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1. Introduction 

Recently the close connection between regularity properties of weak solutions 
of quasilinear elliptic systems of partial differential equations and Liouville-type 
theorems for such systems has become an object of investigation by several author's 
([2], [4], [5], [7], [91). Up to one exception results concerning regularity properties 
have been established first and Liouville-type theorems for the corresponding sys- 
tems have been proved afterwards. Ivert [5] was the first to reverse this relation 
and to give a negative answer to an open question in regularity theory by using a 
counterexample to a Liouville-type conjecture due to Meier [8]. 

Concerning the other way around - -  to give a positive answer to the regularity 
problem for a certain class of elliptic systems under weaker conditions than pre- 
viously known via Liouville-type theorems - -  nothing has come to the author's 
attention. It is the aim of this note to give results of this kind and show that with 
the same methods it is possible to prove new regularity theorems for weak solutions 
of quasilinear elliptic systems 

O-~p(a~](x, u)u~) =JJ(x ,  u, Vu), j = 1, N, 

where f may grow quadratically with respect to IVul and a~(x, u)=A~.~(x)+ 
B~y(x, u) is elliptic as well as A~y, where A~f is continuous and B~(x, u) only 
measurable, and a relative smallness condition for the measurable part is known. 
This condition is (in contrast to [3]) not unnecessarily strong but is - -  restricted 
to the case A~~=.4~aaij treated by Sperner [11] - -  especially independent of the 
ratio of eigenvalues of _,~ thus improving the results given there. A concrete bound 
for BTf to be admissable in the general case is given too. 

The results are inspired by recent work of Giaquinta--Modica [3], Kawohl [7] 
and Meier [9] and are essentially based on some ideas due to Campanato [1]. 
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In the sequel we use the summation convention (repeated indices are to be 
summed). [ / denotes the Euclidean norm in the various spaces R k and 

BR(xo) = {xlxCR% Ix -xo l  < RL = BRO). 

- .==: �9 Further if (Ai~) with l = t ,  k<=N, 1<=o~, fl<=n is an arbitrary matrix, let liA~[l 
the operator norm 

IiA~]l 2 =  sup {~7:~ s (A I 
~ ER,,2v 
Ir 

be 

2. Results 

Theorem 1. Let 

a~fl(x)= A ~a5,j+b~f(x), l <= i , j<- N, l <= ~ f l  <- n 

with Aa~=A~PER and 

Aol~l 2 <- A:'Pr a <-- ~01~1 ~ for ~ER" 

with certain constants 0<2o<_-/2o . Let b~ be measurable functions defined on R" 
and Ro>=O such that 

IlbZfl(x)ll <- 62o i f  Ix[ => Ro 
with 

(1) 5 < 8 " -  c(n) with c(n) ~--2 ~0.7357. 
n e 

Then if  uE Hl.to~(R n, RN)nL~ is a bounded solution of  

�9 .#  i j _ fr t ,  a~j u~gxa dx - 0 for all ~pEC~(R", RN), 

u is a constant vector. 

Remark 1. The proof  avoids the difficult technique of  [11] used by Meier for 

the proof  of  Theorem 4 in [9]. Yet the bound is independent o f /20  [I conjecture 
20" 

the exact bound to be 3"-1/n---S-i- ) n - 2  ' motivated by the example in [11] . 

Remark 2. The estimation of  c(n) can in fact be slightly improved. Our method 
gives a c(n) with l i m , ~  c(n)=7~0.8047,  c(3)=1.2489, c(4)=1.0886. 
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The combination of  this theorem and the theorem 2.1 of  Kawohl [7] 

Theorem 2. Let f2cR" be a bounded domain and let 

aTf(x, u):---- ASP(x)31j+B~a(x, u), 1 ~= i , j  ~= N, 1 ~= c~, [3 ~= n 

yields 

with 
A sp = APSE C(~, R) 

and 
B~f E C(~  >( R N, R). 

Let 0<2o~/~o and 6 be constants with 

2o1~12<_- ASP(x)~s~p <- ~01~12 for ~ER", xEf2 
and 

IIn~P(x,u)ll <= ~2 o for ( x , u ) E ~ •  N. 

