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Banach spaces not containing 11 

Jorge Mujica 

Dedicated to the memory of Klaus Floret (1941 2002). 

A b s t r a c t .  We, show tha t  if E is a complex Banach space which contains no subspace iso- 

morphic to 11, then each infinite dimensional subspace of E '  contains a normalized sequence which 

converges to zero for the weak s tar  topology. 

The preceding result has been established by Hagler and Johnson [7] for real 
Banach spaces (see also [3, Chapter  XII]). By adapting their proof we show that  the 
result remains true in the case of complex Banach spaces. This result yields a very 
short proof of the Josef~on Nissenzweig theorem. We also give some applications 
to the s tudy of the Schur property, the Dunford-Pet t is  property, and the separable 

quotient problem. 

Before proving the main result we need some auxiliary lemmas. All unex- 
plained terminology can be found in the book of Diestel [3]. For information on the 
Schur property or the Dunford-Pet t is  property we refer to Diestel's survey [2]. For 
information on tile separable quotient problem we refer to the author 's  survey [10]. 

We recall that  a sequence (Ar~,/~)~~176 1 of pairs of disjoint nonempty subsets of 
a set S is said to be ifzdependent if for each sequence (0,.)~~ 1} N and each 

p ~ N  we have that  
p 

,r~-i 

where 

O r~A~ = { A~, if 0~ = 1, 
B~,, if 0~ = - 1. 

Then we have the following lemma, which is a variant of a result of Dot [4] (see 

also [3, Chapter  XI]). 
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L e m m a  1. Let (fr~)~-i be a bounded sequence in l~(S; C). Let C and D be 
nonempty subsets of C such that 

R e ( z - w ) > R  and I I m ( z - w ) l < r  for every z E C  a n d w � 9  

where R > r > 0 .  Let 

An : f n - l ( c )  and B n = f r ~ l ( D )  f o r  every 7 tc  N .  

B OO O<) If the sequence (A~, ,~)~ 1 is independent, then (fi~)~=l is a basic sequence in 
l~(S; C), which is equivalent to the canonical Sehauder basis of ll. 

Pro@ To prove the lemma we will show that  

asf5 > R - r  1551 
- 4 

- -  j = l  

fbr every sequence (A5)~_]cC and every h E N .  Let c~5=ReA 5 and /35=hn;~ 5 for 
n n 

every j .  Since 11~5=1  sJ II=llE5 1iasfsII, we may assume, without loss of gen- 
erality, that  

j = l  5 = 1  

Let 

P = { j : l < _ j < n a n d c ~ j > O }  and N={j : l<_j<_nandc~j<O}.  

Since the sequence (Aj, Bj)j~ is independent, we can find s, t E S  such that  

Thus f j (s)EC and f j ( t )ED if jEP ,  whereas f j ( t )EC and f j ( s )~D if j E N .  It 
follows that  

aeZaj&( )-Re asfs(t) = 
5 = 1  j = l  j = l  

'yl, 

= E [c~5 Re(f5 (s) - f5 (t)) - ~i Im(f5 (s) - f5 (t))] 
j = l  
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= ~ <~ Re(~j(s ) -  fs(t)) + ~ ~j Re(.fj(s)-  f~(t)) 
jEP j c N  

-~ 9j I m ( f j  (s) - f j  (t)) 
j = l  

?z 

jEP jEN j--1 

.j=l j=l 
n 

j = l  

R-r~ > - -  lajl. 
- 2 

j = l  

It follows that either 

R e E  Ajfj(s) > -- ~ - IAjl o r  - R e  E / ~ j f j  (t) ~ ~ -  
j : l  j = l  5i=1 j = l  

Hence 

as asserted. [] 

We recall that a sequence (Sj)~_ 1 of nonempty subsets of a set S is said to be 

a tree if S2j and $2j+I are disjoint subsets of Sj for every jEN. The notion of tree 

was introduced by Pelczyfiski [13]. 

