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On a covering problem related to the centered 
Hardy-Littlewood maximal inequality 

Antonios D. Melas 

Abstract.  We find the exact value of the best possible constant associated with a covering 
problem on the real line. 

1. I n t r o d u c t i o n  

As is well known covering lemmas play an essential role in the study of the 

behavior of maximal operators,  especially regarding weak type (1,1) bounds. Re- 
lated to the uncentered Hardy Littlewood maximal  operator on R is the well-known 
covering lemma that  says that  given a finite collection j r  of intervals in R having 
union E we can extract  two subcollections 51 and ~2 such that  (i) no interval is 
contained in both ~-1 and 3r-2; (ii) the intervals in 9cl are pairwise disjoint and the 
intervals in 52 are pairwise disjoint; and (iii) the union of all intervals in 51tJ~2 is 
still E. This easily implies a weak (1,1) bound for the uncentered maximal operator 

with a constant 2 which actually is best possible and extends to more general meas- 
ures (see [2]). However this does not give the best possible bound for the centered 
Hardy Littlewood maximal  operator (see [1]). The main point is that  the above 
lemma involves only the ~opology of the real line whereas it has become clear that  

the best possible weak (1,1) constant C for the centered maximal operator depends 
heavily on the geometry of R (see [1], [3] and [6] for details on this problem). So 
it had to be expected that  some kind of geometric covering problem should be hid- 
den behind this operator. Indeed in [4] and [5] such a geometric covering problem 
of a very precise nature has been introduced and used to find the exact value of C 

3 than which turns out to be ~2 ( l l + ~ f ) = 1 . 5 6 7 5 2 0 8 . . .  and so is much closer to 
to 2. 

The purpose of the present paper is to generalize the above mentioned covering 

problem, freeing it f'rom the dependence on maximal operators but keeping its 
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most basic ingredients, and to study the corresponding best possible behavior in an 

attempt to gain a deeper understanding of the geometry of the real line. Roughly 

speaking in this more general problem intervals of two types are given, let us call 

them right intervals and left intervals. Then we can cover certain places having at 

our disposal all possible nonempty intersections I N J  of a right interval I with a 

left interval J. We can break each such intersection I • J  into as many pieces as we 

want and translate each of them to cover places. However we are allowed to place 

any such piece that  comes from I A J  only somewhere between the left, endpoint of 
the right interval I and the right en@oint of the left interval J. This is our only 

essential restriction. Then the main point is to estimate the ratio of the total space 

covered in this way over the total interval mass involved in this covering. In a 

sense this will measure our capability to cover not just by single intervals but with 

appropriately displaced intersections of pairs of intervals. For example the most 

obvious such covering is that of the interval [0, 1] covered by the intersection of the 

However right interval [0, 1] with the left interval [0, 1] with corresponding ratio ~. 

this does not give the best possible constant. What  we are going to prove is that  for 

any such covering the measure of the total space covered is at most 1 / , ~  =0.5774_. 

times the total interval mass involved and moreover this is best possible. 

To state our main theorem we consider two (countable) families Y + and Y -  of 

labeled (not necessarily distinct) closed intervals in R. That  means that an interval 

[ might appear more than once in say Y+ and to distinguish these occurences we 

give them different labels. One way to do this tbrmally is to consider Y + as sets 

of pairs of the form I = ( L , j ) ,  where L C R  is a closed interval and j a positive 

integer called its label. However it would be more convenient, without causing 

any confusion, to just call the elemems of Y+ labeled intervals and in the notation 
I E Y+, f will mean both the labeled element of Y• and the actual underlying closed 

interval. Also when we say that two elements I = ( L , j )  and I ' = ( L ' , j ' )  of say Y+ 

are equal as labeled intervals we mean that the corresponding pairs are equal so the 

underlying intervals and the labels coincide. We wili call the elements of Y+ right 
intervals and the elements of Y left intervals. 

Next for any measurable E_CR we will denote its Lebesgue measure by IEI and 
fbr any interval IC_R we will denote by [(I) and r(I)  the left and right endpoints 

of f, respectively. Also if A is a finite collection of intervals we will denote the 
cardinality of A by IAI. 

Then our main result is the following theorem. 

T h e o r e m  1. Suppose that we are given two (countable) collections .7 :+ and 

Y of labeled closed intervals in R and moreover suppose that for each pair 
(I, J ) E S  + •  we ar'e given a measurable set A(I ,  J )C[ i ( I ) , r ( J ) ]_CR such that 
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IA(I, J)I<_IINJI. Then we have 

( I , J ) e . ~  x 5  - -  ~3o I . I C Y -  

and this is best possible. 

It is clear that  for say finite ~-+ and 3 c -  the sum of the lengths [InJI over all 

pairs (I, J)  can be made much larger than the sum of the lengths of all labeled in- 
tervals. Hence no estimate similar to (1.1) can hold without having some restriction 

on the location of the sets A([, J). For example we could for any positive integer 

n take each of the ~-+ and 3 c -  to consist of n copies of the interval [0, 1] and cover 

[0, n z] with the n 2 possible intersections of a right with a left labeled interval. This 

would give n 2 in the left-hand side and 2n for the sum in the right hand side of (1.1). 

The condition A(I, J) C [[(I), r(J)] we have imposed was suggested by the behavior 

of the centered Hardy-Lit t lewood maximal operator acting on linear combinations 

of Dirac deltas (see [4] and [5]). However other types of restrictions would lead to 

different covering problems with possibly different best constants. 
The proof of Theorem 1 involves combinatorial-geometric as well as anaJytic 

arguments. In Section 2 the covering problem is diseretized and an equivalent 

problem of more combinatorial nature is introduced. Then proving Theorem 1 is 

reduced into studying this new problem as stated in Theorem 2. The sharpness of 

the corresponding estimates is also shown in this section. The proof of Theorem 2 

is then given in Sections 3-6. 

2. Discret izat ion of  the covering problem 

In proving Theorem 1 it clearly suffices, using an easy limiting argument, to 

assume that  both families 5 + and 5 -  are finite. Next each A(I, J) can be approx- 

imated by a compact subset of it which in turn can be approximated by a finite 

union of closed intervals all of whose endpoints are rational numbers. Thus by 

appropriately perturbing all endpoints of the intervals in the families 5 c+ and S - ,  

so that the conditions of Theorem 1 still hold, and then scaling we may assume the 
following: (i) all endpoints of the intervals in the families 5 c+ and S -  are integers; 
and (ii) for each pair of labeled intervals IE~ c+ and J C f  the set A(I, J) is a union 

of at most IIAJI intervals of the form [ m - l , m ]  with m integer, each of which is 

contained in [[(I), r(J)]. This is our discretization of the covering problem. 
Now for each integer rn we set 

(2.1) w.,~ = [ m - l ,  m], 
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call each such w,,~,, a place and in view of the above discretization we give the following 
definition. 

