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On a covering problem related to the centered
HardyLittlewood maximal inequality

Antonios D. Melas

Abstract. We find the exact value of the best possible constant associated with a covering
problem on the real line.

1. Introduction

As is well known covering lemmas play an essential role in the study of the
behavior of maximal operators, especially regarding weak type (1,1) bounds. Re-
lated to the uncentered Hardy—Littlewood maximal operator on R.is the well-known
covering lemma that says that given a finite collection F of intervals in R having
union F we can extract two subcollections F; and Fu such that (i) no interval is
contained in both F; and Fp; (ii) the intervals in F; are pairwise disjoint and the
intervals in F, are pairwise disjoint; and (iii) the union of all intervals in FyUFy is
still E. This easily implies a weak (1,1) bound for the uncentered maximal operator
with a constant 2 which actually is best possible and extends to more general meas-
ures (see [2]). However this does not give the best possible bound for the centered
Hardy-Littlewood maximal operator (see [1]). The main point is that the above
lemma involves only the topology of the real line whereas it has become clear that
the best possible weak (1,1) constant C for the centered maximal operator depends
heavily on the geometry of R (see [1], [3] and [6] for details on this problem). So
it had to be expected that some kind of geometric covering problem should be hid-
den behind this operator. Indeed in [4] and [5] such a geometric covering problem
of a very precise nature has been introduced and used to find the exact value of ¢
which turns out to be %(114-\/@) =1.5675208... and so is much closer to % than
to 2.

The purpose of the present paper is to generalize the above mentioned covering
problem, freeing it from the dependence on maximal operators but keeping its
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most basic ingredients, and to study the corresponding best possible behavior in an
attempt to gain a deeper understanding of the geometry of the real line. Roughly
speaking in this more general problem intervals of two types are given, let us call
them right intervals and left intervals. Then we can cover certain places having at
our disposal all possible nonempty intersections IN.J of a right interval I with a
left interval J. We can break each such intersection INJ into as many pieces as we
want and translate each of them to cover places. However we are allowed to place
any such piece that comes from I'NJ only somewhere between the left endpoint of
the right interval I and the right endpoint of the left interval J. This is our only
essential restriction. Then the main point is to estimate the ratio of the total space
covered in this way over the total interval mass involved in this covering. In a
sense this will measure our capability to cover not just by single intervals but with
appropriately displaced intersections of pairs of intervals. For example the most
obvious such covering is that of the interval [0, 1] covered by the intersection of the
right interval [0, 1] with the left interval [0, 1] with corresponding ratio 5. However
this does not give the best possible constant. What we are going to prove is that for
any such covering the measure of the total space covered is at most 1/v/3 =0.5774...
times the total interval mass involved and moreover this is best possible.

To state our main theorem we consider two {countable} families F* and F~ of
labeled (not necessarily distinct) closed intervals in R. That means that an interval
I might appear more than once in say 7 and to distinguish these occurences we
give them different labels. One way to do this formally is to consider F* as sets
of pairs of the form I=(L,j), where LCR. is a closed interval and j a positive
integer called its label. However it would be more convenient, without causing
any confusion, to just call the elements of F* [abeled intervals and in the notation
Ie F*, I will mean both the labeled element of F& and the actual underlying closed
interval. Also when we say that two elements [=(L,j) and I'=(L', ;') of say F*
are equal as labeled intervals we mean that the corresponding pairs are equal so the
underlying intervals and the labels coincide. We will call the elements of F* right
intervals and the elements of F~ left intervals.

Next for any measurable ECR we will denote its Lebesgue measure by |E| and
for any interval JCR we will denote by [(7) and v(I) the left and right endpoints
of I, respectively. Also if A is a finite collection of intervals we will denote the
cardinality of A by |A|.

Then our main result is the following theorem.

Theorem 1. Suppose that we are given two (countable) collections F*t and
F~ of labeled closed intervals in R and moreover suppose that for each pair
(I, J)eF* xF~ we are given a measurable set A(L, JYC[U(I),v(J)]CR such that
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|A(I, ) <|INJ|. Then we have

U A(IJ\
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&l

and this is best possible.

It is clear that for say finite 7+ and F~ the sum of the lengths |[IN.J]| over all
pairs (I, J) can be made much larger than the sum of the lengths of all labeled in-
tervals. Hence no estimate similar to (1.1) can hold without having some restriction
on the location of the sets A(I,J). For example we could for any positive integer
n take each of the F* and F~ to consist of n copies of the interval [0,1] and cover
[0,n?] with the n? possible intersections of a right with a left labeled interval. This
would give n? in the left-hand side and 2n for the sum in the right-hand side of (1.1).
The condition A(I, JYC[((I),t(J)] we have imposed was suggested by the behavior
of the centered Hardy-Littlewood maximal operator acting on linear combinations
of Dirac deltas (see [4] and [5]). However other types of restrictions would lead to
different covering problems with possibly different best constants.

The proof of Theorem 1 involves combinatorial-geometric as well as analytic
arguments. In Section 2 the covering problem is discretized and an equivalent
problem of more combinatorial nature is introduced. Then proving Theorem 1 is
reduced into studying this new problem as stated in Theorem 2. The sharpness of
the corresponding estimates is also shown in this section. The proof of Theorem 2
is then given in Sections 3—6.

