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Banach spaces not containing [;
Jorge Mujica

Dedicated to the memory of Klaus Floret (1941-2002).

Abstract. We show that if E is a complex Banach space which contains no subspace iso-
morphic to I{, then each infinite dimensional subspace of E’ contains a normalized sequence which
converges to zero for the weak star topology.

The preceding result has been established by Hagler and Johnson [7] for real
Banach spaces (see also [3, Chapter XI1}). By adapting their proof we show that the
result remains true in the case of complex Banach spaces. This result yields a very
short proof of the Josefson—Nissenzweig theorem. We also give some applications
to the study of the Schur property, the Dunford-Pettis property, and the separable
quotient problem.

Before proving the main result we need some auxiliary lemmas. All unex-
plained terminology can be found in the book of Diestel [3]. For information on the
Schur property or the Dunford—Pettis property we refer to Diestel’s survey [2]. For
information on the separable quotient problem we refer to the author’s survey [10].

We recall that a sequence (A4, B,)5 ; of pairs of disjoint nonempty subsets of
a set S is said to be independent if for each sequence (6,)°,€{—1,1}N and each
pEN we have that

p
() 0nAn #0,
n=1

where

A,, if6,=1,
enAn:{
B,, iff,=-1.

Then we have the following lemma, which is a variant of a result of Dor [4] (see
also [3, Chapter XI]).
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Lemma 1. Let (f,)52, be a bounded sequence in lo(S; C). Let C and D be
nonempty subsets of C such that

Re(z—w)> R and |Im(z—w)| <7 for every z€ C and we D,
where R>r>0. Let
Ap=fa(C) and B, = f;*(D) for every neN.

[f the sequence (A,,Bn)X  is independent, then (f,)S2 | is a basic sequence in
I (S; C), which is equivalent to the canonical Schauder basis of 17.

Proof. To prove the lemma we will show that

n R— n
Sonfi| == Dl
j=1 j=1

for every sequence (A; )J,1CC and every n€N. Let a;=ReA; and f;=Im A; for
every j. Since HEFI Aj f]|| sz:l Z/\]fjH, we may assume, without loss of gen-

erality, that
n n
Z |05j| > Z |ﬂ]
j=1 j=1

Let
P={j:1<j<nand a; >0} and N={j:1<j<n and o; <0}.

Since the sequence (A;, Bj)?il is independent, we can find s,t€.S such that

SG(DAJ>Q<Q B]> and te(ﬂAJ)ﬂ<ﬂBj>
jep jEN JEN jepP
Thus f;(s)eC and f;(t)eD if je P, whereas f;(t)eC and f;(s)eD if jeN. It
follows that

RGZ)\jfj RGZ)\ f] ZRQ fj())]

=Z(a; Re(f;(s)~ £;(t))—B; Tm(f(s) = £;(1))]

=1
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=" o Re(f5(s)— i)+ D s Re(f5(s)— f5(1))
JjEP JEN
—Z 8 Tm(£3(s) = £5(1))

> "y |R+Y jayR— Z\ﬂm

JGP JEN

:RZ |04j|'7"z 1551
=1 i=1

It follows that either

< R- R—71
Re» Xjfi(s)> or —Red A;f;(t) 7 PRy
J=1 = j=1 j=1
Hence
ZA fil = ZM I
7j=1

as asserted. [

We recall that a sequence (S;)72, of nonempty subsets of a set 5 is said to be
a tree if Sa; and Sy are disjoint subsets of S; for every jeN. The notion of tree
was introduced by Pelczyniski [13].

Lemma 2. Let (fn)°2, be a sequence in lo(S;K). Let C and D be disjoint
nonempty subsets of K, and let

A, = f7HC) and B, = f;; (D) for every ncN.
Suppose there exists a tree (S])]O’;1 of subsets of S such that
S; CA, for2t <y <t >1, § even,
and
S;CBn for2"<j<2" n>1, j odd
Then the sequence (A, Bn)S%, is independent.

Proof. Let 01,...,0,€{—1,1} be given. Let T} be the unique S; such that
2<j<2% and S;CHA;. Let Th be the unique S; such that 22<j<23 and S;C
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T1NBsAs. In general, if 1<n<p, let T}, be the unique S; such that 2" <j<2"*!
and S; CT,_ 1N, Ay,. It follows that

p '4
(Y 0ndnDd () Tu=T,#0. O

n=1 n=1
Lemma 3. Let 6>0 and let O<€<}56. Let
C={2zeC:|2/<d+c and Rez>d—¢}

and
D={weC:|w|<d+e and Rew < —d+e}.