Definition 1. A covering model is a triple T = ( ~ + ,  g , D), where G + and g -  
are two labeled families of intervals all of whose endpoints are integers and D is a 
union of certain places cdm, together with a one-to-one mapping 

(2.2) A~p, >(R~,,f~,c(p))cg+• xA, 

where A = {p:aJ~, C_ D} such that  

(2.3) c~p _C [[(Rp),r(Lp)] C RpULp and ~(p) C RpALp 

whenever pEA.  W~ will say that  each such place wp is covered by we(p) through 
the interaction of the right interval Rp with the left interval Lp and denote it by 

Remark. Note that  D is required to be covered by itself (since we consider only 
pieces from the intersections INJf~D). This is not a severe restriction as will be 
explained later. 

Given a covering model 7- as above we define for any s E A the integers 

(2.4) h+(T)=l{Ic~+:cu~cI}l and h~(U)=l{JEg-:c~sCJ}l 

and 

(2.5) h.~ (T) = h; (T) + h; (T). 

We will think that  over each such place w~ there exist h~ (T) distinct intervals of 
length one which we will call bricks. Each brick over an c~s will come from a certain 
labeled interval I~g+OG -. We will say that  this brick corresponds to 1. Hence 
h~(7-) of the bricks over c~o correspond to right intervals and h 2 (T) correspond to 
left intervals. It is clear, by (2.3), that  h.~(T)>l  for every s c A .  

Next we define 

(2.6) H(T)= ~ hr,(T ), m(W)=lDI  and ~ ( T ) =  re(T)  
roT) p c ~  

Example. Let N be a positive integer, I~ = [ -N ,  1], I2 [0, 1] and J~ . . . .  JN 
[0, 1], considered different as labeled intervals. Also let D=[-N, 1] and cover it by 
declaring that [ - m , - m + l  l is covered by (I1, ],,,) and [0, 1] by (/2, J1). Then this 
produces a covering model with m(T)=N+l and H(T)=2N+2 and so L)(T)= �89 

Then we have the following theorem. 
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T h e o r e m  2. For any covering model T we have 

(2.7) _< H(W) 

and this is best possible. 

To show that  the above theorem is sharp we will now prove the following 
proposition. 

P r o p o s i t i o n  1. For any cow:ring model T there exists a covering model T'  
such that 

2p(T)+l 
(2.S) ~(7-') -- 3 W r )  + 2  

Proo)i Let T = ( g * , g  , D) and let F=[o~,/3] be any interval containing all in- 
tervals in g + o g -  (and hence also D). Then let ~ / = O + U { J } ,  g f  = g  U{I}, where 

(2.9) I : [<~-H ( T ) - I D I , ~ ]  and J : [ c t , / 3 + H + ( T ) ] ,  

and let 

(2.10) D 1 = D O [ ( I U J ) \ F ] .  

Then declaring that  the interaction of I and J, over D, covers the [D[ part of I \F ,  
the interactions of I with the intervals of g cover the H -  (T) part of I \F ,  and the 
interactions of J with the intervals of g+ cover the interval J \ F  (of length H+(T)), 
we conclude that the triple T'= (g~i, ~1, DI) is a covering model. Now it is easy to 
see that  m ( T ' ) = 2 I D I + H ( T  ) 2rn(V-)+H(T) and H(T')=3rn(T)+2H(T) which 
easily imply (2.8). This completes the proof. [] 

The above proposition allows us, starting from the obvious covering model 
To = ({I}, {I}, I),  where I =  [0, 1], to construct a sequence of covering models T,, T1, 
T2, ... such that  p(T0)=�89 and e ( % + ~ ) = ( 2 ~ ( % ) + l ) / ( a e ( % ) + 2 )  for any k>0.  It is 

then easy to see that g(Tk)--+ 1 / ~ ,  as k--+oo, which proves that  the estimate (2.7), 
if true, is sharp. 

To show that  Theorem 2 implies Theorem 1 let. us consider the discretized 
version of it as explained in the beginning of this section and let 

(2.11) Q= 0 A([,J) 

J C F -  
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which is a union of certain places cJ,~ and then using the assumptions on each 
A(1, Y) we can define, for each such A(I, d), a one-to-one mapping 

(2.12) A(I,J) p, >g,J,c(p))e?+•215 

where A( I ,  J):{p:cvpC_A(I, J)} such that  c~)C[[(I) ,r(J)] ,  and a;~(p)CC_INJ when- 
ever peA(I ,  J). Of course there might exist p such that  cop_CQ appears in more 
than  one of the above mappings. However, for each such p we can choose exactly 

one such pair (I ,  J )  by defining a one-to-one mapping 

(2.13) E ~ p, > (Rp, Lp, c(p)) e 2 :+ x ? -  x Z, 

where E =  {p:C~p CQ} and Z is the set of all integers satisfying the conditions (2.3). 
Let now D be the union of all places cJp C_ Q together with all places CZq such that  
q=c(p) for some pEE.  Next for each CZqC_D\Q choose a p e E  with q=c(p) and add 
I=cvq in ? +  as a new labeled interval declaring that  the place CJq is covered by CJq 
(i.e. by itself) through the interaction of the new right interval I=Cdq with the left 

interval Lp. This produces the new" family g + D ?  + and by setting g -  ? -  it is 
easy to see that  T = ( g  +, G- ,  D) is a covering model with 

(2.14) m,(T)=IQI+ID\QI and H(T)  IIl+ IJl+lD\QI. 
IC? + JE?-  

Then the estimate (2.7) in Theorem 2 applied to this covering model easily implies 
(1.1) in Theorem 1. 

To show the sharpness of Theorem 1 it suffices to remark that  given any covering 
model T = ( G  +, g - ,  D) as in Definition 1 we can, for each pair (I,  J )  e ?  + x ?  , define 
the set A(I, J) as the union of all cvp such that  R;=[ and L p - d  and that  these 
sets satisfy all the conditions in Theorem 1. Applying this remark to each one of 
the covering models To, TI, T2, ... defined after the proof of Proposit ion 1 we can 
easily conclude that  (1.1) is sharp. 

Hence to complete the proof of Theorem 1 it suffices to prove (2.7) for every 
covering model. 

Consider now such a covering model T.  By a translation we may assume tha t  
all intervals in ~+@g are contained in [0, N], where N is a fixed large integer. 

