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0. Introduction

In this paper, we study the propagation of singularities for a class of pseudo-
differential operators having characteristics of variable multiplicity. We do not
assume the characteristics to be in involution, in the sense that their Hamilton
fields satisfy the Frobenius integrability condition. Instead, we assume that the
characteristic set is a union of hypersurfaces tangent of exactly order k;=1 along
an involutive submanifold of codimension d,=2. This means that the Hamilton
fields are parallel at the intersection, and their Lie brackets vanish of at least order
k, there. We also assume a version of the generalized Levi condition. One example,
with k,=1, is the wave operator for uniaxial crystals, i.e. trigonal, tetragonal
and hexagonal crystals. The main result is stated in Theorem 1.3, and it shows that
the wave front set of the solution is propagated along the union of the Hamilton
fields of the characteristic surfaces.

The method of proof is to reduce the operator to a first order diagonalizable
system — see Proposition 2.3. By the geometry of the problem and the Levi condi-
tion, this can be done using the general symbol classes of the Weyl calculus. For
this system the Cauchy problem is well posed, and the parametrix is constructed
using Lax’ method of oscillatory solutions — see Proposition 3.4. The oscillatory
solutions are conormal distributions with non-standard symbols, so we need some
calculus lemmas in the appendix. The special symbol classes make it possible to
“blow up” the singularity of the characteristics as in [10]. The contributions out-
side the singularity may then be taken care of, and we are left with solving a micro-
local system of pseudo-differential operators along the leaves -of the singularity;
which is done in Section 4. Finally, the singularities of the parametrix are analyzed
in Section 5.
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There have been many studies of singularities of solutions of symmetrizable
hyperbolic systems, see [15] and references there. Nosmas [12] has studied the in-
volutive case. Kumano-go and Taniguchi[8] have constructed parametrices for
diagonalizable systems, but since they consider classical symbols, their results are
not directly applicable here. The results on the propagation of singularities for
the system in Proposition 2.3 may be obtained by the method of energy estimates
of Ivrii[6] (see also [16]). For scalar operators, the case when the characteristics
have transversal involutive self-intersection has been analyzed in [1], [9], [13] and
[141. Melrose and Uhlmann [10] considered the case of conical involutive singularity
of the characteristic set. Morimoto [11] studied operators on the form (2.12) below,
but with involutive characteristics. Ivrii [7] considered operators with L= bounds
on the Poisson brackets at double characteristic points.

In this paper, we shall consider classical, or polyhomogeneous, pseudo-dif-
ferential operators. These have symbols which are asymptotic sums of homogeneous
terms. But we shall also use the more general symbol classes of the Weyl calculus.
Since all our metrics are split, we can use the standard calculus of pseudo-differ-
ential operators with these symbol classes. For notation and calculus results, see
[5, Chapter 18].

1. Statement of result

We are going to study the pseudo-differential operator P¢¥7, (X) on a C¥

manifold X. Let p=o(P) be the principal symbol and X=p~1(0) the character-
istic set. Assume, microlocally near (x,, &)€Z,

(1.1) 2= U;":l S;» ro =2, where S; are non-radial hypersurfaces
tangent at Z, = (\7_, S; of exactly order ko= 1.

This means that the Hamilton fields of S; do not have the radial direction (£, d,).
Also, the ky:th jets of S; coincide on Z,, but no k,+1:th jet does, and the surfaces
only intersect at X, in a neighborhood of (x,, &). Observe that the surfaces need
not be in involution, in the sense that their Hamilton fields satisfy the Frobenius
integrability condition. Since p is homogeneous in &, Z; and S; are conical. Next
we assume, microlocally near (x,, &),

(1.2) Z, is an involutive manifold of codimension d, = 2,

and II(Z,) = X, where II is the projection: T*(X) - X.
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Clearly the codimension cannot be equal to 1, and by non-degeneracy X, is a mani-
fold near (x,, &). In order to obtain conditions on lower order terms of P on
the multiple characteristic set we assume the following version of the Levi condition.
For j=1, ..., r, there exist m;€N, with the property that, if ¢;€C*, (x, d,@;)€S;
near Xy, d,@;(xo)=&, then