Then

(a) Re(z—w)>2(0—¢) and [Im(z—w)|<4V/é¢;

(b) 2(6—¢)>46¢.

Proof. Given z€C and we D, it is clear that

Re(z—w)>2(6—¢) and |[Im(z—w)|<2h,

where (0—¢,h) and (§—e, —h) are the points of intersection of the circle z2+y%=
(6+¢)2 and the vertical line z=6—¢. Hence h=2+/0¢, and (a) follows. The in-
equality in (b) is equivalent to the inequality 6%+¢2>68e, which is clearly verified
if 0<e<gs. O

Given nonempty subsets J and K of N, we write J<K if j<k for every j€.J
and ke K.

Let (2,)5%, and (y,)52; be sequences in a Banach space E. We recall that
()52, is said to be a block sequence of (x,)3, if each y, can be written as a
linear combination

Yn = Z Qg

J€Jn
where Ji<Jy<Js<.... The block sequence (y,)>°, is said to be l;-normalized if
> je, lal=1for every n. We write ()52 < (25 )Ly if (yn )52y is an l1-normalized
block sequence of (z,,)52 ;. The relation < is reflexive and transitive.

Let (¢,)52; be a bounded sequence in the dual E’ of a Banach space E.
Following Hagler and Johnson [7] we define
6((¢n)nzr) = sup limsup [¢n(2)!.
zESE N—00

Then one can readily verify that

§((¥n)nzr) <0((¢n)nzy)

for each sequence (1,)5° , <(¢,)22.;. By using a diagonal procedure, Hagler and
Johnson [7] proved the following lemma, which can be found also in [3, p. 220] or
[10, Lemma 4.6].
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Lemma 4. ([7]) Given a bounded sequence ($,)22 1 CE’, there always exists
a sequence (1n)22 1 <y )52 1 such that

5((977,)20:1) = 5((¢n)7ozo:1)

Jor each sequence (05)5% 1 <(¥n)5 4.

We remark that Hagler and Johnson [7] deal with real Banach spaces, and their
definition of the function ¢ is slightly different from the one presented here. Our
definition of the function § coincides with that in [3] and [10], and the proof of
Lemma 4 in [3, p. 220] and [10, Lemma 4.6] is valid for real and complex Banach
spaces.

Now we can prove the following theorem, which is due to Hagler and Johnson [7]
in the case of real Banach spaces (see also [3, Chapter XIIJ).

Theorem 5. Let E be a Banach space, whose dual E' contains a bounded
sequence (¢n)2 such that 1, /0 for the topology o(E',E) for each sequence
()2 < (Pn)22y. Then E contains o subspace isomorphic to l;.

Proof. Without loss of generality we may assume that (¢,)52, CBg. By
Lemma 4 there exists a sequence (1,,)22 ; <(¢n)52; such that

5((On)nz1) = 0((¥n)ns)

for each sequence (6,,)%2 ; <(1,,)°% . It follows from the hypothesis that 1, ()40
for some z€ S, and therefore §((¢,)221)>0. Let §=5((1/,,)3%;) and let 0<e< 4.
Let 0<e'<2s, let Ny=N, and let A=(m;)52; and B=(n;)72, be infinite sub-
sets of Ny such that m;<n;<m;,, for every j. Since %(wmj — ;)31 < (Vn) o1,
it follows that
85 (Pm; —n,)521) = 0((¥n)ale) =6.

Hence, there exists 21 €Sg and an infinite subset JCN such that
|5 (Ym, ~tn,)(x1)| = 6—&" for every je J.