Next we may assume tha t  T has the property that  ~)(T) is maximum among all 
covering models all of whose intervals are contained in [0, N]. Indeed although there 

can be infinitely many such covering models (since intervals may appear  as many 
times as we wish) observing that  we can freely remove any interval from g+Ug- 
that  does not meet D, we conclude that  essentially there are only finitely many such 
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covering models T '  with H(TO <2N. Since any covering model T ' ,  contained in 
[0, 5?], with H ( T O > 2 N  will have p(T')< 1 g, a T with ~)(T) maximum can be found. 

From now on we will fix such a 7- and to complete the proof of Theorem 2 it 
will suffice to show tha t  3~)(T)2_< 1. We may assume that  ~)(T)> 4 otherwise there 
is nothing to prove. 

For any integer t>_l we define the sets 

(2.15) Et:Et(T)={copCD:hp(T) t} and E[=UE.r. 
r>_t 

We have the following lemma. 

L e m m a  1. Let wpC_D. Then cop can cover at most h+(T)h~(T) intervals 
coqC_D, but at most h ; ( T ) - I  intervals coqEEx. 

Proof. Let h ~ ( T ) = a  and h p ( T ) = b .  Then exactly ab pairs of" a right interval 
with a left interval that  contain wp in their intersection can be formed proving the 
first s tatement.  For the other intervals among all the right intervals containing cop 
let I be one with minimum left endpoint, and among all the left intervals containing 
wp let g be one with maximum right endpoint (there might be more than one such 
pair of intervals). Then for any pair I ' E O  + and J 'Cg  , such that  wpC_FnJ ~ and 
with F different from I and J '  different from o r (as always as labeled intervals) we 
have e l i ( I ) ,  Thus  it is easy to see tha t  any covered by the 
interaction of F and J '  will have hq_>2. Hence the possible coqEE1 covered by cop 
can come only from the b - 1  interactions of I with the left intervals containing cop 
except for J ,  from the a - 1  interactions of J with the right intervals containing 

Wp except for I ,  and from the interaction of I with J .  Therefore they are at most 
a + b -  l = h p ( T ) -  l. [] 

Remark. This lemma, in particular, implies tha t  an wp in E1 does not cover 
any" place, an wp in E2 covers at most  one place (and this can happen only if 

h; (T )=h[ , (T )= l ) ,  and a n  COp in E3 covers at most  two places. 

3. Rearranging  the  bricks 

An important  device used to prove Theorem 2 will be to construct another 
arrangement (by displacing certain bricks) of the H(T)  bricks over D, different 
from the arrangement that  the families g+ and ~ determine, that  would eliminate 
the initial E1 without affecting E2. This will be done in three steps. 

For any arrangement b / o f  the collection of the H(T)  bricks that  lie over D we 
let hp(U) denote the number of bricks that  lie over cop in the arrangement U, and 
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define the set 

(3.1) {co  c D: G(U) =t}. 

Also for any  J ~ { c o l ,  ... ,CON}, UAdC_D will as usual denote the union of all ele- 
ments of 54. 

To proceed further our first step is to construct the arrangement A1 of the 
bricks by the following rule: Whenever cop is in E1 there is a unique interval I ;  
from G+UG that  contains it. Then clearly COp will be covered by some COq through 
the interaction of this I ;  with an interval J of the opposite direction. We move the 
brick that  lies over coq and corresponds to J from coq to over COp. Doing this for 

every cop E E  1 we get A1 and obtain the following lemma. 

L e m m a  2. In the above construction no brick has to be moved fwm its initial 
place more than once. The resulting arrangement satisfies hs (A1)_> 1 for every s E A 
and moreover E1 C_E2(A1). 

Proof. To have to move a brick more than  once there must exist an coq, two 
distinct (as labeled) intervals I and I '  of the same direction and an interval J of 
the opposite direction, so that  COq covers something in IC~[..J E1 through (I,  J )  and 
something in [ ~ N U E  1 through (F, J )  and so in particular coqEINI~NJ. Suppose 
that  I and I '  are right intervals and [(I)_< [(I ').  Then since both places so covered 
must be in [[(I), ~(J)] only places in I \ I '  can be contained in I'A[..J Ex and be covered 
by COq through (F, J )  since it is easy to see that  X• +X J -  >2  on I ' n ( -oc ,  r(J)].  
This is a contradiction since the place covered by (COq, F,  J )  is contained in Y. A 
similar contradiction follows if I and F are left intervals. Hence no brick has to be 
moved from its initial place more than once and so the construction can be carried 
out to doubly cover all E1 which gives E1C_E2(AI). Moreover Lemma 1 implies 
that  from each coq at most hq(T)-1  bricks can be moved. Hence at least one is not 
moved proving that  hs(Aa)_>l for every sEA.  [] 

The second step is to consider the set ETI(A1)K}/~2. If nonempty then to every 
COp~El(A1)nE2 we can uniquely associate two labeled intervals called I ;  and Jp of 
opposite directions such that  COp C_/i; N J ;  and that  the brick over it that  corresponds 
to J ;  has been moved to cover something in/ipN(J El .  Clearly cop is not contained 
in any other labeled interval and JpN(-oo,p] C_Lp since Jp cannot pass through the 
w~GIpN u E1 that cop covers. 

Fix now co; r E~ (~41)NE2 and for definiteness suppose that  lp is a right interval 

and thus J ;  a left interval. Then it is easy to see that  cop is covered either from 
(COc(p), I~,, F) ,  where F is a left interval (which could be Jp) or from (co~(p), G, J ; ) ,  
where G#Ip is a right interval. We consider each of these cases separately: 
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Case 1. In the first case we easily get c(p)>a. Moreover we see tha t  the brick 

over co~(E) tha t  corresponds to F has not  been moved in the first step (even if F 

has places from El ) ,  since (IE, F )  covers an E2 and not  an •1. Also as in the proof  

of the previous lemma no interact ion (aJ~(E),I,F) with I different from /ip, which 

nmst  have [ ( I )>[ ( fE)  since I cannot  pass th rough  aJ~, can cover in I N U E 1 .  W'e 

thus move the brick over co~(E) tha t  corresponds to F from cO~(p) to over COp. 

Case 2. In  the second case G cannot  pass th rough  co E nor the a ~ E E 1  tha t  

co E covers. Since 0~ E _C [[(G), r(dp)] N u E2 this easily implies that :  (i) G lies str ict ly 

between a~ and c~ E and so h~(p)>_3 (since czo(E) is contained in Ip and in GnJE) 
and c(p) <p;  (ii) except for JE no other  left interval d with r(d)_>p can intersect G; 

and so (iii) ~zc(E) can cover an E1 only th rough  the interact ion of/ip with some left 

interval (possibly IE) or the interact ion of d E with a right interval different from G. 

