A remark on a theorem by F. Forstneric

Jean-Pierre Rosay*

Let B_n be the unit ball in \mathbb{C}^n and bB_n be the unit sphere. Let γ be a simple closed curve of class \mathscr{C}^2 in bB_n . Assume that γ is complex tangential at one point at least (this means $\langle \dot{\gamma}, \gamma \rangle = 0$, where \langle , \rangle is the *hermitian* scalar product). F. Forstnerič has proved that then γ is polynomially convex [2]. This result has been used recently in [1].

The aim of this note is to present an extremely simple proof of this result (part I). Then in part II, we give a counterexample to show that the result fails to be true if the curve is assumed to be only of class \mathscr{C}^1 (and fails to be \mathscr{C}^2 just at one point, where a complex tangency occurs).

I. Proof of Forstnerič's result

We can assume that the curve γ is parametrized by [-1, +1]; $\gamma(1) = \gamma(-1)$, $\gamma(t) = (\gamma_1(t), ..., \gamma_n(t))$, $\gamma(0) = (1, 0, ..., 0)$ and $\dot{\gamma}(0) = (0, 1, 0, ..., 0)$. In fact, we need only to assume that γ is \mathscr{C}^1 , and \mathscr{C}^2 in a neighborhood of t = 0. The result of Forstnerič is an easy consequence of the following totally elementary geometric fact:

Proposition. For $\varepsilon \in \mathbb{R}$, and $-1 \le t \le +1$, set $\Gamma^{\varepsilon}(t) = \gamma_1(t) + i\varepsilon\gamma_2(t)$ (abusively Γ^{ε} will also denote the "geometric" image, which is the projection of γ under the map $(z_1, z_2) \rightarrow z_1 + i\varepsilon z_2$). There exists $\varepsilon \in \mathbb{R}$, $|\varepsilon|$ arbitrarily small, $t_0 \in (0, 1)$ and h > 0 such that:

$$\begin{cases} for \ t_0 \leq |t| \leq 1 & \operatorname{Re} \Gamma^{\epsilon}(t) \leq 1 - h \\ for \ -t_0 \leq t < 0 & \frac{d}{dt} \left(\operatorname{Re} \Gamma^{\epsilon}(t) \right) > 0 \\ for \ 0 < t \leq t_0 & \frac{d}{dt} \left(\operatorname{Re} \Gamma^{\epsilon}(t) \right) < 0 \\ the intersection of the line & \operatorname{Re} z = 1 - h \text{ and } \Gamma^{\epsilon} \text{ consists of only one point.} \end{cases}$$

^{*} Research supported in part by NSF grant DMS 8800610.

The last assertion is the important one. Using arguments from the theory of function algebras (see [3] or [5]), the result of Forstnerič can be deduced from the proposition in the following way. The curve γ can be decomposed into the union of two arcs γ' and γ'' , which we take to be the intersection of γ with respectively the half spaces $\{\operatorname{Re}(z_1+i\varepsilon z_2) \geq 1-h\}$ and $\{\operatorname{Re}(z_1+i\varepsilon z_2) \leq 1-h\}$. It is immediate (using polynomials in $z_1+i\varepsilon z_2$) that γ' and γ'' are peak sets for $P(\gamma)$ (the closed subalgebra of $C(\gamma)$ generated by polynomials). Since γ' and γ'' are smooth arcs, one has $P(\gamma')=C(\gamma')$, and $P(\gamma'')=C(\gamma'')$ (see remark below). Then, given any $f\in C(\gamma)$ and $\varepsilon>0$, there exist polynomials P_1 and P_2 such that $|P_1-f|\leq \frac{\varepsilon}{4}$ on γ' and $|P_2-f|\leq \frac{\varepsilon}{4}$ on γ'' . If $\chi\in P(\gamma)$ is a function which peaks on γ' (i.e. $\chi=1$ on γ' , $|\chi|<1$ on $\gamma-\gamma'$), then for n large enough $|(\chi^n P_1+(1-\chi^n)P_2)-f|\leq \varepsilon$ on γ . This shows that $P(\gamma)=C(\gamma)$, and therefore that γ is polynomially convex. In the last step, we have just rewritten a proof that the union of two peak interpolation sets is a (peak) interpolation set.