Hence the sequence (5 (¢m, ‘wnj)(ffl));il admits a cluster point ¢; €C, with |¢1|>
§—¢'. After multiplying 1 by a suitable y&€C, with |v|=1, we may assume that ¢;
is real, and ¢y >¢6—¢’. After passing to a subsequence we may assume that

%(wm] _1/)71,j )(1’1) € A(Cl; 8/)7

and therefore
5 Re(tm, =, )(21) > 62" for every je J.
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Since (Ym, )52 < (¥n)ner and (¥n, )32, = (¥n)n2y, it follows that

8((bm;)521) = 6((n;)521) = 0((¥n)nle) =6,
and therefore

lim sup {¢hm; (z1)| <6 and  limsup |1y, (z1)] < 6.

j—o0 oo
Hence there exists jy€.J such that
[hm, (1)] < 84" and |¢,, (21)] <d4¢&" for every j€J, 5> jo.
We claim that
Re ), (21) > 6—5¢" and Reyn, (x1) < —6+5¢" for every j€J, 5> jo.
Indeed
Re Y, (21) = Re(Ym; —n, ) (21) +Re iy, (1)
2 Re(Vm, —tn, )(@1) = [¢n, (21)] 2 2(0—2¢") = (5 4¢") = 6 —5¢,

and the other inequality is proved similarly. Thus we have found two disjoint infinite
subsets Ny and N3 of N7 such that

|7/)n(x1)|§5+8 for every W/ENQUNj;,
Reyn(xz1)>d—c  for every n € No,
Retn(x1) < ~d+¢ for every n € Ns.
Let O<e”<{ge. Let P=(py)32,, Q=(qr)f2,, R=(rx)7L, and S=(s;)72, be

infinite subsets of N such that PUQC Ny, RUSC N3 and pg <gg <Tp <S8k <pi+1 for
every k. Since (1, — g, +¥r, —Us, )31 < ()32, it follows that

6(%(11}131@ 7@[}% +r, _Q/JSk)zczl) = 5((%)20:1) =90.

Hence the preceding argument yields a point z2 € Sp and an infinite set K CN such
that
L Re(vp, — g +Ur, —s, ) (22) > 52" for every k€ K.
The preceding argument yields also kq& K such that
) <a+e”,
)| <o+e"

W}Pk (732)| §5+5/l’ ’qu(

T2
[y, (22)] <8+€”  and  |abs, (22
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for every ke K, k>ky. As before we can prove that

Re gy, (v2) 20-11¢", Re thy, (22) < —3+2")
Re,, (z2) >6—11" and Rews, (z2) < —6+11"

for every ke K, k>kq. Thus we have found two disjoint infinite subsets Ny and Ny
of N2 and two disjoint infinite subsets Ng and N7 of N3 such that

W (xe)| <d+¢ for every n € NyUNsUNgUN7,
Reto,(x2) > d—¢ for every n € NyUNg,
Rew,(x2) < —d+¢ for every n€ NsUNy.

Let
C={z€C:|z|<é+z and Rez>dé—¢}

and
D={weC:|w|<d+e and Rew < —d+¢}.

Proceeding by induction we can find a sequence (z,)5%, CSg, and a tree (N;)$2,
of subsets of N such that

Yp(zn) €C for ke N;, 27 <j<2"l n>1, j even,
J J

and
Yr(zn) €D for ke Ny, 2" <j< 2" n>2 jodd.

Let
Apn={Y € Bp Y(z,) €C} and B,, ={y € Bp :¢¥(xz,) € D} for every n€N,
and let
U, ={yy:keN;} for every j€N.

Then (¥;)72, is a tree of subsets of Bgs such that

U, CA, for2"<j< 2"+l n>1, j even,
and

V;CB, for2"<j<2" n>1, jodd.

By Lerma 2 the sequence (A,, B,)S2 ; is independent. By Lemma 3 the sets C and
D verify the hypothesis of Lemma 1. Thus it follows from Lemma 1 that (z,)5%. is
a basic sequence in £ which is equivalent to the canonical Schauder basis of ;. O

Theorem 5, together with the Rosenthal-Dor theorem (see [16], [4] or {3, Chap-
ter XI]), yields the following corollary.
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Corollary 6. Let E be a Banach space which contains no subspace isomorphic
to ly. Then

(a) each infinite dimensional subspace M of E contains a normalized sequence
which converges to zero for o(E, E');

(b} each infinite dimensional subspace N of F’ contains a normalized sequence
which converges to zero for o(E', E).

