegel [17] and the table, p. 499 of [7], we obtain the following data:

Type of D dim ¢D ® is W.elliptic for
Lym (ISm<sm’) mm’ O0<qg<m+m’' -1
I, (m=>2) imm-1) 0<g<2m-3
1, (m=1) 1mm+1) O<g<m
IV, (m=3) m 0<g<m-—1
v 16 0<g<l1l
VI 27 0<qg<17

We note that R/nd is not changed if we replace the given metric by a propor-
tional one.

¢) Let D=D; x...xD, be a product of r bounded homogeneous domains D;,
1<i<r. Let R/nd and R;/n;d; be the corresponding invariants for D and D, 1 <i<r.
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Then since the Bergmann metric on D is the sum of the Bergmann metrics on the
factors, one obtains that

R R,

n—6 = Inf nq 617
hence from the above table and the corollary of Section 10 we deduce [7] in par-
ticular the following

THEOREM 4. Let X be a complex manifold whose universal covering space s
isomorphic to a product D=D x...xD, of bounded irreducible symmetric domains D,
(1<i<r).

Let © be the holomorphic tangent bundle of X and let us consider on X the Kdhler—
Einstein metric which on the universal covering reduces to the Bergmann metric.

If dimegD,>2 for all i (1<i<r), then © is W™.elliptic, i.e., there is a constant
c=c{(Dy, ..., D,) such that for any ¢ € D" (X, ®) we have

lel*<clagl®+ [0 e[

In particular, since the Xdihler-Einstein metric considered on X is a complete
metric, then for every ¢ €L" (X, 0)nC" (X, ) such that 8¢ =0, we can find

pEL® (X, ©) N 0 (X, 0)
such that p=2y.

12. Hermitian metrics close to the Bergmann metric. In the sequel we have to
consider hermitian metries not necessarily Kéhler but close to the Einstein and Kahler
metric of the previous section. We need to prove that if the metric is perturbed
only on a compact set and if the perturbation is sufficiently small, the contention of
Theorem 4 is still valid.

a) General hermitian metrics. We adopt the notations introduced in Section 9
and let o
ds?=2%zgde =23 g,5dz"d2f

be the hermitian metric on X. Let ©* denote the dual of the holomorphic tangent
bundle on X.

We consider on E® 0*®0* (where @*? = A7©*) the connection defined by
I=h"19k on E, the connection defined by g 'dg on @, the riemannian connection on 0.
The covariant differential operators vV and v will be computed with respect to the

chosen connections:
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v :0"(X,E)— 0" (X, E® %),

v :0"(X, E)—> 0" (X, E® @%).

In terms of the curvature of the chosen connections one defines the operator

(cf. [7] n. 13)
#:C*(X,E)—C"(X, E)
(note that »=0 if ¢=0).

The identity we used in the Ké&hler case was
O—%'Ox =V=1(e(s)A—Ae(s)) (Kahler). (1)
This is now replaced by an identity of the type (cf. [5] n. 13).
(O=-*"'"O%)p=@x—%x"'ux)p+F o+ F,Vo+F, 7o, (2)
where F, Fy, F; are linear mappings:
F :C"(X,B)—>C"(X, B,
F,. 0" (X,E® 0%~ ("(X, E),
F,:0"(X,E®0* - (" (X, B),
which are identically zero if the metric is Kihler, and in that case
w— % ex=V—1(e(s)A—Ae(s)) (Kahler). 3)

The local expressions of F,, F,, F; are given by linear functions in the components of

@, V @, V @, respectively, with coefficients which are polynomials in the metric tensor

9.5 and ¢g*, in the torsion tensor S%, in the components of the connection 'z, and
in the covariant derivatives of these components.

The relation between the operators » and ¥ and the “Dirichlet norm” is given
by the following equality:

IV @l* + (xp, @) = |39 || + || b || (4)
for any @ €D (X,E) ([5]n.15).