(1.3)  le7iersP(ekewsa)| = C(1+ 0"+ (x, degy)ymo~ms(1+0)"~™, @ oo,

Ya€C™ supported near x,. Here my=3'1? ) m;, and &(dx, d¢) is the homogeneous
distance to X, i.c. the distance with respect to the metric |dx|2+[d€|2/(1+]E]3).
This means that p vanishes of order m; at S;\Z,, of order m, at Z,, and P satisfies
the Levi conditions on S; and X, (see [2]). We also have uniform conditions on lower
order terms on X, =X\ 2, when approaching X,. In order to avoid extra zeroes of
the principal symbol at Z,, we assume

(1.4 dmp#0 at X, my= ' my,

j=0""j

microlocally near (x,, &,), where d*p is the k:th differential of p.

Clearly, (1.1), (1.2) and (1.4) are invariant under multiplication with elliptic
pseudo-differential operators and conjugation by elliptic Fourier integral operators
corresponding to canonical transformations preserving the projection condition:
II(X,)=X. In order to obtain the invariance of (1.3) we need the following

Lemma 1.1. Condition (1.3) is invariant under multiplication of P with elliptic
pseudo-differential operators and conjugation of P by elliptic Fourier integral oper-
ators corresponding to canonical transformations preserving the projection condition.

Proof. It suffices to check how FecI*(YX X, I'") transforms u(x, ¢)e®*™, when
T is the graph of a homogeneous canonical transformation y preserving the projec-
tion condition. Here u(x, ¢)=2 u;(x)¢’€C™ satisfies

(1.5) lu(x, 9l = C(1+ 00"+ (x, Yy (M) (1+0)s ¢ ~>,

where u, v=0. By [5, Prop. 25.3.3] we may assume |dy/0x]20 so that y is given
by a homogeneous generating function ¢. We obtain

(1.6) F(e®u) = (2n)~" j' f FOO DD+ N g(y, E)u(x, o) dx dE
= (2n)_”Q"ffeiﬂ(‘l’()”f)—(x:§>+'l’(x))a(y, Qé)u(x, Q) dx dé’

with a€S*. The critical points for the exponent are given by

_fx=0:0(0, 8
(A7) ¢= {é — V.
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which are non-degenerate. In fact, by differentiating (1.7) with y(x) as function
of x, we obtain that the determinant of the Hessian of the exponent is equal to

(1.8 [d—~0Zp(y, Y ()] = 10,0:0(», Ol10y/ox] = 0 at €.

The section (x, dy) is mapped on (y,d®) by y, where P(y(x))=y(x), since
2 &;dx; is preserved by homogeneity. The method of stationary phase gives
F®u)=€"?y, with

(1~9) ’U(y’ Q)NW(y) 27:0 ngLj(a(ya Qé)u(x’ Q))lé'—‘lﬁ'(x) s @ o,
x=0,0(y, )

where L; are differential operators of order 2j in (x,&) and w(y)#0 (see
[5, Th.7.7.1 and 7.7.6])). Since k,=1 in (1.1), v(y, @Q)=2 v;(y)¢’ satisfies (1.5)
with v+k instead of v. In fact, (1.5) is equivalent to

luj(x)] = C;(x, df (x))V—+tD,
where 7, =max(t,0). Then
| Doty ()] = Cypb(x, difp ()0 =v=D+0etD, || = 21,

Since y is a diffeomorphism, this completes the proof of the lemma.

We shall now state the result for propagation of singularities for P. Since the
surfaces are tangent at X,, their Hamilton fields are parallel. Since Z, is involutive
and Z,=nS;, the Hamiiton fields of S; are tangent to Z,, and they define the
same flow there.

Definition 1.2. The Hamilton flow on X is the union of the Hamilton flows on S;,
j=1, ..., r,.
The following is the main result of the paper.

Theorem 1.3. Assume Pc¥7, (X) satisfies (1.1)—(1.4) microlocally near weZ.

If u€D’'(X), then WF u\ WF Pu is invariant under the Hamilton flow on Z=p~1(0)
near w.

On Z, this follows from the fact that the characteristics have constant multi-
plicity, see [2, Th. 1.1]. In the next section, we shall reduce P to a first order system,
microlocally near Z,. First we shall give an example.