2. Discretization of the covering problem

In proving Theorem 1 it clearly suffices, using an easy limiting argument, to
assume that both families F* and F~ are finite. Next each A(I,J) can be approx-
imated by a compact subset of it which in turn can be approximated by a finite
union of closed intervals all of whose endpoints are rational numbers. Thus by
appropriately perturbing all endpoints of the intervals in the families F* and F-,
so that the conditions of Theorem 1 still hold, and then scaling we may assume the
following: (i) all endpoinis of the intervals in the families F* and F~ are integers;
and (ii) for each pair of labeled intervals € F* and J€F~ the set A(I,J) is a union
of at most |IN.J| intervals of the form [m—1,m] with m integer, each of which is
contained in [{{I), t{J}]. This is our discretization of the covering problem.

Now for each integer m we set

(2'1) Wm:[m_lvm]:
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call each such w,, a place and in view of the above discretization we give the following
definition.

Definition 1. A covering model is a triple T=(G",G~, D), where G* and G~
are two labeled families of intervals all of whose endpoints are integers and D is a
union of certain places w,, together with a one-to-one mapping

(2.2) As3p—(Ry, Ly, c(p)) €G7xG XA,
where A={p:w, CD} such that
(2.3) wp CH(Rp), t(Lp)] € RyUL, and  wep) € RpyNLy,

whenever pe A. We will say that each such place w, is covered by w.,) through
the interaction of the right interval R, with the left interval L, and denote it by
wp»—> (wc(p), Rp, Lp).

Remark. Note that D is required to be covered by itself (since we consider only
pieces from the intersections INJND). This is not a severe restriction as will be
explained later.

Given a covering model T as above we define for any s€A the integers
(2.4) hi(T)={1€G":w, CI}| and h(T)={J€G :w;CJ}|
and
(2.5) ho(T) = (T)+h, (T)-

We will think that over each such place w, there exist h(7) distinct intervals of
length one which we will call bricks. Each brick over an w, will come from a certain
labeled interval TeGtUG™. We will say that this brick corresponds to I. Hence
(T of the bricks over w, correspond to right intervals and h; (7)) correspond to
left intervals. It is clear, by (2.3), that he(7)>1 for every s€A.

Next we define

(2.6) Hm:Emm,MﬂﬂMaMQm:%Q
v (T)
Ezxample. Let N be a positive integer, Iy =[—N, 1], [=[0,1] and J1=...=Jn=

[0,1], considered different as labeled intervals. Also let D=[—N, 1] and cover it by
declaring that [—m, —m+1] is covered by (I1,J,,) and {0,1] by (Iz, J1). Then this
produces 2 covering model with m(7)=N+1 and H(T)=2N+2 and so o(7)=3.

Then we have the following theorem.
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Theorem 2. For any covering model T we have
(2.7) VB3m(T)<H(T)

and this is best possible.
To show that the above theorem is sharp we will now prove the following
proposition.

Proposition 1. For any covering model T there exists a covering model T'
such that

20(T)+1
2.8 = 2+l
(2.) o) = 3

Proof. Let T=(G*,G~, D) and let F=[«, 8] be any interval containing all in-
tervals in G*UG™ (and hence also D). Then let G =G"U{J}, G; =G U{I}, where

(2.9) I=[a—H (T)—|D|,8 and J=[a,f+H (T)],
and let
(2.10) Dy = DU[(TUJ)\F].

Then declaring that the interaction of I and J, over D, covers the |D| part of I\ F,
the interactions of I with the intervals of G~ cover the H~(T) part of I\F, and the
interactions of J with the intervals of G cover the interval J\F (of length H* (7)),
we conclude that the triple 7'=(G{, Gy, D1) is a covering model. Now it is easy to
see that m(T")=2|D|+H(T)=2m(T)+H(T) and H(T7")=3m(T)+2H(T) which
easily imply (2.8). This completes the proof. [l

The above proposition allows us, starting from the obvious covering model
To=({I},{I},I), where T=[0, 1], to construct a sequence of covering models T, 71,
Tz, ... such that o(To)=21 and o(Tei1)=(20(Tx)+1)/(30(Tx)+2) for any k>0. It is
then easy to see that o(75)—1/v/3, as k— oo, which proves that the estimate (2.7),
if true, is sharp.

To show that Theorem 2 implies Theorem 1 let us consider the discretized
version of it as explained in the beginning of this section and let

(2.11) Q= {J AQ,J)

TeFt
JeF~
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which is a union of certain places w,, and then using the assumptions on each
A(1,J) we can define, for each such A(I,J), a one-to-one mapping

(2.12) A1, J)3p—s (I, J,c(p)) € F* x F~ x A(I, J),

where A(I, J)={p:wp CA(I,J)} such that w,C[[(I),t(J])], and wep)EINJ when-
ever peA(I, J). Of course there might exist p such that w,C() appears in more
than one of the above mappings. However, for each such p we can choose exactly
one such pair (I, J) by defining a one-to-one mapping

(2.13) Y3pr— (Ry, Ly, c(p)) € F*xF~ X Z,

where ¥={p:w, CQ} and Z is the set of all integers satisfying the conditions (2.3).
Let now D be the union of all places w, CQ together with all places w, such that
g=c(p) for some pe>.. Next for each w,CD\Q choose a pe¥ with g=c(p) and add
I=w, in F* as a new labeled interval declaring that the place w, is covered by wq
(i.e. by itself) through the interaction of the new right interval /=w, with the left
interval Lp. This produces the new family G* DF™ and by setting G~ =F" it is
easy to see that T=(G",G~, D) is a covering model with

(2.14) m(T)=|QI+ID\Q| and H(T)< D [+ > [JI+ID\QI-

IeF+ JeF~

Then the estimate (2.7) in Theorem 2 applied to this covering model easily implies
(1.1) in Theorem 1.