LeMMma 7. For any compact set K< X we can find a constant C(K)>0 such that
for any @€ D" (X, E) we have '

IV ¢l +17 ol <O@E) {llol*+ ll2p]®+ o ]%.
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Proof. o) First we establish the desired inequality for forms ¢ € D**(X, E) with
support in a given compact set K, < X:

(1) supp ¢ < K.
From (4) we deduce first that we get an inequality
IV elP<llgpl+lIvg|*+C, (K lo|®
if we choose C,(K,) so that
| Gep, )| < Cy (K) [l ™.

This is certainly possible in view of assumption (i).

We need now an analogous estimate for || Vel[®. First we remark that it is
enough to establish such an inequality for forms of type (0,¢) only. In fact, any
@€D™(X,E) can be considered as an element ¢€ D% (X, Z® ©*?), and one has, by
the choice made of the connections:

Ivell=lvel. Ivel=lval.

Now if p€ D" (X, E), then #p€D?(X,E*) and

Vie =04p, dig=0,
so that | Z4@ll> = (e #p, #9).

Moreover, Wp and §_7#<p differ only by terms not involving derivatives of the

components of ¢ and analogously for Vo and V#p. We then have inequalities of

the type: B
IviglP <& llol*+ 1V ol

I FsplP<Co&) l@lP+1Iv ol
v ellP<C(&y lll*+ I Taell*

From this last inequality we get an inequality:
Ivel*+1vel*<llogl®+ bl +(C,+Co) @ I* + (Dee 9, #9)-
Also from (2) we get (since xgs#p=0)

(e, #9) = (Dee ¥ # @, ¥ #) + (e X f@, % 4) + (Fy #o, #9)

+(Fy Vi, #9) + (F5 V 49, #9).
Again by assumption (i) we get estimates:
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| (e 4o, #9) | < C3 (K [l I%,

| (Fy o, ) | <Cy(K) [ o],

1
|E a9 <C & ol w0+ o),

— — 1
|®, om0 <0 {1501+ Do,
for any ¢>0, while we have for any p€ D" (X, E)

(e %4, % 49) =[20|*+ [ dp||*.

We then derive, for sufficiently small o, an inequality

Ivel®+iivel® <& (el +loel*+ ool

B) Let peD?(X,E) and let KCI"{1 where K, is a fixed compact neighborhood
of K in X. Let u be a C* function, 0 <y <1, with support in K, and =1 on K. We
apply the previous inequality to p¢ (which satisfies assumption (i)) and we get

[velx+ 1 Velk<Co(&) {Hlugl*+ouel®+ |ouel?.
But now we can find a constant C;(K,) such that
leuell® <legll®+ 05 (Ky) o,
Iougl®<Ioel?+Cs (&) o]
while leelP<liel*

From these inequalities the lemma follows.

b) We consider now a deformation (¥, @, M) of the complex manifold X; we
assume that
M={teR"|>&<1}.

Let ds? =2Zga§ (2,t) dz*d7® be a hermitian metric on the fibers of ‘¥ which depends
differentiably on the parameters .

Let F be a closed subset of ¥ such that w|F is a proper map. From the pre-
vious Lemma 7 we derive the following:

CoroLLARY. Let Ki=F N X, where X,=w ' (t). We can find a continuous func-
tion c(t) such that for any @ €D (U, ®) we have
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I Ve@ellz, + 1| 7e@ellk, <o) {loel* + ol + D |%}-

Proof. Inspecting the proof of the previous lemma one sees that the constants
¢ (K;), 1<4<5, are locally bounded functions of ¢ (i.e., given f{,€M there is a neigh-
borhood U(t,) in M and a constant ¢,>0 such that for t € U(t,),0 <¢;(K,) <c,. Hence
the constant c¢(K,) of the lemma is also locally bounded. Thus there exists a con-
tinuous function ¢(t)>c¢(K;) VteM.

We can now prove the following proposition that we will need later:

PROPOSITION 6. We assume that the hermitian metric ds; has the following prop-
erties:
a) on X,U U (X~ K,) the metric is a Kdihler metric;
teM

b) at each point xGXOUtU (X;— K,) we have for any ¢ €C* (X, 0)
eM

At(' -1 [e (8)’ ‘/X] P ‘P) = Cy At (‘P? ‘P)

(where cy>0 is a constant independent of t and ).
Then we can find &>0 such that for any ¢ € D**(X, ©) and any t€ M with D8 <¢

we have ~
teoll@ellf <llogli? + o g@:l?.