Proof. (a) By the Riesz lemma there exists a sequence (zp)ne; CSar such that
| — % ||> 5 whenever n#m. By the Rosenthal-Dor theorem we may assume that
(2,)22, is o(E, E')-Cauchy. Hence 41—, —0 for o(E, E') and |21~z ] >3
for every n. Thus it suffices to normalize the sequence (Z,4+1—Tn)o -

(b) Let N be an infinite dimensional subspace of E’, and let (¢,)5%; be a
sequence in Sy such that ||¢n*¢>m||2% whenever n#m. By the Rosenthal-Dor
theorem we may assume that either (¢,)2°, is o(E’, E”)-Cauchy, or else (¢, )n;
is a basic sequence which is equivalent to the canonical Schauder basis of /5.

In the first case ¢yq1—¢n 0 for o(E', E") and |¢n41—@n|| >4 for every n.
Thus it suflices to normalize the sequence (¢y+1—On ooy -

In the second case, by Theorem 5 there exists a sequence (¥,)57 ;1 <(Pn)2L,
which converges to zero for o(E’, E). Since {¢,)2%, is equivalent to the canonical
Schauder basis of I3, 80 is (¥n)02,. Hence ||i,]|>a>0 for every n, and it suffices
to normalize the sequence (1,)52 ;. O

Corollary 7. Let E be o Banach space whose dual E' contains no subspace
isomorphic to ly. Then

(a) each infinite dimensional subspace M of E contains o normalized sequence
which converges to zero for o(E, E');

(b) each infinite dimensional subspace N of E' contains a normalized sequence
which converges to zero for o(E', E").

Proof. By applying Corollary 6(b) to F’, we obtain (a). By applying Corol-
lary 6(a} to B/ we obtain (b). O

Corollary 6(a) and Corollary 7(b) rely only on the Rosenthal-Dor theorem, and
are probably known, but we have included them here for the sake of completeness.

Corollary 6(b) yields a very short proof of the Josefson—Nissenzweig theorem
(see [9], {11] or [3, Chapter XIT]).

Theorem 8. ([9], [11]) If E is an infinite dimensional Banach space, then E’
contains a normalized sequence which converges to zero for o(E', E).

Proof. If E contains no subspace isomorphic to I;, then the conclusion is a
direct consequence of Corollary 6(b). If E contains a subspace isomorphic to [y, then
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E admits a quotient isomorphic to Iy, by a result of Aron, Diestel and Rajappa [1]
(when E is separable, this follows also from a result of Pelczynski [13]). Since [5 is
separable, the desired conclusion follows at once. [

We recall that a Banach space F is said to have the Schur property if weakly
convergent sequences in E are norm convergent. From Corollary 6(a) and Corol-
lary 7(a) we immediately get the following result.

Corollary 9. Let E be a Banach space which coniains a closed, infinite di-
mensional subspace with the Schur property. Then both E and E' contain subspaces
isomorphic to ly.

Since !y has the Schur property, we immediately obtain the following corollary.

Corollary 10. If a Banach space E contains a subspace isomorphic to ly, then
E’ also contains a subspace isomorphic to ly.

Pethe and Thakare [14] have shown that if E contains a subspace isomorphic to
Iy, then E’ does not have the Schur property (the argument of the proof of Theorem 8
can be used also to prove this). Using this we obtain the following result.

Corollary 11. If F is an infinite dimensional Banach space with the Schur
property, then none of the upper duals E(™ (n>1) have the Schur property.

Proof. By Corollaries 9 and 10, E(™ has a subspace isomorphic to I; for each
n>0. By the aforementioned result of Pethe and Thakare, E(™) does not have the
Schur property for each n>1. O

We recall that a Banach space F is said to have the Dunford-Pettis property if
given weakly null sequences (z,)52 ; CFE and (¢,)3 ; CF’, one has that ¢,(x,)—0.
It is known that if E has the Dunford—Pettis property, (2,,)5%, CE and (¢, )ne; CE,
then ¢, (x,)—0 whenever one of the two sequences is weakly null, and the other is
weakly Cauchy.

Theorem 12. The dual E' of a Banach space E contains a subspace isomor-
phic to 11 whenever E or E' contains a closed, infinite dimensional subspace with
the Dunford—Pettis property.

Proof. Suppose E’ contains no subspace isomorphic to [;, and let M and N be
closed, infinite dimensional subspaces of E and F’, respectively. We will show that
neither M nor N has the Dunford—Pettis property.