Hence the brick over cz~(E ) tha t  corresponds to G has not been moved in the first 

step. We thus move the brick over czo(E) tha t  corresponds to G from cJ~(E) to over a@ 

We work in an analogous symmetr ica l  way if I~ is a left interval, and thus 1 E 

a right interval. 

In this way s tar t ing  from A1 we apply the above moves for every wEE 

E1 (A1)r-/E2, and thus obta in ing the a r rangement  A2. 

L e m m a  3. In the combined application of the above two steps no brick has 
to be moved f i rm its initial place more than once. The resulting arrangement 
A2 is thus well defined and moreover satisfies h ~ ( A 2 ) > l  .[or every sE A  and 
E~ u(E~ (Ax) nm2) c_ E~ (A~). 

Pro@ Suppose tha t  the brick tha t  lies above c~ C_D and corresponds to the 

left interval B ( that  contains a~) has to be moved more than  once in the above 

process. The  a rgument  is similar i f /3  is a right interval. 

The  two cases considered above imply tha t  no brick tha t  has been moved in 

the first step to form ~4z will be used in the second step. Hence there should 

exist two right intervals I and I'  such tha t  bo th  (w~, I ,  B) and (c~, I', B) cover 

COq, wq, E E1 (Aa)NE2,  respectively. Supposing tha t  [(I)_< l(I ' )  we conclude tha t  over 
each place between [(F) and s at least two labeled intervals of the same direction 

( that  is I and I') pass and thus no such place can belong to E~(A~)nE2 (because 

any place in tha t  set is contained in exactly two intervals of opposite directions). 

This implies tha t  q'>s, and so COq, C_B. If  B=Iq,, then by our const ruct ion the 

brick over cz~ tha t  corresponds to F and not to B would have to be moved in 

relation to the covering COq,~(c~s, F, B). Hence we must  have B=Jq,. Examining 

our const ruct ion again we conclude tha t  in the covering C~q, ~+(~.~, I', Jq,) the brick 

corresponding to  B=Jq, would be moved only if we were in Case 1 tha t  is only if 
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I'=Iq,. Hence COq, C_I'NB and (coq,, I ' ,  B) must cover some place in I 'N[.J E~. But 
this is a contradiction since X I + X F  +XB >2 on I ' N ( - o o ,  r(B)]. This proves that  
the construction of A2 is well defined and clearly the produced arrangement A2 

satisfies Z~ U (El (A,)  N Z2) C_ E2 (A2). 
To prove that  hs(A2)_>l for every sEA,  fix any cvsC_D that  covers at least a 

place (and so is contained in at least one right and at least one left interval), let I be 
one right interval with smallest left endpoint among all right intervals that  contain 
cos and let J be one left interval with largest right endpoint among all left intervals 

that  contain cos. Then if I '  is any right interval different from I and gl is any 
left interval different from J both  containing cos we get as before that  the interval 

[[(I'), r (J ' ) ]  cannot contain any places in El tJ(E1 (A1)NE2) and so (cos, I', d') will 
never appear  in our construction. Hence bricks will be moved away from cos to 
places in E10 (Es (A,)  AE2) only through the involvement of [ or Y (or both). But 
then a reasoning similar to that  in Lemma 1 shows that  at most h s ( T ) - 1  bricks 
could be moved away from cos in the combined application of these two steps, and 
this completes the proof. [] 

The third step is to consider the set EI(A2)AE2.  If nonempty fix any COqE 
EI(A2)NE2. Then there is exactly one right interval A and exactly one left interval 
B such that  coq EAAB and moreover (coq, A, B) covers a n  cop EEI(A1)f-]/!72 that  is 
q c(p). Clearly this covering must follow the pat tern  of Case 1 above since in 
Case 2 we have seen that  h~(p)_>3. Hence either A or B must be Ip and the other 
must be an interval of the opposite direction (which could be OTp). 

We assume that  Ip is a right interval and thus equals A, the construction being 
symmetrical  if Lp is a left interval. As before (cop, I v, Jp) covers an co~C_Ipn[_J El .  
Then let Iq be A=Ip and let Yq denote the other interval B (necessarily a left 
interval) that  contains COq. Here also it is clear tha t  CVq is covered either fi'om 
(coo(q), Iq, F) for a left interval F (that might be equal to Yq) or from (co<,(q), G, Yq), 
where G is a right interval different from Iq. We consider each of these cases 
separately: 

Case 1. In the first case arguing as in the proof of Lemma 3 we conclude that  

given any right interval I' containing co~(p) ( that  clearly must  have [(I')>[(Iq)), 
(co~(p), I ' ,  F )  cannot cover any place in E1 O (El (A1) AE2). Since (co~(q), Iq, F) covers 
coq~/~711J(/~l(..41)ff]E2)C/;Y2(A2) the brick over co~,(q) that  corresponds to F has not 
been moved in the first two steps. We thus move this brick from co~(q) to over coq. 

Case 2. In the second case as before and since CVqEE2 we have that ,  except for 
Yq no other left interval Y with r(Y)_>q can intersect G and so co~(q) can cover an 
E1 only through the interaction of Iq with some left interval or the interaction of 
Jq with a right interval different from G. However here we must examine whether 
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co~(q) with G could cover something in E~ (A1)NE2. If this happened and for some 
left interval J ,  (cC~(q), G, J)  covers cJ~ in EI(Ai)NE2, then obviously J r  and so 

r ( J )  <q. But since also [(G)> [(Iq) as in the proof of Lemma 3, G N ( - o c ,  c(q)] does 
not contain any places from E1 U (El (A1)NE2) and moreover Xc +XJ  +XI ,  +XJ~ -> 3 
on [c(q),e(J)]. Since cc~ must be contained in [[(G),r(J)] this is a contradiction. 
Hence the brick over cc~:(q) that  corresponds to G has not been moved in the first 
two steps. We thus move this brick from cO~(q) to over CJq. 

L e m m a  4. In the combined application of the above three steps no brick has" 
to be moved f i rm its initial place more than once. The resulting arrangement A is 
thus well defined and satisfies h~(A)_>l for every sEA.  In addition A satisfies 

(3.2) (A) n uE2) = O. 