L e m m a  2. Let (f,~)~=~ be a sequence in I~(S;K).  Let C and D be disjoint 
nonempty subsets of K, and let 

A n = f , ~ - l ( c )  and Bn  = f,71(D) for every n c N .  

S Suppose there exists a tree ( J)j=l of subsets of S such that 

S j c A ~  .for2"<_j<2 ~+1, n_>l, j even, 

and 
S~cB~ for2"~ <_j<2 ~+*, n> l, j odd. 

Then the sequence (A,,, B~),~_ 1 is independent. 

Pro@ Let 0~,. . . ,@E{-1,1} be given. Let T~ be the unique S:j such that 
2<j<22 and SjcO~A1. Let T~, be the unique @ such that 22_<j<23 and SiC 
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T1NO2A2. In general, if l<n<p,  let Tn be the unique Sj such that  2 n < j < 2  ~+1 
and Sj CT7~-1AO,~A,~. It follows that  

P P 

~'t--1 n - - 1  

L e m m a  3. Let 5>0 and let 0 < s < ! 6  Let 
6 " 

C = { z c C : l z l ~ _ # + c  and R e z _ > 5 - c }  

and 
D = { w r  Iwl <_(~+c and Rew_<-(~+c}.  

Then 
(a) R e ( z - w ) > 2 ( 5 - c )  and I~m(z-w)l_<4~; 
(b) 2 ( 5 - c )  > 4 ~ / ~ .  

Pro@ Given zCC and wCD, it is clear that 

R e ( z - w ) _ > 2 ( 5 - ~ )  and IIm(z-w)l_<2h,  

where ( 5 - c ,  h) and ( 6 - c ,  - h )  are the points of intersection of the circle xe+y 2= 
((~+c) 2 and the vertical line x = ~ - c .  Hence h = 2 ~ f ~ ,  and (a) follows. The in- 
equality in (b) is equivalent to the inequality 52+c 2 >65c, which is clearly verified 
if O<c 1 < g s  [] 

Given nonempty subsets J and K of N, we write J < K  if j < k  for every j E J  
and kCK.  

Let (xn)7~__~ and (Y~)~--1 be sequences in a Banach space E. We recall that  
X (y~,),n~_l is said to be a block sequence of ( ~)~ 1 if each y,,~ can be written as a 

linear combination 

Y n =  E o ~ j x j ,  

j C J~ 

where J l<J2<J3< .... The block sequence (Y~)~--1 is said to be ll-normalized ff 
o~ -< x ~ ~ ll-normalized ~jc.L~ I~ =1 for every n. W~ write (Y~)~=I ( ,,)n=l if (Y~)~=I is an 

block sequence of (xn),,~__l. The relation -< is reflexive and transitive. 
Let (r be a bounded sequence in the dual E of a Banach space E. 

Following Hagler and Johnson [7] we define 

((On)n=a) = sup limsup [r 
X E S E n ~-~ cx~ 

Then one can readily verify that  

for each sequence (g)~),,~-; -< (r By using a diagonal procedure, Hagler and 
Johnson [7] proved the following lemma, which can be found also in [3, p. 220] or 
[10, Lemma 4.6]. 
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L e m m a  4. ([7]) Given a bounded sequence vv'~w,r~t~" ~ ~ c E ' ,  there always exists 

a sequence (@~z)~~176 1-~ ((~,n)r~a i s u c h  that 

= 5(( ,0n%j 

for each sequence (0,~),~=1-~(~@.r,,)n~=l. 

We remark that  Hagler and Johnson [7] deal with real Banach spaces, and their 
definition of the function 6 is slightly different fi'om the one presented here. Our 
definition of the function 6 coincides with that  in [3] and [10], and the proof of 
Lemma 4 in [3, p. 220] and [10, Lemma 4.6] is valid tbr real and complex Banach 

spaces. 
Now we can prove the following theorem, which is due to Hagler and Johnson [7] 

in the case of real Banach spaces (see also [3, Chapter XlI]). 