Proof. From identity (2) we get
(e~ %% %) @, ) <||Gp|* + || 0@ |* + [(Fie @, @) | + | Fos V@, )| +|(FasV @, )| (@)
Let W=X,U (W—F); at each point of W we have by the Kihler assumption a)
%— % Lex =V = 1[e(s), A.
From b) and the fact that », and %, depend continuously on ¢ we get for any
p €D (X, 0):
(e = % %) pp, @) = ((x— % "1 %) @1, @)z + (6 — % "1 %) @1 Pk

> o |l @i lz-r + § 00 [l el ®

provided £ is sufficiently small, say > # <e.
Also the operators F; vanish on U, hence their support is in K, and we thus

can find a constant c;(g)>0 such that

lim ¢, () =0,
>0

and such that for any ¢ with > 7 <& we have:
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At (Flt [ Flt ‘P) <cl (8) At (<P, (P);
A (FoV @, FoeV @) <c; (€) 4 (V, Vo),
Ay (Fg: Vo, F3 Tp) <c, (g) Ae(V o, V).

We then get from Schwarz’s inequality for any o>0

[(Fr @, @)| <3 (0 +ﬁf—)) lel®

o ()

|(Fa: V9, @) +|(Fa ¥ g @) <o [l ]|+

(I velk+17 ol

Moreover, by the previous lemma

| 7ol 1 7glk <o (lpl+ l3el® + gl

From («), (B) and these estimates we thus get for X # <e:

¢ (e ¢y (&)e(t ~
eolgl <3 {30+ 2 v o) ol + (2001 izl + g
Now we choose o=%c,, When ¢—0, the coefficient of | @||> on the right-hand
side tends to ¢,/12, while the coefficient of [[Gg||®+||be|® tends to 1. Hence if ¢ is
sufficiently small they are less than c,/6 and 2. From this we get the result.

13, The rigidity theorem. Let M ={t€R™|> <1} be the unit ball in R". We
want to prove the following

TueorREM 5. Let (¥, w, M) be a differentiable family of deformations of a complex
manifold X,=w"1(0). We assume that

a) the family is a family of uniformizable structures on a bounded symmetric domain
D none of whose irreducible components is of dimg=1,

b) the deformation is rigid at infinily,

c) X, 18 a g-pseudoconcave manifold with 0<¢< dim¢X —2,

d) the fundamental group m,(X,) is finitely generated.

Then the whole deformation (U, w, M) is trivial.

Proof. «) From assumption b) and Proposition 4 we deduce the existence of a
diffeomorphism
g: Xox M-V
with the following properties:
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(i) ¢ is fiber-preserving i.e. pry=wogy,
(ii) for a convenient compact set K,< X, the map
g:(Xg—Ko) x M~ g ((Xy— Kp) x M),
is an isomorphism.

Let ® be a continuous function on X, which is strongly g-pseudoconvex on the

complement of a compact set K <X, and such that
B,={z€X,|0@x)>c}c =X Vc>igf .

We may assume that K= K,< B, where c,>infy, ®.
Let A=g((X—B,)*x M) and set on UV

¢, if vEV— A,

¥ :{(I)oprx.og‘l if vEA.

Then ¥ is continuous on ¥ and its restriction to X,=w"1(t), (t € M) will be strongly
¢-pseudoconvex outside the set K,=g(B,, x {t}). Moreover the sets

B, (t)={zr€X,|¥ (x)>c}

will be relatively compact in X, for ¢>infy, ® =infy, ¥ |y,
It follows then that for any t€M,X,=w '(f) satisfies the same assumptions
required for X,.

) We now remark that the group of analytic automorphisms of X, is a Lie

group. This follows from the

LeMMA. Let D be a connected, simply connected, bounded domain in C". Then for
any manifold X whose universal covering is isomorphic to D the group Aut(X) of all

complex analytic automorphisms of X is a Lie group.