Pro@ If the first s tatement  does not hold then arguing as in the proof of 
Lemma 3 and observing that  no brick moved in the third step was ever used in the 
first two steps we may suppose that  ibr some cc~ c_ D there is a left interval B and two 
right intervals I and I' all containing c~, such tha t  [(I)<_[(I'), both (cos, I , /3)  and 
(cos, I ' , / 3 )  cover w~, wq, E E1 (A2)~E2, respectively, and such that  the brick that  lies 
above cc~ and corresponds to B has to be moved in both these coverings. Similarly 
we conclude that  no place between [(ii) and s can belong to EI(A,2)NE2. Thus 
q~>s and COq, C B and again we must have F=Iq, and B=Jq,. But examining our 
construction we conclude that  (CJq,, F, B) must cover an cop, EEI(A1)NE2 and that  
Ip, is also equal to I'. But this cap, lies between I(F) and r(B) and there is a left 
interval F such that  c~p,C_F and so [(F)_<r(B) and (Cap,,F, F)  covers something 
in Y f~U E1 which clearly contradicts the easy to verify XI+?(Z'+XB+XF-->2 on 
I 'N( - -oc ,  r(F)].  This proves that  the construction of A is well defined. 

The proof that  h~(A)> 1 for every s E A  is similar to the proof of the corre- 
sponding sta.tement in Lemma 3. 

To prove (3.2), since clearly EI(A)NEs ~, suppose that  wpeE~(A)nE,~. Then 
in view of the above construction, cc~, must cover an cc~EEI(A2)NE2 that  in turn 
must cover an ccvEEI(Ai)NE2 which covers an cc~:CE~(Ai)NE1. It  is clear that  p, 
a, b and c are distinct, and, by the remark following Lemma 1, that  the covering 
potential  of the set W={ccp, co~, COb, cc(:} is exhausted, meaning that  any place 
covered by an element in W is also contained in W. Hence taking D I = D \ W  
the triple T I - ( G  +, G , D1) is a covering model with rn(T1)=rn(T)-4 and H(T1)=  

4 contradicting the maximali ty  of O(T). H ( T )  7. Then O(Ts)>O(T) since 0 ( T ) > g  
This completes the proof. [] 

Remark. In the above proof the following easy to show fact has been used: 
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Given the real numbers 0 < z < X  and 0 < y < Y  we have ( X - x ) / ( Y  y ) > X / Y  if 

and only if X/Y>cc/y .  This will be used in several places throughout this paper. 

The arrangement ~4 has the following additional properties. 

L e m m a  5. (i) For any wpEEI(A)AE3 both moved bricks over it have been 
moved in the first step to cover two places in El. 

(ii) There exists no wnCEI(A)NE ~ such that either h~(T) or h~(T) is equal 
to 1. 

Proof. (i) Suppose that  one of these bricks has been moved to over w~ in E1 

and the other has been moved to over wb in EI(M1)AE2 from which one brick has 

been moved to over w~2 in El.  Then p, al, a2 and b are clearly distinct and the 
covering potential of the set {wn, w~, Wa~, wb} has been exhausted. Therefore 

removing {an, wal, w~, wb} from D will produce a covering model and we will 
have reduced rn(T) by 4 and H(T)  by 7. This leads to a contradiction as in the 

proof of Lemma 4. From the nine possibilities for the two moved bricks over co n all 

but the one stated in the lemma lead to similar contradictions. 

(ii) Suppose that wn~El(M ) is such that h ; ; ( T ) = l  and h~(T)=d>3.  Then w n 
can cover at most d places and since d bricks have been moved from it, it covers 

exactly d places in E1 or in an E2 that  covers an E1 or in an E2 that covers an 

E2 that covers an El.  Consider the set A that contains w n and all E l ' s  and E2's 
involved if all these paths are followed. It is easy to see that A contains exactly d 

places from E1 and that the covering potential of the set A is exhausted. Hence 

removing A from D will produce a covering model and we will have reduced rn(T) 
by l + d + x  and H(T)  by 1 + 2 d + 2 z ,  where x is the number of E2's in A. This leads 

to a similar contradiction since d+x>3. [] 

Having produced the arrangement A we now consider the set 

(3.3) K ---- E1 (,A) N E3. 

For every wp ~ K let 

(3.4) G = {Wq: q = c [m] (p) for some m > 0}, 

where c['m'+l]=coc [m] and c[~ denote its covering chain (that means wp is 

covered by w~(p) which is covered by wd21(p ) etc.) and let 

(3.51 u= U On. 
copEK 



On a covering prob lem rela ted to t he  centered Ha rdy  Li t t lewood max imM inequal i ty  353 

Clearly B is a finite set of COq'S having the property that c(/3)CB. This in particular 
implies that  (g+, ~ - ,  U/5) is a covering model. 

Next for any positive integers a and b consider the sets 

(3.6) A~b =/3~Ec, c~Eb(A). 

From the above lemmas we easily obtain that 

(3.7) /3= U A~b and Al l=A21=@.  
l < b < a  

Now we can prove the following result. 

P r o p o s i t i o n  2. Lettin9 ~ denote summation over all pairs (a, b) of intege~ 
such that either l < b < a  and a>_3 or a = b = 2  we have 

2 ' ( a - b + l ) l A . ~ , l  (3.8) ~(T) _< 
~ ' ( 2 a - b )  lA~vl 

In particular 0(7-) <_ 3. 

Pro@ Since A has been obtained by moving certain bricks from certain places 
of D to certain other places of D we easily have 

(3.9) H(T) ~ hp(A). 
wpcD 

Prom the construction of A it easily follows that  all moved bricks have gone to 
different Wq'S and have put (or kept) these Wq'S into E2(A). Also, since bricks have 
been moved to places either in E 1 or in E2 that  covers an E1 or in E2 that  covers 
an E2 that  covers an El ,  we conclude that  no bricks have moved into/3UE1(r 

Next exactly ~'(a-b)lA~bl bricks have been moved away from/3 and clearly 

1/31 = ~ '  i A~b I- Consider now any ~ C E1 (A) \/3. Then d_> 3 bricks have been moved 
from it (since KC_/3). Hence this and the places its bricks have gone to contribute 
d + l  in re(T)  and 2d§ in H(7-) and since (d+l)/(2d+l)<~<Lg(T) they can be 
ignored in the upper estimation of &(T). Any other wr-, except for the ones in 
/3UE1(,4) and the ones in E2(A) that  have received bricks will contribute 1 in 
m(7-) and at least 2 in H ( T )  and thus can also be ignored. Hence only/3 together 
with all places where bricks from B have gone to can play a role and there are 
~ ' (a -b)JAo,  bj such places in E2(A) outside/3. Also each wpCA~b will contribute b 
in H(7-). Hence 

E ' ( a - b ) l A ~ b [ + E '  [a~8i 
(3.10) g(~F) < 

~ '  2(a-b) lAabl+ ~ '  blA~bl 
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and this proves (3.8). In order to prove that ~)(T)_<~ it suffices to observe that 

(a-b+l)/(2a-b)<_~ whenever l < b < a  and a_>3 or a = b = 2  (with equality if and 

only if a = 3  and b=l ) .  This completes the proof. [] 

To use our basic estimate (3.8) efficiently further considerations are needed. 