Example 1.4. We consider Maxwell’s equations in uniaxial crystals

gd,e—curlh =0
(1.10) udh+tcurle =0
div (¢e) = div (uh) = 0.

Here e, h are distributions with values in C? and &, ¢ are positive definite, constant
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3X3 matrices, such that &=p~V2¢u~12 has two different eigenvalues o, f=>0.
By choosing new fiber and x variables, we may assume p=Id and

e« 0 0
e=10 a O0].
008

The system (1.10) has characteristic set included in {z0}. If we skip the diver-
gence equations, which are redundant when 7540, the resulting 6X6 system has
determinant equal to

(1.11) o2 fed((2— )2 — (a1 — BN+ ED)YA),
where
Y=+ I+ 2+a1 .
Clearly, when 7270, (1.11) satisfies (1.1)—(1.4). In fact, (1.3) and (1.4) are sat-
isfied trivially. By choosing
{’10 =t~y
n; = éj’ .] = O,

as new local coordinates when t#0, we find Zn{r=0}=S,0 S, where

Sy = {no = (=1 (@™~ B~ (i +14)/2}.

These are non-radial, and tangent of order 2 at X, n{r>0}= {,=n, =n,=0}, which
is involutive of codimension 3.

2. Reduction to a first order system

We assume Pc ¥, (X) satisfies (1.1)—(1.4) microlocally near weZ,. Since
the result is local and we have invariance of the conditions, we may assume X=R".
Because Z, is involutive and I1(Z,)=X, we may choose symplectic, homogeneous

coordinates (x, £ T*R" near w€X, so that w=(0;(0, ..., 1)) and

2.1 Ty ={(x, HET*R": & =0},
where ¢=(&, £”)ERDXR"%. We may also assume
2.2 Sy = {(x, OET*R™: &, =0},

near w. In fact, X,c§; implies S,=f"1(0) with real homogeneous f={g, &,
a=0 near w. Since Z, is involutive, Hy is tangent to Z,. If we assume @, 70, then
H; is non-characteristic to {x;=0} at w. Thus we may complete f=#, to a sym-
plectic coordinate system so that #;=¢; when x,=0, j>1, and clearly 5 =0
at %,.
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Now we rename X, =f, (X3, ..., Xs))=x" and (X 41, ---» X,)=x", Since S; is
tangent to S; at Z,, we obtain

.3) S; =A{{t, x; 7, OT*RXR"Y): ©48,(1, x, &) =0},

with f; real and homogeneous of degree 1 in £, B,=0, and

(2.4) clZ o+ g = |B;— Bl = CIEHY L™, =k,

in a conical neighborhood of w. By taking k=1, we obtain
clgfFort/iEfFe = [, = CIE o+ e, j=2, ..., 1,

so f; vanishes of exactly order k,+1 at {{'=0}.

Next, we prepare P¢¥p, (X). Assume P to be given by the expansion
P+Dm-1+Ppz+..., Where p=c(P) and p;€S’. Conditions (1.3) (with ¢,=1)
and (1.4) give d/p=0 at X, when j<m,, and d™p>0, near wcZ,. Thus Mal-
grange’s preparation theorem gives, by homogeneity (see [5, Th. 7.5.5]),

m .
p=c270, Qp,;v meAT WEZ,

where 0c€S™ ™, a;¢C=(R, §) are homogeneous in ¢, a,=1 and 4;=0 at
%,, j>0. By multiplication with an elliptic pseudo-differential operator we may
assume m=m, and c=1. By Malgrange’s preparation theorem, we have (see
[5, Th. 7.5.6))

Pmy-1 = c-1p+2}"iol Bpy—j-17%, mear weZ,,
where c_;€5~! and b;6C~(R, §’) are homogeneous in £. By multiplication with
1—c_,€S8' we may assume c¢_,=0. In this way, we obtain by induction

(2.5 P=x= 37 A,,;D}, microlocally near w,

where 4;6C~(R, ¥J,) and 4,=1. Now (1.3) gives more information about A4;,
but we first have to introduce some symbol classes corresponding to the f,’s.
Let