Proof of the proposition. One has

$$\gamma_2(t) = t + O(t^2)$$
 and $\gamma_1(t) = 1 + \left(-\frac{1}{2} + i\frac{a}{2}\right)t^2 + o(t^2)$,

where $a = \frac{d^2}{dt^2} (\arg \gamma_1)|_{t=0}$. Therefore $\operatorname{Re} \Gamma^{\varepsilon}(t) = 1 - \frac{t^2}{2} + \varepsilon O(t^2) + o(t^2)$ and $\operatorname{Im} \Gamma^{\varepsilon}(t) = \varepsilon t + \dots$.

There exist $\varepsilon_0 > 0$ and $t_0 \in (0, 1)$ so that for $|\varepsilon| \le \varepsilon_0$ and $|t| \le t_0$: $\left| t + \frac{d}{dt} (\operatorname{Re} \Gamma^{\varepsilon}) \right| \le \frac{|t|}{2}$. This already shows that for $|\varepsilon| \le \varepsilon_0$, $\operatorname{Re} \Gamma^{\varepsilon}$ in increasing on $[-t_0, 0)$ and decreasing on $(0, t_0]$. Fix $h_0 > 0$ so that $\operatorname{Re} \gamma_1(t) < 1 - 2h_0$ if $|t| \ge t_0$. If $|\varepsilon| < h_0$ then $\operatorname{Re} \gamma_1(t) + i\varepsilon\gamma_2(t) < 1 - h_0$, if $|t| \ge t_0$.

Set $\varepsilon_1 = \min(\varepsilon_0, h_0)$. For any $h \in (0, h_0)$, and $|\varepsilon| \le \varepsilon_1$, the arc $\Gamma^{\varepsilon}([-t_0, 0))$ (resp. $\Gamma^{\varepsilon}(0, t_0]$) intersects the line Re z = 1 - h at only one point which we denote by $p^{-}(\varepsilon)$ (resp. $p^{+}(\varepsilon)$). Fix h small enough in order that $p^{-}(\varepsilon_1) < 0 < p^{+}(\varepsilon_1)$ and $p^{-}(-\varepsilon_1) > 0 > p^{+}(-\varepsilon_1)$, which is possible due to the fact that $\frac{d}{dt}(\operatorname{Im} \Gamma^{\varepsilon})|_{t=0} = \varepsilon$. By continuity, for some $\varepsilon \in [-\varepsilon_1 + \varepsilon_1]$, $p^{+}(\varepsilon) = p^{-}(\varepsilon)$. Q.E.D.

Remark. Since γ' , and γ'' are arcs in the sphere, one can prove in an elementary way that polynomials are dense in the space of continuous functions on γ' , and γ'' , without resorting to Stolzenberg's theorem. I do not know how much this has been noticed. F. Forstnerič and I came to notice it in a discussion, which is partly the origin of this paper. Here are some indications. Let Λ be a \mathscr{C}^2 arc in the unit sphere in \mathbb{C}^n , with (1,0,...,0) as an end point. For h>0, let Λ' and Λ'' be respectively the intersection of Λ with the half spaces $\operatorname{Re} z_1 \ge 1-h$ and, $\operatorname{Re} z_1 \le 1-h$. If h is small enough, the projection of Λ' in the z_1 plane is a simple arc. By using polynomials in z_1 , one sees that Λ' is a peak interpolation set for $P(\Lambda)$. So, to show that $P(\Lambda) = C(\Lambda)$, it is enough to show that $P(\Lambda'') = C(\Lambda'')$ (the proof has essentially been given above). The problem has thus been reduced to the smaller arc Λ'' . And the proof can be completed after a finite number of such steps. If the curve is only \mathscr{C}^1 , the same proof works, if one replaces the region $\operatorname{Re} z_1 > 1-h$ by the region defined by: $|z_1-1|<1$ or $|z_1|>1$.