What  we want to do is to construct from our initial covering model 7- another 

covering model which will allow us to use the maximality assumption of a(T). In 

the next section we will start our construction by appropriately choosing certain 
subintervals of some elements of our initial family g+UG-.  

4. S e l e c t i o n  o f  cer ta in  intervals  

Consider first the collection 791 of all labeled intervals IEg+Ug such that 

(4.1) / I'-I U (~1 U ( '~Pl (,,4-1) r"l E'2) U (E'I (A.2) A ~2 ) ) r 

and let 

(4.2) s = U ( <  u ( <  (.,<) n c_ D. 

To every ccpEK we associate the exactly three (labeled) intervals Ip, J~,FpE 

g + U g  that contain cop, denoted so that Jv and Fp have the same direction, I r, has 

opposite direction (so I v ~ g+ and gv, Fp E g or the other way around) and moreover 
FvCIt, UJ p. This is possible since first of all if all three intervals were of the same 

direction then cop could not cover any place at all. Then using Lemma 5 and the 

reasoning in the proof of Lemma 2 it is easy to conclude that coy covers at least one 

co~ in IpA U t771 and so Lp~791 and neither gp nor Fp can pass through this co~. Since 

also all three intervals contain cop, one of the two intervals of the same direction 

which we call Fp is contained in the union of Lp with the other. It may happen that 

also .]pCI~,UF~. In this case aad if these two (underlying to the labeled Fp and Jp) 
intervals are not equal we choose them so that Fp C_ Jr. In the special case where Fp 

and Jp coincide as intervals (but not as labeled elements of g+ or g ) we pick one 

of them to be called not only o~ but also Jq for any other coqEJ~C~ U K (dearly for 
every such coq the two associated intervals of the same direction also coincide). In 

this way the mapping K~cop~+(Lp, @, Ej,) is well defined and it is easy to see that 

we always have Jq=Jp for any other coqEK with coqCFpNJp. 
Noticing that each cop covers exactly two places in E1 we let coz, denote the 

I ~ U  E1 place covered by cop that is closest to cop. 

We, let 79 denote the collection that consists of all labeled intervals in 791 to- 
gether with all interw~ls of the form Jp for some cop C K. 
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Now fbr each I E 7  ) we define the subinterval I* of I as follows. 
If a labeled right interval IC~+N7)1 is not of the form Jv for any copEK, let 

(4.a) I* = I n  [min(SNI) ,  +oc)  

and similarly if a labeled left interval d ~ g  N7)1 is not of the form @ for any cop CK, 
let 

(4.4) J* = J q  ( - o c ,  max(SNI) ] .  

Next if ICg+NP is of the form Jp for some c~pEK, we choose the smallest 
possible such p and let 

(4.5) I* = I n  [min(SNI) ,  +oc)  N [ p -  1, +oc),  

where we set min 0 = - o c .  If JCg q7  ) is of the form Jp for some wp ~ K ,  we choose 
the largest possible such p and let 

(4.6) J* = JN ( - ~ ,  m a x ( S n I ) ]  N ( - ~ ,  p], 

where we set max 0 = + o c .  
Let 79. denote the collection of all I* for I E P .  

lemma. 
Then we have the following 

L e m m a  6. Let Wq C_D. Then 
(i) there is at most one IcT)Ng + such that WqC/* and at most one JEToN~ 

such that Wq C J*; 
(ii) i fwq~El (A)  there are exactly one ICT)N~ + such that WqC_I* and exactly 

one J~7)Ng such that WqC_J*. 

Proof. (i) Suppose that  As and A2 are two labeled right intervals in 7 ) such 
that  WqC_A~NA~ and assume that  [(A1)<[(A2). Then, using the reasoning in the 
proof of Lemma 3, there exists no [(A2)< a <  q such that  cc~ C S, which implies that  

As cannot meet S in ( - o c ,  q). Therefore A2=Jp for some ccpr and since COqC_A~ 
we can choose such a p with p<q. But then, since [(A1)_<[(A2) we have czp_CA1 
also and hence Ax must be equal to Fp. This clearly implies that  we must have 

[(A1)=[(A2) and A1 CA2 also, hence A~ nmst also be equal to some 3~s for some co v, 
with p'<q which in a similar manner  gives A2CA1, and hence that  AI=A2 (this 
means that  the corresponding underlying intervals coincide) which contradicts the 
consistent way we have picked J~ and ]p, in case the underlying intervals of the two 

labeled intervals of the same direction associated to cop coincide. If A1 and As are 
both  left intervals the argument is similar. This completes the proof of (i). 
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(ii) It  suffices by (i) to find at least one such I and at least one such J .  If 
w q E E I ( A ) A E a = K ,  then we may take Iq and Jq for I and a (or J and I) .  Suppose 

+ that  WqCEI(A)AE~.  Then by Lemma 5 we have hq (7-)_>2 and h~(T)_>2. Among 

all right intervals that  contain ccq, let I be one with [(I) minimum and I '  be one 
with the next smallest [(I '),  and among all left intervals that  contain c% let d be 
one with r ( J )  maximum and J '  be one with the next largest r (F) .  Then, as in (i), S 
does not meet ([(F), q - 1 )  nor (q, r ( J ' ) )  and since hq_>4 we have SN [[(F), r(Y')] =0.  
This (combined with the requirements in Definition 1) easily implies that  COq can 
cover places in S only if either I or J (or both) is involved and these places of" S must 
belong to [[(I), [(I ' )]U[~(J ') ,  r(J)].  Since as in the proof of Lemma 1 this amounts 

to at most hq(T  ) -  1 possible coverings and since co v E E ,  (A) we conclude that  all 
possible interactions over CCq with I or J part icipating have actually taken place 
to cover exactly h q ( T ) - 1  places in S. In particular both (COq, I ,  J ' )  and (CCq, I ' ,  J )  
cover some cc~, cotES, respectively. Since the first triple is allowed to cover only in 
[[(I), r (J ' ) ]  we conclude that  Ws _C [[(I), [(I')] from which we easily obtain that  IE591, 
min(SNI)<_[(I ' )<q and therefore that  C~qCI*. In a similar way we get J E P l  and 
CCqC_J* and this completes the proof. [] 

Actually we have the following lemma. 