(2.6) m(&) = 1+ [o+1(E)~k,
where (&)=(1+|¢]»'?, thus m=az1+|B;]. Put
2.7) g(dx, dg) = |dx|*+|dg PP +IE D+ PKEP at (x,8),

where p=ko/(ky+1), which gives h2=sup g/g’=(&+|&)2=1. Tt is easy to
see that g is o temperate. In fact,

&= [P+ D)+ [ =
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implies (¢£)=C{) and
(1=9)|&| = In'|+e&) = In'|+Cem),

which gives the slow variation. Since g’=h"2g=(¢)*g, the metric is ¢ temperate,
and m=~(&)~*h~%"1 is a weight for g. We shall denote by S(mh/, g) the symbol
classes in (x, &) of weight mh’/, j€Z, depending C*~ on ¢, and Op S(mh’, g) the
corresponding (classical) pseudo-differential operators. (Thus we shall suppress the
t dependence.) The reason for using these classes is that §;€5(m, g). In fact, Taylor’s
formula gives

(2‘8) ﬁ] = Z[a]=k0+1 a;é’d,
where aj¢ S~* are homogeneous in &. Thus we get
T IDEIE B = €y (B Hom (7~ bu D o101 = i

by considering the cases || 2 (£)*. Similarly, we obtain that if a(t, x, &) is homo-
geneous of degree jin ¢ and |a|=cn, then acS(n’, g). In fact, if k<j, then
a=0, otherwise a vanishes of order =j(k,+1) at Z,. This we will use together
with (1.3) to prove the following preparation result.

Lemma 2.1. Assume that P is given by (2.5) and satisfies (1.1)—(1.4) with m=m,
and S,={t=0}, near wcX,. Then A,£O0p S(n',g) and

(29) bj = e~i¢jP(ei¢ja)€S(mm°+r—mja g) nedr (to, Xo> 60)3
Jor all acS(n?', g), if @;(t, x, &) is homogeneous of degree 1 in &, (t,x,d, ,0;)€S;
near (ty, xo, &o)s (to> Xo» d,,x9;(tos %o, EN=w, and (t,x, d, 90Xy when &'=0.
Proof. First we observe that by solving
{at¢j+ﬁj(t= X, dt,x(pj) =0
(p.ilt=!o = <x’ €>9

near (y, X9, &), by Hamilton-Jacobi, we obtain ¢; satisfying the conditions in
the lemma. In fact, by Lemma 3.1 we have 9,0,.¢;=0 when & =0, and 9, ¢;=¢
at r=¢,. »Let P have symbol expansion p+p, y+p, -s+..., wWhere p=c(P)
and p;€8’. To compute (2.9) for homogeneous a, we may use the formal expansion
in Lemma A.1 and homogeneity to get

b; >~ Z’kéoLk(P, p;)a mod S,

since h=(¢)~*. Here L,(P, sp;)=s""*L,(P, ¢;) is differential operator of order
k in (¢, x), with principal symbol

G(Lk(P: (PJ))(Q’ 1") = Z’]a]=k(a:,§p)(ta X, dt,x(Pj)(Q: ﬂ)“/k!-



72 Nils Dencker

Applying this to a€S(l, g), homogeneous of degree 0 in &, (1.3) gives that
L.(P, ))=0 when k<m;, and that all coefficients of L,(P, ¢;) are bounded
by cm™~™ when k=m; (since m=m,). By homogeneity, all coefficients of
L(P, ;) arein S(m™ ¥, g) when kz=m;. Observe that this implies that p vanishes
of order m;at S;, and

9% ¢ pls,€S(mm™=1, g), ol = my,

near w. In fact, the proof of Lemma A.1 shows that the mapping (x, &)—(x, d.¢;)
preserves S(n?, g), Vi.

Now by induction we obtain that p,,
and that

vanishes of order (m;—i); at S;,

—i

(2.10) 0% ¢ Pmy—ils, €S (MM =117, g), o] = m;—i.
In fact, the term of order k in L; (P, ¢;), is equal to
21t 0% 8 Pmo-i(t; X, A1, 0,) (05 1) /!
modulo terms with coefficients on the form
(2.1 Cap [} <y, 05 05(1, X, MOL ¢ Do j (s X5 e 07)s T <1,

where (by homogeneity) m,—j—|B|+u=my—i—k. By the induction hypothesis
and (3.5), (2.11) is bounded in S(m*m™ I~ g)=S(mm~i-l*, g), which gives
(2.10). By using the expansion (A.6) for general a, we get (2.9). In order to prove
A;€0p S(m', g), we observe that when j=1, (2.10) gives

afpmo—iL:OES(mmo_i_ka g), Vi, k.