Then every bounded weak solution uE H~(f2, RN)nL= of 

0 
Oxp (aTfl (x, u)u~,) ---- O, j = 1 . . . . .  N 

is ~-HSlder-continuous on compact subsets K of f2 with a certain ~E(0, 1) and an 
a-priori-estimate 

Ilullc.<K> <= const (llullz=, 20,/~0, O, d(K, Of 2)) 

is valid, provided that 

(2) 6 < 6" as given by Theorem 1. 

Remark. The bound of [11] is of  the form t~0) " . Note that the counter- 

example of  [11] is restricted to the case 20//~ 0 = 1. 

In the next theorem we consider systems with a nonlinearity on the right hand 
side, which is of  quadratic growth with respect to 1Vu[. 

Theorem 3. Let uE H~(f2, R N) n L =  be a bounded weak solution of 

0 
Ox a (a~(x, u)u~) = - f j ( x ,  u, Vu), 2 = 1, ..., N, 

where f1 is measurable and satisfies 

(3) If(x, u, P)I -<-- a lPl 2 + b with constants a, b >= O. 

Suppose that aij~#(x, u)=ASP(x)flj+ B~(x ,  u) with functions A "p as in Theorem 2 
above and with measurable functions B~f with uniformly bounded norm 

(4) llB~a(x, u)ll <= ~20. 
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Then there is an eE(O, 1) such that u is e-H6lder-continuous on compact subsets 
K of f2 and an a-priori-estimate 

Ilullc~<K) <= const ([[ulfL=, 20, P0, ~, a, b, d(A. 0f2)) 

is valid, provided that 

8 (fi2 2aM'llI2 6" 
(5) -2 + [4- + ~-UJ < 

where 6" is the bound of Theorem 1 and M=HulI~ �9 

Remarks. 

1. The remarks to Theorem 1 and Theorem 2 apply here too. 
2. The interest in measurable coefficients is due to the fact that the coefficients 

usually depend on the function u the regularity properties of  which are still to 
be determined. So the functions Bff(x,  u(x)) regarded as functions in x are 
only measurable at the beginning. 

n 
3. As usual the constant b might be replaced by a function bELq(f2), q > ~ - .  

4. The same theorem (but with a more restrictive bound for the admissable varia- 
tion 3) is true, if A'P(x) is only measurable. See the remark at the end of the 
proof  of  Theorem 3. 

The next theorem gives concrete estimates for the general case, too. Compare the 
analogous result in [3], Theorem 4.1. 

Let uEHI(f2, RN )n L=  be a 

functions with 

(8) 

and let f j be measurable with 

(9) 

IIB~P(x, u)ll ~ 640 

If(x, u, Vu)l ~ alVu[2+b. 

Theorem 4. Let f2cR"  be a bounded domain. 
bounded weak solution of 

0 
(6) Oxp (ar u)uL) = f J ( x ,  u, w ) ,  j = 1 . . . . .  N, 

where 

with A~.~(x)EC((2, R) 

(7) 401~12 -< A ~ ( x ) ~  -< ~o1~12 

for all CER "u, x E ~  with 0 40=/~ 0. Further let B~f(x,u) be measurable bounded 
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provided that 

(10) 

Here c o, q >= 1 

Then there are positive constants co, cl such that for all compact subsets K c  

uEC=(K) with a certain ~ > 0  and 

( ~o ) IlUHc=(/o <= cl a, -~o b, 6, IlUl]L=, n, 2, d(K, Of 2) 

,5 (6 ~ a M ( c a + l ) )  '/z 2 . C o ( ~ )  
2 - +  4 - q  2 0 < e--n- " 

are given by Lemma 5 below. 

3. Proofs 

We need some lemmata. The first one gives a precise estimate for solutions of 
certain constant coefficient problems. 

Lemma 1. Let A sp =A p~ be constant coefficients with 

2o1~l 2 <_ A ~ P ~  ~/t0]~[ 2 for all ~ER", 0 < 20 =</~o. 

Then there exists a positive definite real symmetric matrix S such that for all solu- 
tions vEH~(S(BR) , Rti)c~L= of 

fs(. .oa'Pa,?;.~o~.dy = O, q~<Cg(S(B,,), R N) 
we have 

Uzs (11) os/'(B e) ISVvl2dy <= (B,o ISVv[2dy, o~ < R. 