By Corollary 7(a) there exists a sequence (z,)02,CSp which converges to
zero for o(E, E’), and therefore for (M, M’). Let (¢n)oo,CSe be such that
bn(2,)=1 for every n. By the Rosenthal-Dor theorem we may assume that (¢,)5
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is o(F’, E")-Cauchy, and therefore o(M’, M")-Cauchy. Hence M does not have the
Dunford—Pettis property.

By Corollary 7(b) there exists a sequence (¥,)5° ; CSy which converges to
zero for o(E’,E”), and therefore for o(N,N'). Let (y,)52;CSg be such that
Yn(yn) >3 for every n. By Corollary 10, E contains no subspace isomorphic to I;.
By the Rosenthal-Dor theorem we may assume that (y,)5%, is o(E, E’)-Cauchy. If
J: E< E" denotes the canonical embedding, then (Jy,)22, is a(E”, E')-Cauchy,
and therefore o(N', N”}-Cauchy. Hence N does not have the Dunford—Pettis prop-
erty. 0

Theorem 12 improves a result of Fakhoury [5, Corollary 12], which asserts that
if E is an infinite dimensional Banach space with the Dunford—Pettis property, then
E' contains a subspace isomorphic to l1. A closely related result of Rosenthal [17,
Corollary 2] asserts that a Banach space E contains a subspace isomorphic to Iy
whenever E' contains a closed subspace N which has the Dunford—Pettis property,
but does not have the Schur property.

To end this paper we show the connection between Theorem 5 and the separa-
ble quotient problem. The question of whether every infinite dimensional Banach
space has an infinite dimensional quotient with a Schauder basis was raised by Pel-
czynski [12] in 1964. The question of whether every infinite dimensional Banach
space has a separable, infinite dimensional quotient was raised by Rosenthal [15]
in 1969. Since Johnson and Rosenthal [8, Theorem IV.1(i)] proved that every sep-
arable, infinite dimensional Banach space has an infinite dimensional quotient with
a Schauder basis, it follows that Pelczyniski’s question and Rosenthal’s question are
equivalent. The following theorem completes results of Johnson and Rosenthal (8]
and Hagler and Johnson [7].

Theorem 13. Let E be a Banach space.

(a) If E' contains an infinite dimensional subspace with a separable dual, then
E has an infinite dimensional quotient with a boundedly complete Schauder basis.

(b) If E' contains a subspace isomorphic to l1, then E has a quofient iso-
morphic to ¢y or ls. In particular, E has an infinite dimensional quotient with a
shrinking Schauder basis.

Proof. (a) is due to Johnson and Rosenthal [8, Theorem IV.1(iii)].

(b) We distinguish two cases.

(i) Suppose that E’ contains a basic sequence (¢,)%2,, which is equivalent
to the canonical Schauder basis of {1, and which converges to zero for o(E’, E).

Then E has a quotient isomorphic to ¢p, by a result of Johnson and Rosenthal [8,
Remark I1I.1].
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(ii) Suppose that E’ contains a subspace isomorphic to [i, but 1,40 for
o(E', E) for each sequence (1,)32 ; which is equivalent to the canonical Schauder
basis of ;. Hence there is a basic sequence (¢,,)5%; in E’ which is equivalent
to the canonical Schauder basis of Iy, but ¥, /40 for o(E’, E) for each sequence
()22 1 =<(¢n)22 4. Then E has a subspace isomorphic to l;, by Theorem 5. Thus
E has a quotient isomorphic to ls, by the aforementioned result of Aron, Diestel
and Rajappa [1]. O

Case (ii) is due to Hagler and Johuson (7] in the case of real Banach spaces.

Not every Banach space verifies the hypotheses in Theorem 13. Indeed Gow-
ers [6] has constructed an infinite dimensional Banach space £ whose dual contains
no infinite dimensional subspace with a separable dual, and no subspace isomorphic
to [;. In particular, £’ contains no infinite dimensional subspace which is either
reflexive or isomorphic to ¢g or l;. This answered negatively a question raised by
Rosenthal [17].

From Theorem 12 and Theorem 13(b) we immediately obtain the following
corollary.

Corollary 14. If E or E’ contains a closed, infinite dimensional subspace
with the Dunford—Pettis property, then E has o quotient isomorphic to cg or la. In
particular, E has an infinite dimensional quotient with a shrinking Schauder basis.
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