II. An example

1) Set $E = \left\{ z \in \mathbb{C}, \ |z| \le \frac{1}{2e}, \ \operatorname{Im} z \ge 0 \right\}$. For $z \in E$, set $f(z) = z \log \frac{1}{z}$ where we take $\log \frac{1}{z} = \log \frac{1}{|z|} + i\theta$ with $-\pi \le \theta \le 0$, and f(0) = 0. The function f is (1-1) on E. Indeed $f'(z) = \log \frac{1}{z} - 1$, so $\operatorname{Re} f' > 0$ and we can apply the result in [4], page 294, exercise 12. The function f is \mathscr{C}^1 except at 0. However f maps $\left(-\frac{1}{2e}, \frac{1}{2e}\right)$ to a \mathscr{C}^1

curve. The positive real axis is mapped into itself, while the negative real axis is mapped into the curve $x = \frac{y}{\pi} \log \left(\frac{y}{\pi} \right)$. The inverse map f^{-1} is \mathscr{C}^1 on f(E) and at 0: $(f^{-1})'(0) = 0$. Finally notice that although f is not \mathscr{C}^1 on E, $|f|^2$ is \mathscr{C}^1 and even $\mathscr{C}^{1+\varepsilon}$ for every $\varepsilon \in (0, 1)$.

Composing f with a conformal mapping from Δ , the open unit disc in \mathbb{C} , onto a smooth domain in E whose boundary contains $\left[-\frac{1}{4e}, \frac{1}{4e}\right]$, we get therefore the following lemma.

Lemma. There exists F, a 1-1 continuous map from $\overline{\Delta}$ into \mathbb{C} , with the following properties:

- 1) F is holomorphic on Δ , F(1)=0, |F|<1;
- 2) F is smooth on $\overline{\Delta} \{1\}$;
- 3) $|F|^2$ is of class $\mathscr{C}^{1+\varepsilon}$ on $\overline{\Delta}$ (for any $\varepsilon \in (0,1)$);
- 4) $F(b\Delta)$ is a \mathscr{C}^1 curve (\mathscr{C}^{∞} except at 0);
- 5) F^{-1} is C^1 on $F(\bar{\Delta})$ and $(F^{-1})'(0) = 0$.

There is no claim that this lemma is original.

2) Construction of the curve.

Take F as in the lemma. Set $\Omega = F(\Delta)$. There exists G, a \mathscr{C}^1 function on $\overline{\Delta}$, holomorphic on Δ , such that on the unit circle $b\Delta \colon |G| = \sqrt{1 - |F|^2}$, since $\sqrt{1 - |F|^2}$ is of class $\mathscr{C}^{1+\varepsilon}$. We can impose G(0)=1. The map $z\mapsto \psi(z)=(z,G_0F^{-1}(z))$ is a \mathscr{C}^1 map from $\overline{\Omega}$ into the unit ball which maps $b\Omega$ to a \mathscr{C}^1 curve γ in the unit sphere in \mathbb{C}^2 . This curve is not polynomially convex since its polynomial hull contains $\psi(\Omega)$. However $\psi(0)=(0,1)$, and since $\psi'(0)=(1,0)$ (due to $(F^{-1})'(0)=0$), the curve is complex tangential at the point (0,1).

References

- 1. Berndtsson, B. and Bruna, J., Traces of plurisubharmonic functions on curves, Ark. Mat. 28 (1990), 221—230.
- FORSTNERIČ, F., Regularity of varieties in strictly pseudoconvex domains, Publications Matematiques 32 (1988), 145—150.
- 3. GAMELIN, T., Uniform algebras, Prentice Hall, Englewood Cliffs, NJ, 1966.
- 4. RUDIN, W., Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1987.
- Stout, E. L., The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown on Hudson, NY, 1971.

Received Oct. 11, 1989

Jean-Pierre Rosay
Department of Mathematics
University of Wisconsin
Madison, WI 53706
USA