Proof. If A denotes the matrix (A=a), let S be the positive definite symmetric 
matrix with A = S 2 = S ' S .  By the transformation y = S x  we see that u~(x)=vi(Sx) 
is harmonic on B R, which implies 

transform this estimate back to the y-coordinates which As V u i=SV vi we may 
proves the lemma. 

Lemma 2. Let u, v~L2(QR, RN), A, B, CCR +, such that 

i) f~R v(u - v) dx = O, 

ii) s lu-vl~ax <- a~fa" lul~dx+C, 
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and suppose that for a subset 12~ of f2 R 

iii) f ~ Ivl2 dx ~= B2 f ~ Ivl= dx. 
Q 11 

Then we have 

(12) ( ' /  f~  lulZdx~(Al/1--B2+B1/l~--~-~fo lulZdx+ 1+ 7 C 

provided A2+B2<= 1, 

Proof. We have for c~[O, 1], e>O 

f e~Q lul= dx 

< ( I + - ~ ) L -  . ]v]2dx-~ (1-=)3~+1 fa=\a.]v]'dx+(e+l)L11[u-v[Zdx 

<-(e+l)fa~'u-v]2dx+[(~-~-~ +1 (l~-)~'lBZ+~-lfa~]v[2dx'5+l) 

Now because of i) we have 

This gives 

with 

provided that 

Now let a = 

This implies 

Inserting we have 

f ~ Ivl 2dx = f ~11 lul=dx-f  ~. lu-vlZdx. 

f ,a~ lulZdx ~ (A2(~+ 1 -D)+ D) f ~11 ]ulZdx+(~+ 1 -D)C 

( -~  ( 1 - ~ ) z ]  (1--~) 2 
D =  +1 "~-~ ) B2 q e + l  

b 
a+bC[O, 1] with 

a - -  

D ~ e + l .  

B ~ 1 - B  z 
e ' e + l  " 

D=BZq ab --B2-~ B2(1-B~) <=1. 
a+b B~+e 

f r  o lule dx ~ K1f  ~11 lul2 dx + K2 
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with 

K1 = A2(e+B2)+A2( 1 _B2)+B2(  1 _A2) + (1-A2)  B ~ ( 1 - B  2) 
B2+e 

e = A ~ I - ~ I - B 2 - - B ~ < = I  which yields the desired estimate. As So choose 

we may assume that A 2 + B 2 < l ,  we see that e > 0  indeed. 
As we need a sharpened version of  an inequality due to Campanato ([1], Lemma 

6.I.), we give another proof which seems not only more elementary to us, but provides 
us also with the idea for proving regularity theorems. 

Lemma 3. Let q~: R + ~ R  + be a nonnegative, nondecreasing function, such 
that there are nonnegative constants a, b, o20, 7 with 

/ _ _ \  

(i) cp (4) ~ a 0 0-~1, 

(ii) supR_~I ~o(R)R"-r< ~ for a certain eE(0, 7). 

Then we have 

(13) 

provided that 

SRU p (p(R) <= (Po " 2 ( b * - b )  -1 < 

(14) b < b * : =  V-eea min 0 ~ , [ - - - ~ -  / l" 

Remark. b* cannot be increased, since otherwise ~o(0):=Q~-" would furnish 
e 

a counterexample, if aO ~ > 1 - - - .  

Proof. Let us suppose that (13) is false. Then for R>-R2 we would have 

/ q)(~)-< a ~- +~  ~o(R) w i t h b > b ,  but b still less than b*. 

Now let A=SUPR~R ~ ~0(R)R "-~, which is nonnegative and finite by (ii). This 
implies 

~o(e)o~-~<= a ~ -  +b q,(R)R ~-' 

which in turn gives 

<_-A a ~ +~ for o.<RO 

0 <_ A <_- A inf (aS-~+DS~-~). 
S > O - 1  
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for all (pCC~(R n, R N) 

I f  the factor on the right hand side is smaller than 1, we would have A = 0  and 
hence q)---0, a contradiction. A computation shows that this amounts to the con- 
dition on b* as stated in the lemma. 