Since the symbol of P is a polynomial in 7, we obtain the result, by considering the
7 derivatives at {r=0}.

Lemma 2.2. Assume that P satisfies the conditions in Lemma 2.1. Then we can
find A, A4,€0p S(1, g), 1=, ..., i, JEN", s0 that a(A)=1 and

(2.12) P=4 H;Ll QT’ + ZI,I|<'"0 Ay ]];o=1 ?’
i;=my

microlocally near w€X,. Here Q;=D,+B;, B;¢Op S(m,g) and a(B;)=p;.

Observe that the products in (2.12) are commutative modulo lower order terms.
In fact, we obtain from (2.4) and (2.8)

(213) {qja qk} = quqk = C{k(qj""qk)'*'c{;ks ci'ikES(l, g): ka’

where ¢;=0(Q;), by considering |¢'|Zc(£)*. Changing lower order terms in Q;
only changes A, in (2.12). It is also clear that all terms in (2.12) satisfy (2.9).
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Proof. First we observe that o(P)=p= ][ ¢4, since it is 2 monic polynomial of
degree m, in 7, vanishing of order m; at 7=—f;. We shall consider the cases |£'| 2>
c{&y*, by using a partition of unity in S(1, g). When || =c (&), wefind S, g)=
S(1, g), Vk. Replacing D} by [] Q%, where 3 k;=k and k;=m;, only changes
terms of lower order in D,. Thus we only have to consider [£'|=c(&)*. Let P have
the expansion P+Pm—1+.... The result will follow if we can write Pmy—t> k=0,
in the form
(2'14) Pk = Zo'glijgmj a’I‘ Hj q;,i, a’I‘ES(la g),

I|<m,
when [&'|=c(€)". In fact, if x€S(1, g) is a cut-off function, we find that > ya* JT qz,i
may be written in the form (2.12), since h=m™2

The proof of Lemma 2.1 implies that Pmy—x Vvanishes of order (m;—k), at
{r=—8,}. Since Pm,— is polynomial in 7 of degree m,, we find

Pmo—k = 457041, Vj,
where r{ is polynomial in © of order m—(m;—k),, and satisfies
Birllee g, €S (mma—mexm=i, g) i, j,
according to (2.10). Since p,, .4/p is rational in 7, residue calculus gives
Pmo-ilP = 21§i§min(mj,k) afi(q;)~"
J

Here al,€S(1,g) in {|&'|=c(¢)*}), where it is essentially given by the 7 derivative
of order min (m;, k)—i of

g Ppy o = [[,.;q7™ at {z=—48}

Observe that, since [&'|=c(£)¥, we find g 1|t=_,,j =(B,—B;)~€S(m™", g), accord-
ing to (2.4). This proves (2.14) and the lemma.

Now it is simple to reduce (2.12) to a first order diagonal system. We shall
follow Morimoto [11]. We rename the factors by letting

‘Pk:Qj fOI‘ 2i<jmi<k§2i§jmi, 1§j§l"0.
Then we may rewrite (2.12) as
(2.15) P=P1P2---Pm°+Z[Jl<m°A’]]jEJI’J-,

with 47¢Op S(1, g).

Assume Pu=f, u€2'(R"). Let U="(up, ugy,, )= uy)5<m, Where up=u,
and wy=Fu=PF, ..Pu for J=(j,....j)eN, with 1=j=my, j#j when
ik. Then U has values in C, No=272, my![j!, and we shall construct a first
order NyXWN, system for U. First we observe that when |J|=m,, we can find
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BlcOp S(1, g) such that
(216) Bf = PIPZ o Pmo+lel<mo B'I’PI,

because of (2.13). Since there are many relations between the components of U,
we make the following choice in order to get a diagonal system. If |J|=r<my—1, we
take the largest i€Z, so that i=m, and i=j,, 1=k=r, then

(2.17) P,-uJ = uJ' Where J’ = (i, jl’ ...,jr).
If |J|=mpy—1, we take i€Z so that 1=i=m, and i%j,, 1=k=m,—1, then
218)  Puy=f+3_, Bh—ADur With J' = (i ji s fmg-1)

follows from (2.13) and (2.16). Clearly (2.17) and (2.18) form a first order Ny XN,
system for U, with principal symbol being diagonal matrix with elements t+§;=
0(Q;) (repeated several times). Summing up, we obtain the following result.