Proof of Lemma. We know that Aut(D) is a Lie group by a theorem of H.
Cartan [9]. Let I'=x,(X) be considered as a discrete subgroup of Aut(D). Let
w:D~D/T=X be the natural projection. Since every holomorphic map 7:¥Y X
of a simply connected manifold ¥ into X can be factored through the universal covering
map n:D— X, it follows that for any «€Aut(X) we can find 7 € Aut (D) such that

axox(x)=mon(x) Vz€D.

This means that n€NI)={c€Aut (D)|¢'=T0}.
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We thus hawe the exact sequence

e—>I'— N(I') - Aut (X) —e.

Since N(I') is a closed subgroup of Aut(D), we see that N(I') and lience Aut(X)=
N()/T is a Lie group.

v) We now remark that it will be sufficient to prove the following

ProrositioN 7. Let (U, w, M) satisfy the assumptions of Theorem &. Then
(U, w, M) represents a locally trivial deformation of X,.

In fact, if follows first that all fibers X,=w '(t) of ¥ (Vt€M) are isomorphic
because the local triviality entails that {t€M|X,~ X} is open and closed in M.

Then by the previous remark and the local triviality if follows that (¥, @, M)
is a fiber bundle over M, with typical fiber X, and with structure group Aut (X,)
which is a Lie group.

Since M is contractible, (U, &, M) is topologically trivial, hence also differentiably
trivial (cf. [19], p. 25). This implies Theorem 5.

14. Proof of Proposition 7. «) Let U ={U} be a locally finite coordinate covering

of U with coordinate patches (z;,£) and coordinate transformations

{zg‘=hf‘,(z,-,t) 1<a<n=dimc X,

t.=1, I<pu<m.

Let F=g(K,x M). We may assume without loss of generality that the functions

7% (2,t) are independent of ¢ whenever U;n U; N F=¢. Let v= 7 v*(t)2/di, be a C*

vector field on M and let us consider at a point p € U, N Uy, p = {(2;, t) = (hy (25, 1), 8)},
ohj; (25, t)

0% (Zi, t) = Z U (t) T

Then {0} €Z'(U,O) is the deformation cocycle corresponding to the vector field v

and the coordinate covering U.

By the previous assumption we have

supp {6} < F,,

where F,=g(K, x M), K, being a convenient compact neighborhood of K.
19 — 642907. Acte mathematica. 112. Imprimé le 4 décembre 1964
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Let {o;} be a C* partition of unity, subordinate to U, and set

vi (2, 8) =2 0; 0% (2,8) on Uy

o5
We get ;5 yi =0,
€ ge %% 82;" i if
e w_ = p OF .
so that ¢ =0yl =0y 5= S5 d?
'f

is a (0,1) @-closed form with values in @, and

supp ¢ < F,.
The form ¢ is the element corresponding to the class of {6;} by the Dolbeault iso-
morphism.
If p;=¢|X, then for every t€M we have
@ € D" (X, 0,
where 0,=0|X,.
p) We consider
n:DxM—>U

the universal covering of ¥, as assumed in the hypothesis a) of Theorem 5.

We also consider the mapping
o:DxM-—~>X xM

defined by o(£,t) = (n(&,0),t) obtained by trivial extension of the universal covering
map z:D x {0} > X, induced by n over X,.

The diffeomorphism
g:XogxM—>Y

can be lifted to a fiber-preserving diffeomorphism § of the universal coverings, i.e., we

will have a commutative diagram

DxM——g>D><M
gy 7wy
g
X xM—~> ¥.

Here g and § are only fiber-preserving diffeomorphisms but not morphisms for the

structures of analytic fiberings over M.
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Let A=Xy— Ky, Dys=n""|x,(4); then by restriction to A x M and D, x M in the
above diagram we get a diagram in which also g| 4 x M and §| D, x M are morphisms
for the structures of analytic fiberings over M.