Lemma 4. Let a~(x) be bounded measurable coefficients on R" and ~.>0 with 

a~P ~ ~J >--2 ~j~,~p Ir ~ for ~ER "N. 

I f  uEH~,to~(R",RN)nL~ is a solution of  

f .~p,,' ~,' ax <- f .  a [~ol [Vu[ 2 dx n - l J  - ' x g ' r x f l  n 

with allUllL~<L we have 

SURPIR2-" f IVul2dx}<~o. 
~. J B R 

go=u. q2 yields the well known result, see e.g. [9] for the Proof. A test with 
necessary estimations. 

Proof of Theorem 1. The method of  this proof  is essentially due to Meier [9]. 
Let us suppose R0=0. Let S be given by Lemma 1. For  an arbitrary R > 0  let 
vEH~(S(BR), RN)nL= be the solution of  

0 
(15) Ox----~ (A~B6ijv~') = O, j = 1, ..., U on S(BR) 

v-u~f/~(s(8.), RN). 
Set w:=v-u .  We have IIWlIL| For  all testfunctions q~ we have 

(BR) .6 (BR) v i j  ~ x = ' f "  x p  dx. 

For  <p=w, we get 

fs f ,  IVullVwl dx <- a f s  ISVul JSVwl dx (.R) lSVwl~dx <- 620 (BR) (BR) 

and 

(16) f s(.., ISVwl~ dx ~ b2 f s ISVup dx. 
(BtO 

Note that w depends on R. Now using (11), (15) and (16) we apply Lemma 2 and 
get by the estimate (12) 

is.., ,xv.,.. ,x (, /, _--.}':s..> ,,v.,. ,x 
( ] Q "  

if 63+l--_l <=1. 
tR )  



Regularity theorems for nondiagonal elliptic systems 

Now we apply Lemma 3 to the function 

(L ) " = [SVul~dx x/2, with y = ~ - ,  a = l / 1 - 5  2 q~(Q) %) 

e =  l, (p0=0 and b=6 to conclude that  cp--0, since the condition on b is fulfilled 
and q)(~)Ql-(,/2) remains bounded by Lemma 4. As ~0-0,  u has to be a constant, 
which proves the theorem. The slight refinement given by Remark 2 will become 
clear in the proof  of  Theorem 3. The case R0>0 is similar; we would conclude 
that  (p remains bounded, which gives the same result. 

Proofs of  Theorems 2 and 3. As stated, a combination of [7], Theorem 2.1 and 
of  our first theorem proves Theorem 2. But the nonhomogeneous case cannot be 
treated this way. We proceed as follows. Let x0C f2 be arbitrary, for simplicity 

we may suppose Xo =0.  Let R0~ 1 such that B2Ro C ~. By a variant of  Lemma 4, 
we have 

(17) f. [Vu] 2dx ~ ca o~ "-2 for all ~o ~ Ro, 
o 

where ca depends on the parameters, but not on Q. We start with a similar procedure 
as in the proof  of  Theorem 1. Let S~=(A~(0) )  as in Lemma 1 and R<-RI<=Ro 
such that S(BR1)Cf2. Let vnEH~(S(BR), R S ) ~ L ~  be the solution of 

0 (A~(O)bijv~,i) = O, j = 1, ..., W on S(BR), 
Ox a 

Set wR:=vR--U. We have [IwRJ[L<--2M=21[UI]L= by the maximum principle. For 
all testfunctions 9 we have 

i j + f (A=e(x)-A.e(O))a,;uxom.. dx. 

Using the continuity of  A =e, we get for ~o=w R the estimate 

(is) ISVw"l dx ,  ofs Iwl IVw"l 
(BR) (BR) 

+ 2 a M  f 2olVul~dx+2oe(R)fs B [VullVwR[dx+c4.R" 
AO d S(BR) d ( R )  

with limR~0 e(R)=0 .  
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By virtue of Aolz[3<_ - lSzl  3 and of Young's inequality we arrive at 

(19) f s,..) [SVwRI3 dx =< 33 f s(nR) [SVul2 dx +cs" R" 

with 
6 (33 2aM]1/3 

3 = ~ + ( ~ - + - T o  ) +~(ao) .  