Proposition 2.3. Assume that Pe¥y, —satisfies (1.1)—(1.4). Then, by conjuga-

tion with elliptic Fourier integral operators and muwltiplication by elliptic pseudo-
differential operators, the equation Pu=f, u€ 2’(X), can be reduced to the NyXN,
system

(2.19) D,U+K(t, x,D)U = F,

microlocally near weX,. Here WF F=WF f, WF U=WF u, Ny=2"2, m, \j!, and
KeOp S(m, g) with principal symbol

(2.20) ki(t, x, &) = GPid k=1, ..M

being diagonal matrix, with real eigenvalues B,€S(m,g) homogeneous of degree 1
in &, satisfying (2.4), and B,=0.

3. The Cauchy Problem

We shall study the Cauchy problem for the Ny XN, system
P =D, Idy,+K(t, x,D,)

having the properties in Proposition 2.3. As in Section 2, we shall suppress the ¢
dependence and we shall use the notation of that section. Thus K€Op S(m, g)
has principal symbol k(z, x, &) satisfying

k is diagonizable in S(1,g), with real eigenvalues {B;};_1, ..

3.1
GD homogeneous of degree 1 in &, satisfying (2.4), and f; =0.
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Thus there exists a base of left (right) eigenvectors in S(1, g). Since their eigen-
values are C* functions, the dimension of the eigenspace corresponding to f; is con-
stant outside Z,={¢’=0}. Let =;(¢, x, £)€S(1, g) be the projection on the eigen-
vectors corresponding to the eigenvalue B; along the others when ¢’#0, and
extended by continuity. Then we have

(32) k=2’;0=1 ﬂjnjs

and k is symmetrizable with symmetrizer M=2'njn;, ie. M>0 and Mk is
symmetric.
Now we are going to solve the microlocal Cauchy problem

D,E+KE =0
(3.3) { ‘

El,_o = Idy,
microlocally near (0, (0, &), (0, &)), & =0, with E: &(R""")—~2'(R"). We shall

use Lax’ method of oscillatory solutions. In order to do that, we must solve the
eiconal equations

¢j(09 X5 11) = <x’ 11>

By Hamilton-Jacobi, this has a unique local solution, homogeneous of degree
1in 7.

for j=1,...,7.

Lemma 3.1. Let ®; solve (3.4) with {B;} satisfying the conditions in (3.1). Then
we find that @;(t, x, n)=®;(t, x, n)—{(x, n} satisfies

(3.5) 0y0; =0 when n' =0, |y|=ky, VJ.
Proof. By (2.8), the eiconal equation gives
(3.6) 0P+ 2 pymigir G % N+ @)+ di )" =0,
and ¢;(0, x,n)=0. When 5'=0 we get
0ePj+ 2 g1 G X 1+ dx0)(d 9)* = 0,

so uniqueness gives ¢@;=0 when 5'=0. By differentiating (3.6) we find that
0,0, 9;=0 when n’=0, since d, ¢;=0 then. By induction over |y|=k, we obtain
the result.

Now we define E;: &'(R""1)~>2'(R"), j=1, ..., ry, as oscillatory integrals

(3.7) Eju(t, x) = )= [ [ el @stnm=0udg (1, x, n)u(y) dy dn,

with a;€S8(1, g). Assume that g, is supported in a conical neighborhood of {r’=0}.
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By Lemma A.1 in the appendix, we get

(3.8) PE;u(t, x) = (2n)* = [ [ @ 2m=0mp (1, x, n)u(y) dy dn,
where

R; is continuous S(m'h, g)~S(m'h'*, g), Vi, j, I, and
Ljaj = D,aj+21(3§'k) (t, X, deJ-)Dxiaj-{-Mjaj,

with M;€S(1,g). In general, we cannot find homogeneous a; making b;€S™.
However, we have the following result.