The holomorphic tangent bundle along the fibers of D x M can be identified with

(D x € x M. The Bergmann metric on D is a function
g:DxC"—R

which is invariant by the operations of Aut (D) on the tangent bundle D x C". By
trivial extension on D xM we then have a hermitian (Kéhler and Einstein) metric
along the fibers of Dx M

B:(DxC)x M—>R

invariant by the operations of Aut (D x M)= differentiable maps of M into Aut (D).

Then if I is the automorphism group of the universal covering (D x M, w, ¥), we

have @~ {(D xC") x M}/T" and B defines a hermitian (Kéihler-Einstein) metric

ds2 along the fibers of (U, w, M);

analogously if T', is the automorphism group of (D,7n|pxw,X,). We have ©,=
(Dx€"/T, and B defines a Kihler-Einstein metric ds on X, By trivial extension

of I'y to Dx M we get from B a Kihler-Einstein metric
ds? along the fibers of X,x M such that
ds% = pr¥, dsp.

On g(4 x M), (g 1)*ds; will remain Kihler-Einstein and “independent of t€.M”.
Now let p be a O function on X, with the properties

0<o<1 (2) - 1 if reK,,
sesbL o e®=1g ¢ sex,-k,
Let p=eog™"
and set on V¥ ds*=pdsi+ (1 —p) (g7")* dst.

‘This metric will have the following properties:

i) on g(K,x M) and g({X,— K,}Yx M) it is a Kéhler-Einstein metric,
( HACLTY o 1

(i) on X, ds®=ds; is the natural Kihler-Einstein metric.
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y) Let &; be the d-operator on the fiber X; and let us denote, with respect to
the metric ds} just defined, by b, and [],, the operators b and [7, for the bundle ©;.

By the assumption a), Theorem 4, Proposition 6, and Theorem 3, we deduce
that there exists a ¢>0 such that, for > £ <a, we can find one and only one element
€W (X, 0,)nC"(X,, O,) such that '

(pt:étbtxt (and btéxt=0).

Let U{z,t} be a coordinate patch on U; then in that coordinate patch =, is repre-

sented by a differential form
= a; (. 1) dz*.

We want to prove the following regularity theorem for ay:

(A) The coefficients af—; (2,t) and all their partial derivatives with respect to the fiber

coordinates z are continuous functions of t.
Let 2*=a,+V — 12n10 1<a<n, and h=(h, ..., h2n) EN*". We set

-1l
= ok oohwm?
3.’171 t... 62:2,',"

an
|B| =2 &i.
1
‘We choose ¢/>0 and 6>0 (with <o) such that the ball
B, ={(x,t)eU|t=t, > af <7}

is contained in U n X, for any r<¢' and any choice of ¢, with > (#)*<4.
For any form y€@p:q-rC" (X, ©;) we consider its expression in the local

coordinates z, in U N X,:

w={§w§(x)dxs} 1<a<n,

S being a block of r=p+¢q indices between 1 and 2n. We then define for a given

£,0<e<¢ and for any integer £>0:

n
(llle?=2 2 2 f | D" % () | dy A ... A dgn.
S |r|<k J Be

a=1

Now 2B, has the ‘“‘cone property” so that we can apply Sobolev’s inequality
(cf. e.g. [10], pp. 232-233), i.e., we can find a positive constant ¢ =c(e, k, h) such that

| D" 9% ()| <c(e. & ) [|plli3i e

for any y€B, any A and k>n.
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Also one has for any k>0 the following Friedrichs inequality [11]:
(lpllRz2)® <ey (e €, B {UITew 18+l llo):

where ¢, =¢, (s, k) is a positive constant.
To prove contention (A) it is enough to show, by Sobolev’s inequality, that for
s, ¢t in the coordinate ball {> # <48} on M we have

lim ||z, —z[|x*=0
t—>s

for a sufficiently large k. Now by the Friedrichs inequality we have:
(" Ty~ Xs l|£i2)2 <6 {(“ O (0 — ws)"%')z + (“wt - xS||€€')2}- 1)

Thus it is enough to show that both terms on the right-hand side tend to zero

as t-—s.