To show the sharpness of Theorem 1 it suffices to remark that given any covering
model 7=(G*,G~, D) as in Definition 1 we can, for each pair (I, J)eF* xF, define
the set A(I,J) as the union of all w, such that R,=1 and L,=.J and that these
sets satisfy all the conditions in Theorem 1. Applying this remark to each one of
the covering models 7q, T1, T2, ... defined after the proof of Proposition 1 we can
easily conclude that (1.1) is sharp.

Hence to complete the proof of Theorem 1 it suffices to prove (2.7) for every
covering model.

Consider now such a covering model 7. By a translation we may assume that
all intervals in G*UG™ are contained in [0, N], where IV is a fixed large integer.

Next we may assume that 7 has the property that o(7) is maximum among all
covering models all of whose intervals are contained in [0, N]. Indeed although there
can be infinitely many such covering models (since intervals may appear as many
times as we wish) observing that we can freely remove any interval from GTUG~
that does not meet D, we conclude that essentially there are only finitely many such
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covering models 7' with H(77)<2N. Since any covering model 7', contained in
[0, V], with H(T")>2N will have o(T')<1, a T with o(7) maximum can be found.
From now on we will fix such a 7 and to complete the proof of Theorem 2 it
will suffice to show that 3¢(7)*<1. We may assume that o(7)># otherwise there
is nothing to prove.
For any integer t>1 we define the sets

(2.15) Ey=Ey(T)={w, CD:hy(T)=t} and Ef=|]JE.

>t

We have the following lemma.

Lemma 1. Let w,CD. Then wy, can cover at most hi(T)h, (T) intervals
wgCD, but at most hy(T)—1 intervals wy€ Ey.

Proof. Let hy(T)=a and h; (T)=b. Then exactly ab pairs of a right interval
with a left interval that contain w, in their intersection can be formed proving the
first statement. For the other intervals among all the right intervals containing wy
let I be one with minimum left endpoint, and among all the left intervals containing
wy let J be one with maximum right endpoint (there might be more than one such
pair of intervals). Then for any pair I'€G* and J'€G™, such that w,CI'NJ’ and
with [ different from I and J’ different from J (as always as labeled intervals) we
have [I(I"),x(J")]C[I(Z),v(J)]. Thus it is easy to see that any w, covered by the
interaction of I and J’ will have h,>2. Hence the possible w,€F; covered by w,
can come only from the b—1 interactions of [ with the left intervals containing w,
except for J, from the a—1 interactions of J with the right intervals containing
wp except for I, and from the interaction of I with J. Therefore they are at most
a+b—1=h,(T)—1. O

Remark. This lemma, in particular, implies that an w, in F; does not cover
any place, an w, in E; covers at most one place (and this can happen only if
hi(T)=h,(T)=1), and an wj, in E3 covers at most two places.

3. Rearranging the bricks

An important device used to prove Theorem 2 will be to construct another
arrangement (by displacing certain bricks) of the H(7) bricks over D, different
from the arrangement that the families G* and G~ determine, that would eliminate
the initial F; without affecting E». This will be done in three steps.

For any arrangement { of the collection of the H(T) bricks that lie over D we
let h, (i) denote the number of bricks that lie over w, in the arrangement I, and
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define the set
(3.1) Et(u):{wpgD:hp(U):t}.

Also for any MC{wy,...,wn}, [JMCD will as usual denote the union of all ele-
ments of M.

To proceed further our first step is to construct the arrangement A; of the
bricks by the following rule: Whenever wy, is in Ej there is a unique interval I,
from G*UG™ that contains it. Then clearly w, will be covered by some w, through
the interaction of this I, with an interval J of the opposite direction. We move the
brick that lies over w, and corresponds to J from w, to over w,. Doing this for
every w, €Ey we get A; and obtain the following lemma.

Lemma 2. In the above construction no brick has to be moved from its initial
place more than once. The resulting arrangement satisfies hs(A1)>1 for every s€ A
and moreover By CE2(A;p).

Proof. To have to move a brick more than once there must exist an wg, two
distinct (as labeled) intervals I and I’ of the same direction and an interval J of
the opposite direction, so that w, covers something in INJ £, through (7, J) and
something in I'N|J E; through (I’,J) and so in particular w,€INI'NJ. Suppose
that I and I’ are right intervals and [(I)<I(I"). Then since both places so covered
must be in [[(I), ¢(.J)] only places in I\I’ can be contained in I’N{J E; and be covered
by w, through (I’,.J) since it is easy to see that x7+x1 +Xxs=>2 on I'M(—o0, t(J)].
This is a contradiction since the place covered by (wg,!’,J) is contained in I’. A
similar contradiction follows if I and I’ are left intervals. Hence no brick has to be
moved from its initial place more than once and so the construction can be carried
out to doubly cover all £; which gives £ CEs{A;). Moreover Lemma 1 implies
that from each w, at most hy(7)—1 bricks can be moved. Hence at least one is not
moved proving that hs(A;)>1 for every se A. [

The second step is to consider the set F;(A;)NEs. If nonempty then to every
wp € B (A1)NE> we can uniquely associate two labeled intervals called I, and J, of
opposite directions such that w, CI,N.J, and that the brick over it that corresponds
to J, has been moved to cover something in I,N|J E;. Clearly w, is not contained
in any other labeled interval and .J,N(—o0, p]C 1, since J,, cannot pass through the
we CI,NY Ey that w, covers.

Fix now wy € E1 {41 )Ny and for definiteness suppose that I, is a right interval
and thus J, a left interval. Then it is easy to see that w, is covered either from
(We(pys Ip, F), where F is a left interval (which could be J,) or from (Wep)> Gy Ip)s
where G#1, is a right interval. We consider each of these cases separately:
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Case 1. In the first case we easily get ¢(p)>a. Moreover we see that the brick
over we(p) that corresponds to F' has not been moved in the first step (even if F
has places from FE1), since (I,, F) covers an Fy and not an Eq. Also as in the proof
of the previous lemma no interaction (we(p, I, ') with I different from I, which
must have [(I)>[(I,) since I cannot pass through w,, can cover in IN(JFE;. We
thus move the brick over w,(,) that corresponds to F' from w,) to over wy,.