T h e o r e m  5. Let E be a Banach space, whose dual kT' contains a bounded 
sequenee (0~),~_1 such that ~,,7gO for" the topology cr(E',E) for each sequence 

oo _~ oo (~b,~),~=s (r Then E contains a subspace isomorphic to 11. 

Proof. Without loss of generality we may assume that  (O~)~-sCBE,.  By 
Lemma 4 there exists a sequence (g?~z),~-s -< (0',~)~'~-1 such that  

(5 ((0n)nC~--l) C~ ((@r~),z~176 1 ) 

for each sequence (O,,,,)~_s-< (~bn)~_,. It fbllows from the hypothesis that ~,,(x)7~0 
1 for some xCSE, and therefore 5((~,~),~_s)>0. Let and let 0 < e <  g6. 

* let N I = N ,  and let A=(~r~j)].~_~ and B = ( n j ) j ~  be infinite sub- Let 0<g t<gg ,  

sets of N1 such that  r n j < n j < r n j + l  for every j .  Since )~-1 (~) ,~  1, 
it follows that  

Hence, there exists xl ESu and an infinite subset J c N  such that  

_> for every j g. 

Hence the sequence (�89 (>'m~ -~b,~ 0 )(ah))0 * admits a cluster point e, C C, with ]c, 1> 

5 - d .  After multiplying z l  by a suitable 7 c C ,  with 1~1-1, we may assume that cs 
is real, and el _>a-e'. ARer passing to a subsequence we may assume that  

-1 (~)rn A ( C  1 g ' ) ,  2 '  3 - -  ~/Zr"J ) ( x l )  ~ ; 

and therefore 
* Re(~b,~ 0 -~b,,~)(x,) _> 6 - 2 g '  for every j C Y. 
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ec _~ ec oc _~ oc Since (~-~)j=s ( ~ ) n = l  and (~)~)j ~ ( ~ ) n  ~, it follows that  

�9 ~ o ~  5 o ~  (5((~r ((~nj)j 1)= ((@n)rz=l) :(5, 

and therefore 

j--+oc 

Hence there exists J0 ~ J such that  

We claim that  

Re%b.~ (zl)> 6-5s' and Re~b,~ (x~) <-6+5s' 

Indeed 

and limsup I~n~(xl)l_<6. 
j--+oc 

for every j ~ J, j _> j0- 

for every j ~ J, j > j0- 

_> Re(~,~ - - ~ n j ) ( X l ) -  I//),n,j (Xl ) I  ~ 2 ( ( ~ - - 2 s  ((~-}-s = C~-- 5s 

and the other inequality is proved similarly. Thus we have found two disjoint infinite 
subsets N,2 and N3 of N1 such that  

I~.r~(Xl)l --< 6+C for every n E N2UNa, 
Re ~/~(xl) > 6 c fbr every n E N2, 

Re~,~(xl) _<-6+~ for every nENa. 

Let 0 < c " < ~ c .  Let P=(pk)k~_l, Q=(qk)k~162 R=(rk)k~176 1 and S=(sk)~- i  be 
infinite subsets of N such that PUQcN2, RUScN3 and pk<qk<rk<st<pk+l for 

oc ~ oo every k. Since ~(~bpk--~bqk +~P"k--~b.~k)k--1 (~bn)n=l, it follows that  

Hence the preceding argument yields a point x2 c SE and an infinite set K C N such 
that 

1 ge(g)pk --~bqk +~r'k --~bsk)(X2) > 6--2C" for every k ~ K.  

The preceding argument yields also k0 ~ K such that  

and 
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for every kEK, k>ko. As before we can prove that  

Re ~p~ (x2) _> ~ -  1 lc", Re %~ (z~) < -5+c",  

Re~k(x2  ) >_(~--11e" and Re ~ k ( x 2  ) < --(~+lle" 

for every kEK, k>ko. Thus we have found two disjoint infinite subsets N4 and N5 
of N2 and two disjoint infinite subsets NG and N7 of Na such that 

I~(x2)l <_ ~+e for every n C N4ONsUN6UNz, 

Re ~,~(x2) > (~-e for every n G N4UN6, 

Rer _< - d + e  for every n ~ N s U N z .  