(x) For the first term we write
D= ) = e e — O — (e~ s T =@ — @s — (e — Os) s
Thus 100 = 22 <l pe— gl + (D D) 2o 2
Now since ¢ is C* in the parameters t,
lim [~ g 12 0.
Also [J; has C* coefficients in #, hence

lim (01, — 032) = [1& =0,

Hence the first term on the right-hand side of (1) tends to zero for {-—s.

(f) It remains to show that
lim [|z, — |7 =0.
Let ¢,: X;,—~ X, be the diffeomorphism defined by
gi=prz,097'| X
(cf. Section 12 point «) of the proof). If we set

9s=9: ' 0gy: X, —~ X,
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we get a diffeomorphism which is also a complex analytic isomorphism outside K, =
gi ' (Ky), K, =g:* (K,) in X,, X,, respectively.

By transposition the diffeomorphism g;, defines an isomorphism g}, of the space
of C* forms with values in the real tangent bundle of X; onto the analogous space
for X,.

We will denote by

[If (r=0,1)

na

the projection operator on X; which associates to each C'* form of degree p + ¢, with
values in the real tangent bundle to X, the part of type (p,q) with values in @,
(f r=0) or O, (if r=1).

In the coordinate neighborhood U,g; will be represented by a coordinate trans-
formation depending differentiably upon ¢ and s and reducing to the identity for t=s.
From this it follows that

tm ||z, g8 2. =0.

Also setting ﬁ, =II+IL+IT,
10 01 10
we have gf = 10_11? ges 2+ [ L gés
and lim "Ht gfs xs":e’ =O’
t—>s
since [Pz, ==,.

01

It is therefore enough to prove that

lim ||z, —[]? g% 2, |lo* = 0.
t->s 01

Now with respect to the chosen metric on the fibers of ¥ we can consider the
global norms defined in Section 9. The above condition will certainly be satisfied if

we can prove that ||x,—TIf g%z, is finite and tends to zero as ¢ tends to s.
01

Now we have by virtue of the triviality at infinity and the special choice of the

metric on the fibers:

@ Il'oh L (X, 0)<L" (X, 0),
(b) D,I.;[? g}"s—gll‘t’ gts [Js is a compactly supported operator on X,.
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Therefore from

Oe (e — [T 98 25) = @ — [ I? g @ — (112 95 — 12 985 O1) s
o1 ol o1 o1

we see that the right-hand side is compactly supported while x,—lo—l[? gts &, is square
integrable.
From a previous remark (at the end of Section 9) it follows then that

2 —]0_1[? gt r, €W (X, 0y),
and therefore by virtue of Proposition 6, for > {7 <¢, we have

”xt_]ﬁ_l[? g’tksxs" <c{"%"‘1011? g?s (Ps" + "(Dt 01? g;ks_lo—p g;‘; Ds) xs”}-

It is now clear that for {—s the right-hand side of this inequality tends to zero.
Contention (A) is therefore proved.

15. Continuation of the proof. «) Our next step is to show that ¥ as a continuous
family of deformations of X, is locally pseudotrivial.

We set M, ={teM|>i<r}
for 0<r<1.

Let Y= 2,
so that ©:=0Yy:.

We have seen that y; represents a section of ® on z7'(M,) which is C® along the
fibers and continuous on V.

Let this section y; be locally represented on the coordinate covering
UNa ™ (M) ={U; 0 a™ (Mo)}ier
by the vector fields along the fibers
{y* (2, 1)} 1<a<n.
We then have on each U;:
ie., 0F (25, 1) = pf (2, 1) — 4% (2, 1)

is a holomorphic vector field along the fibers (continuous in ¢) and one has
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05 () =5 68 2

~ 07,
5w

f) Let us choose in particular v (f)=2/0t,; correspondingly one has a deforma-
tion cocycle {0%;(z:;,t)} and vector fields {6% (z,t)} such that

o L,
Oy (208) =2 05 (2, 2) ﬁ_ i (21, 8).
8 2
One then verifies that
7 " 0
X/; (Z,', t) =a_t# - eui (Zi: t) 52_?
is a global (continuous) vector field on n~'(M,) whose projection on M is the vector

field a/at,.