Case 2. In the second case G cannot pass through w, nor the w,€FE; that
wp covers. Since w, C{I(G),v(J,)]N F> this easily implies that: (i} G lies strictly
between w, and w, and s0 hep) >3 (since w(py is contained in I, and in GNJp)
and c(p) <p; (ii) except for J, no other left interval J with v(.JJ) >p can intersect G;
and so (iii) we(p) can cover an E) only through the interaction of I, with some left
interval (possibly J,,) or the interaction of J, with a right interval different from G.
Hence the brick over w.(,) that corresponds to G has not been moved in the first
step. We thus move the brick over w,(p) that corresponds to G from w,y) to over wy,.

We work in an analogous symmetrical way if I, is a left interval, and thus J,
a right interval.

In this way starting from A; we apply the above moves for every w,¢€
E1{A1)NE>, and thus obtaining the arrangement As.

Lemma 3. In the combined application of the above two steps no brick has
to be moved from its imitial place more than once. The resulting arrangement
Ao is thus well defined and moreover satisfies hs(A2)>1 for every s€A and
E1U(E1(.A1)OE2)QE2(A2),

Proof. Suppose that the brick that lies above wsCD and corresponds to the
left interval B (that contains ws) has to be moved more than once in the above
process. The argument is similar if B is a right interval.

The two cases considered above imply that no brick that has been moved in
the first step to form A; will be used in the second step. Hence there should
exist two right intervals I and I’ such that both (ws, I, B) and (ws, I’, B) cover
Wq, wg € E1(A1)NEy, respectively. Supposing that [(I)<I(I") we conclude that over
each place between [(I') and s at least two labeled intervals of the same direction
(that is I and I') pass and thus no such place can belong to F1(A;)NFEy (because
any place in that set is contained in exactly two intervals of opposite directions).
This implies that ¢’>s, and so wy CB. If B=1I,, then by our construction the
brick over w, that corresponds to I’ and not to B would have to be moved in
relation to the covering wy —(w,,I’, B). Hence we must have B=J,. Examining
our construction again we conclude that in the covering wy — (w, I’, Jy/) the brick
corresponding to B=.J, would be moved only if we were in Case 1 that is only if
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I'=1,. Hence wy CI'NB and (wy,I’, B) must cover some place in I'NJ E;. But
this is a contradiction since xr+xr+xp=>2 on I'N(—oco,v(B)]. This proves that
the construction of A is well defined and clearly the produced arrangement A
satisfies Ey U{(F1(A1)NE2)CEa(A).

To prove that hs(A2)>1 for every s€A, fix any ws; CD that covers at least a
place (and so is contained in at least one right and at least one left interval), let I be
one right interval with smallest left endpoint among all right intervals that contain
ws and let J be one left interval with largest right endpoint among all left intervals
that contain ws. Then if I’ is any right interval different from I and J’ is any
left interval different from J both containing w, we get as before that the interval
[[(I"),v(J")] cannot contain any places in B U(E;(A1)NEy) and so (w,, I', J') will
never appear in our construction. Hence bricks will be moved away from ws to
places in E1U(FE1(A;)NE>) only through the involvement of I or J (or both). But
then a reasoning similar to that in Lemma 1 shows that at most hs(7)—1 bricks
could be moved away from w; in the combined application of these two steps, and
this completes the proof. O

The third step is to consider the set F1(A3)NE,. If nonempty fix any wq€
E1(Az)NF5. Then there is exactly one right interval A and exactly one left interval
B such that w,€ ANB and moreover (w,, 4, B) covers an w,€F,(A;)NE, that is
g=c(p). Clearly this covering must follow the pattern of Case 1 above since in
Case 2 we have seen that hc(p) >3. Hence either A or B must be [, and the other
must be an interval of the opposite direction (which could be J,).

We assure that I, is a right interval and thus equals A, the construction being
symmetrical if [, is a left interval. As before (wp, Ip, Jp) covers an w, CI,NJ E1.
Then let I, be A=1I, and let J; denote the other interval B (necessarily a left
interval) that contains w,. Here also it is clear that w, is covered either from
(We(qys g, F') for a left interval F (that might be equal to Jy) or from (weq), G Jg),
where G is a right interval different from I,. We consider each of these cases
separately:

Case 1. In the first case arguing as in the proof of Lemma 3 we conclude that
given any right interval I’ containing w.(,) (that clearly must have [(I")>{(1,)),
We(py, I, F) cannot cover any place in FU(E;(A1)NE>L). Since (wyyy, I, F') covers

(p) (@)>'a
wq ¢ E1U(Eq(A1)NE2)CEa(A) the brick over We(q) that corresponds to F' has not
been moved in the first two steps. We thus move this brick from w4 to over wy.

Case 2. In the second case as before and since wy € Ey we have that, except for
Jy no other left interval J with t(J)>q can intersect G and so w,(q) can cover an
E; only through the interaction of I, with some left interval or the interaction of
Jg with a right interval different from G. However here we must examine whether
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We(q) With G could cover something in E4(A;)NE>. If this happened and for some
left interval J, (we(q), Gy J) covers w, in Ey(A;)NEs, then obviously J#.J, and so
t(J)<g. But since also [(G)>[(I,) as in the proof of Lemma 3, GN(—0c0, c(q)] does
not contain any places from £y U(E,(A1)NE3) and moreover xg+x7+Xz, +XJ, >3
on [c(g),t(J)]. Since w, must be contained in [[(G),t(J)] this is a contradiction.
Hence the brick over w(,) that corresponds to GG has not been moved in the first
two steps. We thus move this brick from w.(y) to over wy.