L e m m a  7. Let Cjq C_D cover at least one place. Then we can find a right 
interval I and a left interval J such that (i) CJqC_INJ; (ii) [(I)_<I(I') for every right 
interval F that contains Wq, and r ( J ' ) _ < r ( J ) f o r  every left ,interval J' that contains 
CCq; and (iii) any A E 7  ~ such that c% C_A* must equal either I or J, as a labeled 
interval. 

Proof. Since C~q covers some place, at least a right and at least a left interval 
must contain it. As in the previous lemma choose the right interval I so that  
[(I) _< [(/ ')  for every right interval I '  that  contains Wq but in case more than one 
such right interval with minimum left endpoint is available, choose I among them 

so that  I = J p  for at least one cJp E K  with [ ( I ) < p < q ,  and choose I arbitrarily among 
them if no such cup exists. Then choose g in a similar way among the left intervals 
containing Wq with maximum right endpoint. 

It  is now easy to see, as in the previous lemma, that  any right interval A other 
than I that  contains c% cannot intersect S between [(I) and CCq and cannot be any 
Jp, for [(I)<p'<_q. Hence even if we had AG7 ) it cannot happen that  c% cA*. This 
completes the proof, the argument for J being similar. [] 
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5. C o n s t r u c t i o n  of  re lated cover ing  m o d e l  

Here we will use the considerations of the previous section to construct a cover- 
ing model that  will be essential in proving Theorem 2. This will be done by truncat-  

ing some of the chains Cp, where c~ v E K,  appropriately deleting certain subintervals 
of the intervals of 7 9 , and adding certain new intervals of length one, to be called 
brick-intervals. 

For this purpose fix an c~ v E K and consider its chain 

(5.1) wp~-+(w~(v),Rp, Lp), >(wd21(p),R~(v),L~(v)), ~..., 

and let m v >0 be the least nonnegative integer (if any) such that  there exists at least 
one (labeled) interval I C {R~I~,~I (p), L,:I,~I (p) } A79 such that  a~oE-~,+~l (p) C I* (roughly 

speaking something fi'om P* is used to cover c~i,~pl(r,) ). If m p < o c  we let 

(5.2) Cp = {wq : q = e [t] (p) for some 0 < ~ < my} C_ G 

and otherwise we let Cp =Cp. Now we define 

(5.3) U Cv a,,d D=Us, 
~ c K  

and also for any positive integers a>b the sets 

(5.4) Aab = /~AEa NEb(A) C Aab. 

Then we have the following lemma. 

L e m m a  8. (i) For any wp f fK  all places' in Cp lie between wl, p and wp. In 
particular U Cp c [~ ; 

(ii) A:tl = A 3 1 = K  and A22=~; 
(iii) ~r~S=~. 

Proof. (i) Assume that I v is a right interval and thus lp <p, the argument being 
symmetrical  in the other ease. Suppose q=c  ['q (p) is the first t ime in the chain C v 
such that  Wq lies outside [ l p - l , p ] .  Then Wq must cover something between wb 
and aJp. Since c~l,, CE1 and is contained in Iv, any left interval meeting ( - o c ,  lv) 
must have right endpoint less than Iv, and hence cannot cover anything to the right 
of w b.  Therefore Wq must lie to the right of w v. But the only right interval that  
meets (p, +oc)  and has left endpoint less than p is Iv and moreover IpN(p, +oc)C_I~. 
Hence CVq can cover something between cJ b and c~ v only through I~ which implies 

that  r e > m y ,  and hence that  the chain C v nmst have stopped, to form @, before CZq. 
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Therefore CCq ~Cp and this completes the proof, the inclusion following from the easy 
observation LpFI [lf, q-oo ) C Lp. 

(ii) The first relation is trivial. To prove that  A22=0 suppose that COqE-/~22 
and choose an wpEK such that  wqCgvcc p. By (i), CoqCLp and since all places in 
/3 cover something, there is exactly one other interval J containing c%, which must 
have opposite direction from Iv, and C~q can cover only through (L> J).  But then 
as in (i) we conclude that Wq~Cp, a contradiction. 

(iii) Given any w ~ S  there is a chain vo~oo~.(~)~+...~-~co~ (of length at most 
three) from E1 through E2's, all of which cover unique places. Hence co, cannot 
belong to any chain starting from an Ea, and so ccs~/3. [] 

Now we construct the collections g~ and gi- of labeled intervals from our initial 
collections g+ and g as follows: The collection g~- is produced from g+ replacing 
every right interval IE/>NG + by the closure of I \ I*  (removing it if I * = I )  and 
leaving any other right interval unaltered. Similariy the collection g l  is produced 
from g replacing every left interval J E P n g  by the closure of J\J* (removing it 
if J * =  o r) and leaving any other left interval unaltered 

Let hl,q denote the number of bricks over  WqE/3 determined by these new 
collections g [  and g{ (in the same way as hp is defined from the collections g+ 
and G ). 

L e m m a  9. We have l <hLq<hq-1  for" everycJqG~ and hLq=hq-2  for every 
~Cq ~Bnt~ (A). 

Pro@ The inequalities hl ,q<hq-1 for every COqE/3 and hLq=hq-2  for ev- 
ery CdqC/3rlSl(r ) follow ii'oIn Lemma 8(0 and Lemma 6(ii), respectively. Also 
Lemma 6(i) implies that  hl,q > hq- 2 for every COq ~/3. Hence if there exists an CJq ~ 
such that  hi,q=0, then (since/3CE~) we must have hq=2. Assume then that  the 
two intervals containing c% are I and g. Using Lemma 6(i) again we conclude that  
I and J belong to P,  they have opposite directions and (since hl,q=O) Cdq C I 'N  J*. 
Thus COq covers exactly one place and this is done through I* and J*. But then 
for any %,CK such that  COqCgv, we conclude, as in the proof of Lemma 8, that  wq 
would have been removed from @ and so cannot beIong to @. This contradicts our 
assmnption covE/3 and so completes the proof. [] 

Next we let ~V denote the set of all coq CB such that  q - c  ['~] (p) for some c% E K  
and we place a new brick-interval over each such ccq ~ W  and give to all these new 
bricks the color red (to remind us that we have stopped certain chains there). 

L e m m a  10. The number IWl of all new red brick-intervals satisfies 

(>5) IWl _< ~ ' ( b -  1)lAo.b[. 
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Pro@ Suppose that  the place w~EA~bCB produces exactly d > 0  red bricks 
over d places in/~. To prove (5.5) it clearly suffices to show that  d<b-1 .  