This can be done for u=1,2,...,m.

y) We now introduce the following notations:
M. (s)={(t),...t:) EC*||tu| <r 1<u<s}
I (h) ={t,€C||ts| <&}

Let U, (s)=w '(M,(s)), and let U,={U};c;, be the set of those U,€U such that
U0 X,+0.
We can choose Uy={U;};c;, and Us = {U{}i, both coverings of X, in VY, such that

UiccUfcclU, Vie€l, )

For every ¢€I, we can find & >0 such that the system of ordinary differential
equations
a9t (&1, 8)
Ot

I<a<n

+ 07’" (gl (‘Sv t)’ t) =0

has a solution g¢; (£,t) of class C* defined for
1
tEM,, (m—1)x I (m), rl—EVTn
{gg‘(ft’tly---;tm—bo):Eia

with initial values:

1<a<m,

Eie UT n XO and such that I'H (5, t) € Ui'
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Moreover, we can assume that the functions ¢f(&,f), ¢ will define a system of

holomorphic coordinates on
Uinw (M, (m=1) x I, (m))=U;".

Making the change of coordinates zf=g¢¥ (£, 1), we then see that if & =Fkf (&,1),t=¢,
are the new coordinate transformations on U; N U;’, we must have
agt oy _ ok

2

123

This shows that in the covering U;e;, Ui of X, in U’the change of coordinates is in-
dependent of the variable t" or that there is a neighborhood A4 of X, in U which
can be imbedded by an isomorphism of class ' in the product ¥, (m—1)xC, the
isomorphism being the identity on U, (m—1).

We now replace ¥ with 4 as subset of U, (m—1)xC; then the deformation
cocycle for »=9/8t™"! will be, in the new coordinates, again written as a co-boundary
of a co-chain locally given by sections of ® holomorphic along the fibers and contin-
uous in the parameters {. The same will be true for the restrictions to U, (m—1),

By the previous argument we can find a neighborhood of X, in U,, (m —1) which
can be C'-isomorphically imbedded in the prodact U, (m—2)xC where r,=%r,, the
isomorphism being the identity on U, (m—2).

By this procedure we find, after m steps, a neighborhood of X, in ¥ which can
be isomorphically imbedded in the product X,x C™ by a C'-isomorphism.

This proves that the local deformation defined by U as a continuous (actually

of class (') deformation is pseudotrivial.

16. End of the proof; the concavity assumption. «) Let us resume the notations
of Section 13 «) and let us set

Coo =inf ® =inf ¥,

X v

From the assumptions ¢) and d) of Theorem 5 and from Theorem 1 we deduce that:

We can find a constant c¢,>c, such that, for any ¢, ¢, <c<c; we have:

(i) the sets B.(f)={zx€X,| ¥ (x)>c} are connected, relatively compact in Xi;
(ii) the envelope of holomorphy of n'(B,(f)) is the domain D.

We fix ¢, with ¢, <c,<c¢;. From the (continuous) pseudotriviality of ¥ (Section 13)

we deduce that there exists an ¢=¢(c,) >0 and an injective continuous map
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X:B,(0)xM,—~ U,

which is open, is a homeomorphism onto its image, is fiber-preserving, and is a complex
analytic isomorphic imbedding on each fiber.
If g=¢(c,) is sufficiently small, we may assume that

(iii) X (B, 0)x{t})> B, () VYteM,.
p) We claim that we can find a lifting of the map X
X:7w (B, (0)) x M,—~Dx M,

s0 that the following diagram is commutative:

X
7 (B, (0)xM,~>DxM
¥ 7|, xid. ¥4
B,(0)xM, - V.
X

Indeed % is a homotopy of the map
Xo: B, (0)—> U,

which is given by the inclusions B, (0)cX,<¥U.
Then Xo(m|z xid) is a homotopy of the map ¥,om|;. This can be lifted to

the inclusion map _
Xo:n " (Be, (0) > D,

D being identified with ¥, the universal covering of X,.

The existence of ¥ follows then by the lifting homotopy theorem.