Lemma 4. In the combined application of the above three steps no brick has
to be moved from its initial place more than once. The resulting arrangement A is
thus well defined and satisfies hs(A)>1 for every s€ A. In addition A satisfies

(3.2) E1(A)N(E1UEs) =0.

Proof. If the first statement does not hold then arguing as in the proof of
Lemma 3 and observing that no brick moved in the third step was ever used in the
first two steps we may suppose that for some w, C D there is a left interval B and two
right intervals I and I’ all containing w, such that [(I)<I(I"), both (ws, I, B) and
{ws, I', B) cover wy, wy € Ey {As)NEs, respectively, and such that the brick that lies
above w, and corresponds to B has to be moved in both these coverings. Similarly
we conclude that no place between [(I”) and s can belong to E;(Ag)NE,. Thus
¢'>s and wy CB and again we must have I'=1I, and B=J,. But examining our
construction we conclude that (wy, I’, B) must cover an wy € Fy(A;)NEy and that
I,y is also equal to I'. But this w, lies between [(I’) and ¢(B) and there is a left
interval F' such that w, CF and so [(F)<t(B) and (wy,I’, F) covers something
in I'NJ Ey which clearly contradicts the easy to verify x;+xp+xs+xr>2 on
I'n(—oo,t(F)]. This proves that the construction of A is well defined.

The proof that hs(A)>1 for every s€A is similar to the prool of the corre-
sponding statement in Lemma 3.

To prove (3.2), since clearly F1(A}NE; =0, suppose that w,€ E1(A)NE;. Then
in view of the above construction, w, must cover an w, € F;(A;)NE, that in turn
must cover an wp € 1 (A1 )N Ey which covers an w.€ E1(A1)NE;. 1t is clear that p,
a, b and ¢ are distinct, and, by the remark following Lemma 1, that the covering
potential of the set W={w,, w,, wy, w.} is exhausted, meaning that any place
covered by an element in W is also contained in W. Hence taking Dy=D\W
the triple 71=(G", G, D1) is a covering model with m(71)=m(7)—4 and H(T)=
H(T)—17. Then o(T1)>o(T) since o(7T)># contradicting the maximality of o(T).
This completes the proof. O

Remark. In the above proof the following easy to show fact has been used:
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Given the real numbers 0<z<X and 0<y<Y we have (X—a)/(Y —y)>X/Y if
and only if X/Y >z /y. This will be used in several places throughout this paper.

The arrangement A has the following additional properties.

Lemma 5. (i) For any w,€E1(A)NE; both moved bricks over it have been
moved in the first step to cover two places in F.

(ii) There exists no w,€E1(A)NE] such that either h(T) or hy (T) is equal
to 1.

Proof. (i) Suppose that one of these bricks has been moved to over w,, in F;
and the other has been moved to over wy in F;(A;)NFEy from which one brick has
been moved to over w,, in Ey. Then p, a1, ag and b are clearly distinct and the
covering potential of the set {wp, wa,, Wa,, wp} has been exhausted. Therefore
removing {wp, Wa,, Way, Wp from D will produce a covering model and we will
have reduced m(7) by 4 and H(7) by 7. This leads to a contradiction as in the
proof of Lemma 4. From the nine possibilities for the two moved bricks over w,, all
but the one stated in the lemma lead to similar contradictions.

(ii) Suppose that w, € F1(A) is such that k) (7T)=1 and h, (7 )=d>3. Then w,
can cover at most d places and since d bricks have been moved from it, it covers
exactly d places in F; or in an E5 that covers an Fy or in an E5 that covers an
E, that covers an I7;. Consider the set A that contains w, and all Ei’s and F»’s
involved if all these paths are followed. It is easy to see that A contains exactly d
places from E7 and that the covering potential of the set A is exhausted. Hence
removing A from D will produce a covering model and we will have reduced m(T)
by 1+d+z and H(T) by 1+2d+2x, where z is the number of Ey’s in A. This leads
to a similar contradiction since d+z>3. O

Having produced the arrangement A we now consider the set
(3.3) K=FE(A)NE;.
For every w,e K let
(3.4) Cp = {wy :q=c™(p) for some m >0},

where ™t =cocl™ and cl%(p)=p, denote its covering chain (that means w, is
covered by w,(p) which is covered Dy w2, etc.) and let

(3.5) B= ] ¢,

wpEK
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Clearly B is a finite set of wy’s having the property that ¢(B)CB. This in particular
implies that (G*,G~,|B) is a covering model.
Next for any positive integers ¢ and b consider the sets

(3.6) Ay =BNE,NE,(A).
From the above lemmas we easily obtain that

(37) B= U Aab and A11:A21:®.
1<b<a

Now we can prove the following result.

Proposition 2. Letting 3. denote summation over all pairs (a,b) of integers
such that either 1<b<a and a>3 or a=b=2 we have

Z/(a“b"' 1) A

(3'8) o(T) < Z/(Qa—b)lAab| .

In particular o(T)<2.

Proof. Since A has been obtained by moving certain bricks from certain places
of D to certain other places of D we easily have

(3.9) H(T)=Y_ hy(A).

wp€D

From the construction of A it easily follows that all moved bricks have gone to
different w,’s and have put (or kept) these w,’s into E5(A). Also, since bricks have
been moved to places either in Eq or in E» that covers an F; or in F5 that covers
an F that covers an E;, we conclude that no bricks have moved into BUE;(A).