Choose the intervals I and J containing w~ as in Lemtna 7. Moreover it follows 
as in the proof of Lemma 6 that  if c<~ covers something in S through I with a left 
interval different from J,  then c~s C I* and a sinfilar thing holds for J .  

Therefore by Lemma 7, c~ can cover places in S or produce red bricks over 
places in 13 (covered by c~) only through interactions where I or J (or both) is 
involved. Thus as in the reasoning of Lemm~ 1 the total  number of these interactions 

is at most h ~ ( T ) - l - - a - 1 ,  and since SNB=f) no such interaction can cover both 
in S and in/3.  We conclude that  if z is the total  number of places in S covered 
by c~, then d + z < a - 1 .  Then since clearly exactly z bricks have been moved away 
from aJ~ in the process of forming A it follows that  b=a :c and so d<_b-1. This 
completes tile proof. [] 

We will give each red brick-interval a certain direction, thus adding it to either 
g[ or gi- (but not to both). There are certainly many possible ways to do this but 
we have the following result. 

L e m m a  11. There is a way to give directions to every red brick-interval adding 
it to either g+ or ~ (but not to both) so that the labeled collections g+ and ~- 
thus produced have the property that the triple 7-=(~+,  ~-,  D) is a covering model. 

Pro@ Given any WqCWC_/~, Lemma 9 implies that  hl,q>_l. Hence Wq is con- 
tained in at least one interval from g[ Ugh. We choose one such interval and denote 
it by I .  Then if ICg~ (resp. ~1) we add the red brick-interval that  has been added 
over cvq to the family g~ (resp. to g~) and we declare tha t  c~q is covered by bdq 
through the interaction of I with this new added red brick-interval. Doing this 

for every C~qEW we produce the collections g+ and g -  and we consider tile triple 
T = ( g + , g - , D ) .  Given any w s C D  (so wsEB), either wsEW in which case it is 
covered by itself from ~+ and ~ -  by our construction, or w~ ~ W. In that  case, if 
ws ECp we also have c~(s)ECp, hence cv~(s)C_D, and moreover both intervals Rs and 
Ls involved in the covering of czs by ~v~(~) either do not belong to 7 ), or any I of 

these two that  might belong to 7) satisfies w~(~) C_I\I*. Hence in all cases aJ~ will be 
covered from 7- in essentially the same way as it was covered in our initial covering 
model 7-. From these we conclude that  T is a also a covering model. [] 

The covering model 7- derived from 7- will be used to exploit the assumption of 
the maximali ty  of 6(7-) and lead to the proof of Theorem 2. For this it is important  
to estimate H ( T ) .  This estimation is turnished by the following lemrna. 
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L e m m a  12. We have 

(5.6) H(~)  ~ ~ ' ( a - 2 ) 1 ~ 1 - - 2  ~ ( b -  1)IA~l + IA22 I. 
a >3  

Pro@ It is clear that  H(7-) is equal to the sum of all hi,q, where WqEB, plus 
the number of all added red brick-intervals. Hence we have 

(5.7) 
a_>3 
b> l  

since, by Lemma 9, c~qEA~b implies that  hl,q=a-2 for b = l  and hl,q<_a-1 for b > l  
and, by Lemma 8(ii), X22=~. This, (5.5) and the obvious inequalities IAabl_<lA~bl 
(and b - l > _ l  for b> l )  easily imply (5.6). [] 

6. E n d  of  t h e  p r o o f  of  T h e o r e m  2 

Using the above we can now complete the proof of Theorem 2 as tbllows. 
Since T is a also a covering model of the form considered in Section 3 (i.e. with 

all intervals involved being contained in [0, N]) we have 

(6~) e(f )  _< e(T) 

Hence, observing that  r n ( ' f ) = ~ '  IA~bl and using (5.6) we have 

' (z '  ) (6.2) ~ 13~bl < o(T) (a--2)lAabl+2 ~(b-1)lA~vl+lA221 �9 
a>3  

Let 

X = ~---~' IAabl, 

Y -- E ' ( a -  2) IA~bl +2 Z(b-1) [A~b[  + 15221, 
a_>3 

Z = 2 ~-~(b- 1)lA~bl + IA22 I. 
a>3  

Then inequality (3.8) can be written as 

2X+Y-Z+E~>3 a(/A~b]- IAabl)- E~>a (b-  1)lZ~bl + IA22 I 
~(T) < - - '  

3X+2Y--2Z+E~3(2a--1)(IAab[--IA~bl)-- Z2~3(b -  1)lAabl +21A221 
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and L e m m a  8(ii) gives 

~a>_a a(lAabl-lAabl) <4_ 

2a>_3(2a--1)(IAabl--Ifitabl) -- 7 

4 these terms can be ignored and subst i tu t ing Z we obtain  so since ~(T) > y 

2 X + Y - 3 E a > 3 ( b - 1 ) l A a b l  < 2 X §  2~(7-)+1 

(6.3) ~)(7-) _< 3 X + 2 Y _ 5 ~ / > 3 ( b _ l ) l A a b  I _ 3 X + 2 Y  -< 3 g ( T ) + 2  

since X_<~(T)Y and because we know from Proposi t ion  2 tha t  g(T)  -<3g<5"2 Now 

(6.3) implies t ha t  3L)(7-) 2_< 1 and completes the proof  of Theorem 2. 

R e f e r e n c e s  

1. ALDAZ, J. M., Remarks on the Hardy-Littlewood maximal function, Proc. Roy. Soc. 
Edinburgh Sect. A 128 (1998), 1 9. 

2. BERNAL, A., A note on the one-dimensional maximal function, Prvc. Roy. Soc. Ed- 
inburgh Sect. A 111 (1989), 325-328. 

3. BRANNAN, D. A. and HAYMAN, W. K., Research problems in complex analysis, Bull. 
London Math. Soe. 21 (1989), 1-35. 

4. MELAS, A., On the centered Hardy-Littlew'ood maximal operator, Trans. Amer. 
Math. Soc. 354 (2002), 3263 3273. 

5. MELAS, A., The best constant for the centered Hardy-Littlewood maximal inequality, 
to appear in Ann. of Math. 

6. TRINIDAD MENAROUEZ, M. and SORIA, F., Weak type (1,1) inequalities of maximal 
convolution operators, Rend. Circ. Mat. Palermo 41 (1992), 342 352. 

Received January 30, 2002 Antonios D. Melas 
Department of Mathematics 
University of Athens 
Panepistimiopolis 
GR-15784 Athens 
Greece 
emaih amelas~math.uoa.gr 