Let 

and 

c :  { ~ e c :  I~l-<~+~ and ae~ _>~-~} 

D = { w E C :  Iwl_<c~+c and Rew<-5+e}. 

Proceeding by induction we can find a sequence (x~)~__l c S E  , and a tree (Nj)j~176 1 
of subsets of N such that  

~ ( x ~ ) c C  for k c N j ,  2 " < j < 2  n+l, n > l ,  j even ,  

and 
r f o r k E N j ,  2 ~ < j < 2  ~+1, n > 2 ,  j o d d .  

Let 

A~ = {~ E BE,: r E C} and B~ = {~ ~ BE,: ~(x~) E D} for every n ~ N, 

and let 
g ~ j = { ~ k : k E N j }  for e v e r y j C N .  

Then (g~j)j~176 is a tree of subsets of BE, such that 

luwjcA,, f o r 2 n _ < j < 2  n+l, n_>l,  j even ,  

and 
gQcB~r~ f b r 2 " < _ j < 2  n+l, n > l ,  j o d d .  

By Lemma 2 the sequence (A,~, B7~)~~176 is independent. By Lemma 3 the sets C and 
X oo D verify the hypothesis of Lemma 1. Thus it follows from Lemma 1 that  ( ~)n=l is 

a basic sequence in E which is equivalent to the canonical Schauder basis of ll. [] 

Theorem 5, together with the Rosenthal-Dor theorem (see [16], [4] or [3, Chap- 
ter XI]), yields the following corollary. 
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C o r o l l a r y  6. Let E be a Banach space which contains no subspace isomorphic 

to 11. Then 

(a) each infinite dimensional subspace M of E contains a normalized sequence 

which converges to zero/'or ~(E,  E'); 

(b) each infinite dimensional subspace N of E ~ contains a normalized sequence 

which converges to zero for (r( E' ,  E) .  

Proof. (a) By the Riesz lemma there exists a sequence (x~)~__l CSM such that  
I whenever n# rn .  By the RosenthaI-Dor theorem we may assume that  

1 (x,j,~~176 1 is ~(E,  E')-Cauchy. Hence x~+l-x~--+0 for c~(E, E') and IIx~+l-x~ll k ff 
for every n. Thus it suffices to normalize the sequence (x ,~+l-x~)~_l .  

(b) Let N be an infinite dimensional subspace of E ' ,  and let (0',~),,~-1 be a 
1 whenever n # m .  By the Rosenthal-Dor sequence in S x  such that 11r - 0,.,11_> 5 

theorem we may assume that  either (r is a(E' ,  E")-Cauchy, or else (r 
is a basic sequence which is equivalent to the canonical Schauder basis of 11. 

1 for every n. In the first case 4, ,+1-r  for ~(E' ,  E")  and II0,~+1-r II-> 
Thus it suffices to normalize the sequence ( ~ + l -  ~b~),~_-l. 

In the second case, by Theorem 5 there exists a sequence (~),~~176 1 -~(r176176 t 
which converges to zero for ~r(E', E).  Since (r is equivalent to the canonical 
Schauder basis of I1, so is ('@n)n~176 . Hence llr for every n, and it suffices 
to normalize the sequence ( ~ ) ~ - 1 .  [] 

C o r o l l a r y  7. Let E be a Banach space whose dual E r contains no subspace 
isomorphic to ll. Then 

(a) each infinite dimensional subspace M of E contains a normalized sequence 

which converges to zero for cy(E, E0;  
(b) each infinite dimensional subspace N of E ~ contains a normalized sequence 

which converges to zero for ~ ( E  ~, E ' ) .  