Next exactly 3" (a—b)|Ags| bricks have been moved away from B and clearly
IB|=>" [Agp|- Consider now any w,€ Ey (A)\B. Then d>3 bricks have been moved
from it (since K CB). Hence this and the places its bricks have gone to contribute
d+1 in m(T) and 2d+1 in H(T) and since (d+1)/(2d+1)<2<o(T) they can be
ignored in the upper estimation of o(7). Any other w,, except for the ones in
BUE1(A) and the ones in F3(A) that have received bricks will contribute 1 in
m(7T) and at least 2 in H(T) and thus can also be ignored. Hence only B together
with all places where bricks from B have gone to can play a role and there are
S (a—b)|Agp| such places in F2(A) outside B. Also each w, €A, will contribute b
in H(T). Hence

< S (a—b)[Aas|+32 A
= 3 2(a—b)|Aap |+ 3 b Agy|

(3.10) o(T)
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and this proves (3.8). In order to prove that o(7)<2 it suffices to observe that
(a—b+1)/(2a—b)< 2 whenever 1<b<a and a>3 or a=b=2 (with equality if and
only if a=3 and b=1). This completes the proof. O

To use our basic estimate (3.8) efficiently further considerations are needed.
What we want to do is to construct from our initial covering model 7 another
covering model which will allow us to use the maximality assumption of g(7). In

the next section we will start our construction by appropriately choosing certain
subintervals of some elements of our initial family G*UG™.

4. Selection of certain intervals

Consider first the collection P; of all labeled intervals I€GTUG™ such that

(4.1) IN|J(B1 (B (A)NE2)U(Ey (A2)NE)) # 0
and let
(4.2) S = J(E1U(B1(A1)NE2)U(E) (A2)NER)) C D.

To every w,€K we associate the exactly three (labeled) intervals I, Jp, Fy, €
GtugG™ that contain w,, denoted so that J, and F, have the same direction, I, has
opposite direction (so I,€G" and Jp,, F,€G "~ or the other way around) and moreover
F,C1I,UJ,. This is possible since first of all if all three intervals were of the same
direction then w, could not cover any place at all. Then using Lemma 5 and the
reasoning in the proof of Lemma 2 it is easy to conclude that w, covers at least one
we in I,N|J E1 and so I, €Py and neither J, nor Fj, can pass through this w,. Since
also all three intervals contain w,, one of the two intervals of the same direction
which we call £, is contained in the union of I, with the other. It may happen that
also J,CI,UF,. In this case and if these two (underlying to the labeled F, and J,)
intervals are not equal we choose them so that £, C.J,. In the special case where F),
and J, coincide as intervals (but not as labeled elements of G or G~) we pick one
of them to be called not only .J, but also J, for any other wye J,N|J K (clearly for
every such wy the two associated intervals of the same direction also coincide). In
this way the mapping K 3wy (I, Jp, F),) is well defined and it is easy to see that
we always have J,=J, for any other w,c K with w,CF,NJ,.

Noticing that each w,, covers exactly two places in £ we let w;, denote the
I,N{J By place covered by w, that is closest to wy.

We let P denote the collection that consists of all labeled intervals in P; to-
gether with all intervals of the form .J, for some w, K.
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Now for each I€P we define the subinterval I* of I as follows.
If a labeled right interval /€G* NPy is not of the form J, for any w,e K, let

(4.3) I* =IN[min(SNI),+o00)

and similarly if a labeled left interval JeG~ NP is not of the form J, for any wy€ K,
let

(4.4) J* = JN{—o0, max(SNI)].

Next if 7€G*NP is of the form J, for some w,eK, we choose the smallest
possible such p and let

(4.5) I =INmin(SNI), +oo)N|[p—1, +00),

where we set min)=—cc. If J€G™ NP is of the form J, for some w, € K, we choose
the largest possible such p and let

(4.6) J = JN(—o0, max(SNI)|N{—o0, ],

where we set max {=4o0.
Let P* denote the collection of all I* for I€P. Then we have the following
lemma.

Lemma 6. Letw,CD. Then

(i) there is at most one I€PNG* such that wyCI* and at most one JEPNG™
such that w, CJ*;

(il) if wgeEq(A) there are exactly one I€PNGY such that wyCI* and exactly
one JEPNG™ such that w, CJ".

Proof. (i) Suppose that A; and Ay are two labeled right intervals in P such
that wgC AN A3 and assume that [(A;)<I(As2). Then, using the reasoning in the
proof of Lemma 3, there exists no [(Az)<a< g such that w, €5, which implies that
Ajg cannot meet S in (—oo, q). Therefore Ay=.J, for some w,€ K and since wy C A3
we can choose such a p with p<q. But then, since [(A;)<I(A2) we have w,CA,;
also and hence A; must be equal to F,. This clearly implies that we must have
[(Ay)=1(A2) and A; C A, also, hence A; must also be equal to some .J,, for some wyy
with p’<g¢ which in a similar manner gives A2C Ay, and hence that A;=A4, (this
means that the corresponding underlying intervals coincide) which contradicts the
consistent way we have picked J, and J, in case the underlying intervals of the two
labeled intervals of the same direction associated to w, coincide. If A; and A, are
both left intervals the argument is similar. This completes the proof of (i).
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(ii) It suffices by (i) to find at least one such I and at least one such J. If
we€E1(A)NE3=K, then we may take I, and J, for I and J (or J and I). Suppose
that w,€ £1(A)NE]. Then by Lemma 5 we have A7 (7)>2 and hg (7)>2. Among
all right intervals that contain w,, let I be one with [(/) minimum and I’ be one
with the next smallest [(I'), and among all left intervals that contain w, let J be
one with ¢(J) maximum and J’ be one with the next largest ¢(I’). Then, asin (i), S
does not meet ([(I"),¢—1) nor (g, v(J')) and since h,>4 we have SN[I((I"), v(J")]=0.
This (combined with the requirements in Definition 1) easily implies that w, can
cover places in S only if either I or .J (or both) is involved and these places of S must
belong to [[(I), [(I")]U[e(J’),v(J)]. Since as in the proof of Lemma 1 this amounts
to at most hq(7)—1 possible coverings and since w,€ E1(A) we conclude that all
possible interactions over w, with I or J participating have actually taken place
to cover exactly hy(7)—1 places in S. In particular both (wq, I, J’) and (wq, I’, J)
cover some wg, w; €5, respectively. Since the first triple is allowed to cover only in
[[(1),t(J")] we conclude that ws C[I(1), [(I")] from which we easily obtain that I€Py,
min(SNJ)<I(I')<q and therefore that w,CI*. In a similar way we get J€P; and
wyCJ* and this completes the proof. [