Now X and m being local homeomorphisms, ¥ is also a local homeomorphism.
Moreover, X is one to one, hence ¥ must also be one to one because it is a homotopy
of X, which is one to one.

Finally X,=x|B., (0) x {t} is a holomorphic map. It then follows also that

Te=% |2 (B, (0) x {8}
is a holomorphic map.

7) Now we remark that since D is the envelope of holomorphy of 7 (B, (0)),

the map
2o (B, (0)) > D

extends in a unique way to a holomorphic map (cf. Section 2 Lemma 3)
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F ' D— D
having the properties:

(@) if g;:T'— Aut (D) is the family of representations of I'=x, (X;) associated
with the family (U, w, M) (cf. Section 7 b)), then

(b) the map
F:DxM,— D,

defined by the set of mappings {F.};cms is continuous.
This last assertion follows from the fact that the restriction map

H*(D,0) ~H®(z" (B, (0)), 0)

is continuous for the topology of Fréchet spaces of the vector spaces of holomorphic
functions on D and 7' (B, (0)). This restriction being an isomorphism, it is also a

homeomorphism by the Banach Theorem.
0) We now show that, for every t€ M,
F, € Aut (D).

For this we have to produce the inverse map of F,.
By condition (iii), for Vi€ M,

" (1 (B, (0) x {£}) > (B, (1))
Hence X:'|n '(B,,(t)) extends in a unique way to a holomorphic map
G,:D— D,

because 7' (B, ()) has D as its envelope of holomorphy (condition (ii)). Now on
X' (w1 (B, (t)) we have G,oF,= identity. Hence by analytic continuation

G,o F,= identity on D.

Analogously F;oG,= identity on D. This proves our contention.
We have therefore constructed an automorphism of D, F; € Aut (D), such that for

any €M we have
0;=F,00,0 F;'.

Moreover, F, depends continuously on ¢.
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g) The proof of the proposition will be completed if we show that we can choose
a system of automorphisms of D which depends differentiably on the parameters ¢.

Let us denote by @ the group Aut (D) identified to a closed (algebraic) sub-
group of some linear group GL(N,R).

Let Z(e) ={g EGL(N,R) | g0y (v)g ™" =05 (), Yy €T’}

Cle) ={g €GL(N, R)[g0, ()97 =0: (¥), VY ET}.
Clearly F,€C(p,) so that, for t€M, C(p)+0. Hence

Clo) = F:- Z(,)-

Let 95,....,7 be a set of generators of I' and let us set g;(f) =g;(y;) for 1<i<k.
Then C(p;) is the set of all matrices g with non-vanishing determinants (i.e., elements
of GL(N,R)) satisfying the linear equations

99:(0)=g:(t)g 1<i<k. ¢))

Now on R™ this is a linear space, and since C(g;) = F; Z(g,), its dimension is inde-
pendent of ¢€M,. It follows that the rank of the linear system (1) is independent of ¢.

It follows that for any € M,, we can find in a neighborhood of ¢° a parametric
solution g=g(¢) of (1), with the properties:

() g(t")=F,,

(ii) g¢(?) is a matrix with C® coefficients in ¢.

This means the following:

Consider the map
1:M.—~GL(N,R)/Z(g,)

defined by the composition of F:M,->(@, the inclusion of G in GL(N,R), and the
natural map GL(N,R)— GL(N,R)/Z(g,).
Then 7 by the above remark is a differentiable map.

We now set Zoy="2Z(ge) NG,
and remark that 7 actually, by its very construction, factors through a map
o:M—G/Z,

so that we have the commutative diagram:
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M. % GL(N, R)/Z(0,)

o\ A
G/Z,

Now G/Z,—>GL(N,R)/(s,) is an inclusion of G/Z, as a closed submanifold of the

latter space.

It follows then that also ¢ is a differentiable map.
We can now consider the fiber space p:G — G/Z, Since M, is contractible, we

can lift o:M,— G/Z, to a differentiable map

F:M,—~¢@ poF~'=o‘.

For every t€M, there is a unique u(t)€Z, such that

i’(t)=Fto‘u(t).

Then F(})€C (@) N G. This completes the proof.
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