Proof. By applying Corollary 6(b) to E' ,  we obtain (a). By applying Corol- 
lary 6(a) to E '  we obtain (b). [] 

Corollary 6(a) and Corollary 7(b) rely only on the RosenthaI Dor theorem, and 
are probably known, but we have included them here for the sake of completeness. 

Corollary 6(b) yields a very short proof of" the Josefson Nissenzweig theorem 
(see [9], [11] or [3, Chapter XH]). 

T h e o r e m  8. ([9], [11]) g E is an infinite dimensional Banach space, then E'  

contains a normalized sequence which converyes to zero for cr(E', E).  

Pro@ If E contains no subspace isomorphic to 11, then the conclusion is a 
direct consequence of Corollary 6(b). If E contains a subspace isomorphic to ll, then 
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E admits a quotient isomorphic to 12, by a result of Aron, Diestel and Ra jappa  [i] 
(when E is separable, this follows also from a result of Pelezyfiski [13]). Since 12 is 
separable, the desired conclusion follows at once. [] 

We recall that  a Banaeh space E is said to have the Schur property if weakly 

convergent sequences in E are norm convergent. From Corollary 6(a) and Corol- 

lary 7(a) we immediately get the following result. 

C o r o l l a r y  9. Let E be a Banach space which contains a closed, infinite di- 
mensional subspace with the Schur property. Then both E and E'  contain subspaces 

isomorphic to ll. 

Since 11 has the Schur property, we immediately obtain the following corollary. 

C o r o l l a r y  10. I f  a Banach space E contains a subspace isomorphic to 11, then 

E' also contains a subspace isomorphic to 11. 

Pethe and Thakare [14] have shown that  ,ifE contains a subspace isomorphic to 
11, then E'  does not have the Schur property (the argument of the proof of Theorem 8 

can be used also to prove this). Using this we obtain the following result. 

C o r o l l a r y  11. I f  E is art infinite dimensional Banach space with the Schur 
property, then none of the upper duals E (n) (n_>l) have the Schur property. 

Proof. By Corollaries 9 and 10, E (~) has a subspace isomorphic to ll for each 
n_>0. By the aforementioned result of Pethe and Thakare,  E(") does not have the 

Schur property for each n > l .  [] 

We recall that  a Banaeh space E is said to have the Dunford-Pettis property if 

given weakly null sequences (x,,),,~__l C E  and fa ~ C E '  ~ J ~ = l  , one has that  r 

It  is known that  if E has the Dunford Pettis property, (x,~)~__l c E and (r C E', 
then OS,,~(x,,~) -+0 whenever one of the two sequences is weakly null, and the other is 

weakly Cauchy. 

T h e o r e m  12. The dual E'  of a Banach space E contains a subspace isomor- 
phic to 11 whenever E or E'  contains a closed, infinite dimensional subspace with 

the Dun]brd Pettis property. 

Pro@ Suppose E '  contains no subspace isomorphic to ll, and let M and N be 
closed, infinite dimensional subspaces of E and E ' ,  respectively. We will show that  
neither M nor N has the Dunfbrd Pettis property. 

By Corollary 7(a) there exists a sequence ( x , ) ~ = ~ c S M  which converges to 
zero for <r(E, EI), and therefbre for c r (M;M') .  Let ((/),,)~'~LICSE, be such tha t  
r (x~)=  1 for every n. By the Rosenthal-Dor theorem we may assume that  (~5,)~__1 
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is cr(E', E ' ) -Cauchy,  and therefore a (M ' ,  M')-Cauchy.  Hence M does not have the 
Dunford Pettis property. 