Actually we have the following lemma.

Lemma 7. Let w,CD cover at least one place. Then we can find a right
interval I and a left interval J such that (1) w,CINJ; (i) () <UI’) for every right
interval I' that contains wq, and v(J")<v(J) for every left interval J' that contains
wq; and (iil) any A€P such that w,CA* must equal either I or J, as a labeled
nterval.

Proof. Since w, covers some place, at least a right and at least a left interval
must contain it. As in the previous lemma choose the right interval I so that
[(I)<I(I") for every right interval I’ that contains w, but in case more than one
such right interval with minimum left endpoint is available, choose I among them
so that I'=J, for at least one w,€ K with [(I)<p<gq, and choose I arbitrarily among
them if no such w, exists. Then choose .J in a similar way among the left intervals
containing w, with maximum right endpoint.

It is now easy to see, as in the previous lemma, that any right interval A other
than I that contains w, cannot intersect S between I([) and w, and cannot be any
Jy for [(I)<p’<q. Hence even if we had A€P it cannot happen that w,€A*. This
completes the proof, the argument for J being similar. O
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5. Construction of related covering model

Here we will use the considerations of the previous section to construct a cover-
ing model that will be essential in proving Theorem 2. This will be done by truncat-
ing some of the chains C,, where w, € K, appropriately deleting certain subintervals
of the intervals of P, and adding certain new intervals of length one, to be called
brick-intervals.

For this purpose fix an w, €K and consider its chain

(5.1) Wp — (wc(p), Rp, Lp) —> (wcp] (p) Rc<p>7 Lc(p)) — ...,

and let m, >0 be the least nonnegative integer (if any) such that there exists at least
one (labeled) interval IG{RC[mp](p), L tmp1 () VP such that w pmp+11(,) ST (roughly

(84

speaking something from P* is used to cover wc[mp](p)). If m, <oo we let
(5.2) Cp={wy:q=cB(p) for some 0 <t <m,} CC,
and otherwise we let C,=C,. Now we define

(5.3) B= U C, and Z_?:Ug,

wpEK
and also for any positive integers a>b the sets
(54) Aab:gﬁEaﬂEb(A) CAgp.

Then we have the following lemma.

Lemma 8. (i) For any wpyeK all places in C, lie between wy, and wy. In
particular \JCp CI7;

(ii) A31:A31=K and A22'—‘@;

(iii) BNS=0.

Proof. (i) Assume that I, is a right interval and thus [, <p, the argurnent being
symmetrical in the other case. Suppose g=c[" (p) is the first time in the chain C,
such that w, lies outside [I,—1,p]. Then w, must cover something between w;,
and wy. Since wy, €E1 and is contained in I, any left interval meeting (—o0,l,)
must have right endpoint less than [,,, and hence cannot cover anything to the right
of w;,. Therefore w, must lie to the right of w,. But the only right interval that
meets (p, +00) and has left endpoint less than p is I, and moreover I,N(p, +00) C L.
Hence wy can cover something between w;, and w;, only through I; which implies
that m>m,,, and hence that the chain C, must have stopped, to form C,, before w,.
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Therefore w, gé@p and this completes the proof, the inclusion following from the easy
observation 1,N[ly, +o0)C 1.

(if} The first relation is trivial. To prove that Ass=0 suppose that Wy € M2
and choose an w, €K such that wqeépgcp. By (i), weCI7 and since all places in
B cover something, there is exactly one other interval J containing w,, which must
have opposite direction from I,,, and w, can cover only through (I,,J). But then
as in (i) we conclude that w,#C,, a contradiction.

(iii) Given any w,€ S there is a chain werweg)—...~w, (of length at most
three) from F; through FEs»’s, all of which cover unique places. Hence w, cannot
belong to any chain starting from an Fs, and so ws¢B. [J

Now we construct the collections G and G1 of labeled intervals from our initial
collections G* and G~ as follows: The collection G; is produced from G* replacing
every right interval I€PNG™* by the closure of I\I* (removing it if I*=7I) and
leaving any other right interval unaltered. Similarly the collection G; is produced
from G~ replacing every left interval JEPNG™ by the closure of J\J* (removing it
if J*=J) and leaving any other left interval unaltered

Let hy, denote the number of bricks over w,€B determined by these new
collections G} and G; (in the same way as h, is defined from the collections G*

and G ).

Lemma 9. We have 1<hy q<hg—1 for every w,€B and hy 4=h,—2 for every
wyEBNE;(A).