Note that ~(R0) can be made sufficiently small by choosing Ro small enough. As 
above we may use Lemma 2 to get 

{/ U" Iff' (20) fs(,o)lSVul3dx<- 3 1 -  + .R" 

provided (R)"  +33_~ 1. 

Now consider the function 

(~) = e~(3-")/3 U c iSVul3 dx)l/3. 

This function is finite by (17) and bounded independently of ~. Let R=~.So with 
a number So, s g - - > ( 1 - 3 D - L  which will be determined in the following. Then by 
(20) we have 

(21) 0 ['~-o)=<?(So)t~(R)+cT(so)R 

with 

1 (6(sg-- 1)'/2+(1--33)'/3). ~(So) = So  

Choose So as to minimize y(So) subject to the restriction s~_->(1-33) -1. This leads to 

which in turn gives 

33 
W := -5- s g ( n - 2 )  3 = 1 - ( n -  1)33+ ((1 - ( n  - 1)33) 5 - ~ 2 ( n - 2 ) 3  

if 3=  < 1 It is not hard to check that the restriction is fulfilled. Using this 
n- -1  " 

value of So we get 

(22) ~," = ~,"(So) = 2 w ( 1 - 3 ~ )  "~ 
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If  ~ is so small as to make ? <  1, the usual iteration procedure of (21) leads to 

(23) if(0) <= Cs($, sup ~(R), CT(S0) 0 , 0 ~ R1, 
R ~ _ R  1 

with a positive constant a. 

Note once more that SUPR~R 1 6(R) is bounded by a constant, depending only 
on d(xo, 0f2] and the parameters of the system. So we have arrived at the well 
known Morrey-condition for ~-H61der-continuity 

(24) f B ~ IVulUdx ~ c9, q,-2+z= 

uniformly on compact subsets of ~2. We still have to check the necessary condi- 
tions for 3 in (22). Now 

7 (So) ~ rain {6s (",2)-1 + (1 - (~2)1/2 s -1}  

< ([1  __11 + 1 

< e ~ 1  

if ~<=2  shows the sufficiency of  the condition. 
en 

~ =n-----~ in (22), we would get 

])?; > 

1 ~n--X 

This implies that 7<1 if and only if 3< c(n) 
n 

> 1  

On the other hand, inserting 

with lim,~ = c (n) =/~ with 

[2 2 
- T  el+l/1-u* = 1 + l/1 _p2  

the only solution of  which in [0, 1] is p--~0.80474. 
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Concerning the remark at the end of  Theorem 3, it is enough to observe that 

we may consider the function ~R with ~R--uEIJI~(BR, R N) and 

0 
Oxp (A~a(x)vRx:i) = O, i =  1, ..., N, 

as the auxiliary function. By using Hole-filling technique and Green's function we 
arrive at 

f .  iw.12dx K0 f .  iw.12dx 
~t R 

with a certain f l>0  which may be used instead of  Lemma 1. 
The proof  of  Theorem 4 proceeds in exactly the same way. The only difference 

consists in using the following Lemma 5 instead of  Lemma 1. 

Lemma 5. Let A ~  be constant coefficients with 

2o1~12 ~ ATf ~ for all ~. ER "N, 

IIAT~II <-- m,  

and u6 Hl  ( f2, R N) c~ L~ with ]u[-< 1. Let f2 o c f2 be a family of subsets with I2 o m f2 Q~ 
if  01<=02 and B,e(xo)cf2eCBbo(xo) ]'or 0 > 0  with constants 0 < a < b .  Let v be a 
solution of 

0 
Ox, (A~flvi )=O,  j =  I , . . . , N ,  

v-u~[-I~(O R, RN). Then there are constants Co, c~>=l such that for on OR and 
o < R  

0 ~2R 

and Ivl<=q on f2 R. 

Proof See e.g. [1]. The freedom in the choice of  f2Q allows sometimes to get 
the best constants Co=C1---1 as in Lemma 1. 

4. Concluding remarks 

A smallness condition on the measurable part is necessary for a regularity 
theorem as can be seen by the counterexample of  [11]. The best what may be con- 
jectured seems to be that in the case of  Theorem 3 the solutions are H61der-contin- 

uous if a~<il-aM/1/h--2- " 1 
t 2oJ  n - -2  
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