By Corollary 7(b) there exists a sequence ( ~ ) ~ _ I C S N  which converges to 
zero for a ( E ' , E " ) ,  and therefore for o-(N,N') .  Let (y.,~).,,~_ICSE be such that  

1 for every n. By Corollary 10, E contains no subspace isomorphic to ll. ~(Y~)_> ~ 
By the Rosenthal-Dor theorem we may assume that  (Y~)~-I is ~(E,  E')-Cauchy. If 
J: E~-+E" denotes the canonical embedding, then (JY',~).,~-I is ~ ( E ' ,  E")-Cauchy,  
and therefore (r(N', N')-Cauchy.  Hence N does not have the Dunford Pettis prop- 
erty. [] 

Theorem 12 improves a result of Fakhoury [5, Corollary 12], which asserts that  
if E is art infinite dimensional Banach space with the Dunford-Pett is  property, then 
E '  contains a subspaee isomorphic to ll. A closely related result of Rosenthal [17, 
Corollary 2] asserts that  a Banach space E contains a subspace isomorphic to 11 

whenever E'  contains a closed subspace N which has the Dunford Pettis property, 

but does not have the Schur property. 

To end this paper we show the connection between Theorem 5 and the separa- 
ble quotient problem. The question of whether every infinite dimensional Banach 
space has an infinite dimensional quotient with a Schauder basis was raised by Pel- 
czyfiski [12] in 1964. The question of whether every infinite dimensional Banach 
space has a separable, infinite dimensional quotient was raised by Rosenthal [15] 
in 1969. Since Johnson and Rosenthal [8, Theorem IV.l(i)] proved that  every sep- 
arable, infinite dimensional Banach space has an infinite dimensional quotient with 
a Schauder basis, it follows that  Pelczyfiski's question and Rosenthal's question are 
equivalent. The following theorem completes results of Johnson and Rosenthal [8] 
and Hagler and Johnson [7]. 

T h e o r e m  13. Let E be a Banach space. 

(a) I f  E '  contains an infinite dimensional subspace with a separable dual, then 

E has an infinite dimensional quotient with a boundedty complete Schauder basis. 

(b) I f  E '  contains" a subspace isornorphic to 11, then E has a quotient iso- 

morphic to Co or l~. In particular, E has an infinite dimensional quotient with a 
shrinking Schauder basis. 

Proof. (a) is due to Johnson and Rosenthal [8, Theorem IV.l(iii)]. 

(b) We distinguish two cases. 

(i) Suppose that  E'  contains a basic sequence (0~),~__1, which is equivalent 
to the canonical Schauder basis of 11, and which converges to zero for o-(E',E).  

Then E has a quotient isomorphic to Co, by a result of Johnson and Rosenthal [8, 
Remark IliA]. 
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(ii) Suppose tha t  E '  contains a subspace isomorphic to 11, but  ~ 7 6 0  for 
(7(E ~, E)  for each sequence (~)~)nc~_ 1 which is equivalent to the canonical Schauder 

basis of 11. Hence there is a basic sequence (~b~)~=l in E ~ which is equivalent 

to the canonical  Schauder basis of 11, but  ~nT#0 for a ( E ~ , E )  for each sequence 

(~n),~_l-< (~b,,~),n~_l . Then  E has a subspace isomorphic to 11, by Theorem 5. Thus  
E has a quotient  isomorphic to 12, by the afbrementioned result of Aron, Diestel 

and Ra j appa  [1]. [] 

Case (ii) is due to  Hagler  and Johnson  [7] in the  case of  real Banach spaces. 

Not every Banach space verifies the hypotheses  in Theorem 13. Indeed Gow- 

ers [6] has cons t ruc ted  an infinite dimensional Banach  space E whose dual contains 

no infinite dimensional subspace with a separable dual, and no subspaee isomorphic 

to 11. In particular,  E '  contains no infinite dimensional snbspaee which is either 

reflexive or isomorphic to co or ll. This answered negatively a question raised by 

Rosenthal  [17]. 

From Theorem 12 and Theorem 13(b) we immediate ly  obta in  the following 

corollary. 

C o r o l l a r y  14. If  E or E J contains a closed, infinite dimensional subspace 

with the Dunford Pettis property, then E has a quotient isomorphic to co or 12. ['n 

particular, E has an infinite dimensional quotient with a shrinking Schauder basis. 
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