Proof. The inequalities hy q<hy—1 for every w,€B and hy,=h,—2 for ev-
ery wy€BNE;(A) follow from Lemma 8(i) and Lemma 6(ii), respectively. Also
Lemma 6(i) implies that hy 4>h,—2 for every w, €B. Hence if there exists an w,€B
such that hy,=0, then (since BCE3) we must have hy=2. Assume then that the
two intervals containing w, are I and .J. Using Lemma 6(i) again we conclude that
I and J belong to P, they have opposite directions and (since by ,=0) w, CI*NJ*.
Thus wy covers exactly one place and this is done through I* and J*. But then
for any w, € K such that wq€C,, we conclude, as in the proof of Lerama 8, that w,
would have been removed from C,, and so cannot belong to C,. This contradicts our
assumption w, € B and so completes the proof. O

Next we let W denote the set of all w, € such that g=c™#](p) for some w,€ K
and we place a new brick-interval over each such wys€W and give to all these new
bricks the color red (to remind us that we have stopped certain chains there).

Lemma 10. The number |W)| of all new red brick-intervals satisfies

(5.5) W< S (1) (A,
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Proof. Suppose that the place w;€A, CB produces exactly d>0 red bricks
over d places in B. To prove (5.5) it clearly suffices to show that d<b—1.

Choose the intervals I and J containing w, as in Lemma 7. Moreover it follows
as in the proof of Lemma 6 that if w, covers something in S through I with a left
interval different from J, then w,CI* and a similar thing holds for J.

Therefore by Lemma 7, ws can cover places in S or produce red bricks over
places in B (covered by ws) only through interactions where I or J (or both) is
involved. Thus as in the reasoning of Lemma 1 the total number of these interactions
is at most hs(T)—1=a—1, and since SNB=0 no such interaction can cover both
in S and in B. We conclude that if  is the total number of places in S covered
by ws, then d4+x<a—1. Then since clearly exactly x bricks have been moved away
from w; in the process of forming A it follows that b=a—2z and so d<b—1. This
completes the proof. [

We will give each red brick-interval a certain direction, thus adding it to either
G or G; (but not to both). There are certainly many possible ways to do this but
we have the following result.

Lemma 11. There is a way to give directions to every red brick-interval adding
it to either Gi or Gy (but not to both) so that the labeled collections G* and G~
thus produced have the property that the triple T—=(G*,G~, D) is a covering model.

Proof. Given any wQGWQE, Lemma 9 implies that h; ,>1. Hence w, is con-
tained in at least one interval from G UG, . We choose one such interval and denote
it by I. Then if I€G; (resp. G; ) we add the red brick-interval that has been added
over w, to the family G (resp. to Gi) and we declare that w, is covered by w,
through the interaction of I with this new added red brick-interval. Doing this
for every w, €W we produce the collections G* and G~ and we consider the triple
T=(G*,G~,D). Given any w,CD (so w,€B), either w,€W in which case it is
covered by itself from G* and G~ by our construction, or w,¢€W. In that case, if
ws €C, we also have w,(s) €C,, hence w5y €D, and moreover both intervals R, and
L involved in the covering of ws by w(, either do not belong to P, or any I of
these two that might belong to P satisfies w,(y) QI\T . Hence in all cases ws will be
covered from 7 in essentially the same way as it was covered in our initial covering
model 7. From these we conclude that T is a also a covering model. O

The covering model T derived from 7 will be used to exploit the assumption of
the maximality of ¢(7") and lead to the proof of Theorem 2. For this it is important
to estimate H (7). This estimation is furnished by the following lemma.
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Lemma 12. We have

(5.6) H <Y (@=2)[Rap)+2 3 (0=1) Aas |+ Asal-

a>3

Proof. Tt is clear that H(T) is equal to the sum of all hy 4, where w,€B, plus
the number of all added red brick-intervals. Hence we have

(5.7) HT <Y (a=2) R+ 3 |Ras |+ W]
a>3
b>1

since, by Lemma 9, wqeﬂab implies that h; ;=a—2 for b=1 and hy ,<a—1for b>1
and, by Lemma 8(ii), Aog=0. This, (5.5) and the obvious inequalities [Aqp|<|Agp]
(and b—1>1 for b>1) easily imply (5.6). O

6. End of the proof of Theorem 2

Using the above we can now complete the proof of Theorem 2 as follows.
Since 7T is a also a covering model of the form considered in Section 3 (i.e. with
all intervals involved being contained in [0, N]) we have

(6.1) o(T) <o(T).

Hence, observing that m(7)=Y""|A.| and using (5.6) we have

(6.2) S Rl < o(T) (Z'(a—z)mauw Z(b—l)lAab|+|A22|).
a>3

Let

[
X:Z |Aab|v
14 _
Y= (a=2)[Aap|+2D (b 1)|Agp|+[Azo],
a>3
Z=23 (b—1)|Au|+|Az)|.
a>3

Then inequality (3.8) can be written as

2X+Y - Z+Za>3 a([Aas| = |Aap|) =3 425 (0— 1) Aup|+[Agz |

’7' =
SRS G Y RN Y 1 ] W Y WYy ) W T
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and Lemma 8(ii) gives

Zazs a(|Aab|_|AabD
Zq23(2a_ 1)(|Aab| - ][\abl)

4
< Z
-7

so since o(7)>2 these terms can be ignored and substituting Z we obtain

2X4Y =33 oa(b=1)Aw|  2X+Y  20(T)+1
. < = < s
(6.3) o7) < 3X+2Y <5y, 5(b- D)JAw| ~ 3X 12V ~ 39(T)+2

since X <o(T)Y and because we know from Proposition 2 that o(7)<2<2. Now
(6.3) implies that 30(7)%<1 and completes the proof of Theorem 2.
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