Lemma 3.2. Assuming (3.1), we can find a;,cS(1,8) such that bjéS(m‘”, 2),
VN, in(3.9), j=1,...,r, and

(3.10) 2 Gili=o = 1dy,.

Proof. Let ajwa‘}-i-aj‘l—{-‘.. , where a;*¢S(m~ g). The dominant term in
(39)is

@ @, Idy, +(k(1, x, d, ¢j))a‘} =2, 9] ((B:~B) m;) aj

where @7 f=f(t, x, d, ®;), so necessarily aj€Im @ ;= ; Ker &} m,. If we take
aj=m;(0, x,n) at r=0, we obtain 3 ajl,_o=Idy. The term in S(m~",g), r=0,
in the expansion (3.9), is given by

2. 05 ((Bi—B)m)a; "+ La; "+ R a ",

since h=m™1 (¢;=0). Now &} (f;—B;)ES(m, g) is invertible modulo S(m™~, g)
according to (2.4) when j=i, since d, ®;=C(|n’|) by (3.5). Thus, it suffices to
solve successively, with suitable initial data,

(3.11) (Pir)(L;a; +R;ak™) =0, r=0,

where a}EO, and (Idy — ®7m;)a;" has been determined in the previous step.
Here R; is continuous S(n7, g)~S(m'~%, g), Vi.

Now, let {vi}€S(l,g) be a base for Im ®}m;, and consider a0},
o,€S(m™, g). (Such a base exists, since it follows from the proof of Lemma A.1
that @7 preserves the metric g.) Since m;m=0d;m;, we get

@On)m+m;0m = 6,0m Vijl,
which gives

(BFm,) BF(Om)} = 5, 9T (Om)vs— PF(On) ®f(m)v =0 Vi, j, I
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Since k=3, ((0B)m;+B;0m;), we obtain

(BFm)L; 200 = 2w
where

(G.12) Vi = Dyay+ 3, 85 (0g, B)) Do+ 2, 0,651, ©),

with yl€ S(1, g). If we introduce local g orthogonal coordinates, then 7 (0; B/ D,
transforms into a uniformly bounded C* vector field. Thus, by adding a suitable
linear combination of vj. to each column of a;" we may solve (3.11) for all 1=j=r,,
with initial data making

m r=0

nzZ,.a,-"={0 VI, at ¢=0.

r=>0

If we do this recursively for r=0, we obtain the lemma.
Now the symbolsin (), S(m~", g) are integrable in ”. We obtain new symbol
classes after integrating (3.8), according to the following lemma.

Lemma 3.3. If a(t, x,n)€(\y S(m~™,g) has support where |n'|=cly”|, and
o(t, x,n) is homogeneous of degree 1 satisfying (3.5), then

(.13) @t %, y',n") = [ OExIED a1, x, 1) €S}, 0,
where v=u(dy—1), p=ko/(ko+1), dy=codim Z,. Here Sj , , is defined by
(3.14) | DEDE.DE.DE DI b(t, X, ¥'s )| = Copy (/) HHI« +81=17"1,
Proof. If N(ky+1)=d,+]a|, we obtain
(3.15) f (1| [+ gy =*0) =N dy’
Inl=cin’i
= (Yl Ho=Dn (14| o) =N = €, )l oD,

by putting & =n'/{n”)*. This gives |8|=C{n”)’. When differentiating (3.13), the
derivatives falling on a give the right factors. The derivatives falling on the exponent
give either n” factors, or factors

1050%0% (2, X, 1)] = Crgpr (M)~17"'m,

by (3.5) and homogeneity. The #’ factors give only {#”)* factors by (3.15), and the
m factors are harmless since acS(m~", g), YN. This completes the proof.
The lemma gives

{PE,u = Quyo= [ &= p(t, x, ', n") u(y) dy dn”

3.16
( ) Z',I'E‘jult=0E u,
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where 7,€87 45 =1, ...,7. We shall compensate for these terms by adding E,:
&’ (R"1H—>2’(R") defined by

3.17 Eyu(t, x) = 2n)%—* f f "Y1 g (8, x, ¥, ) u(y) dy dn”,

with ay€S} , 5. By Lemma A.2 in the appendix, we have

(3.18)  PEu(t,x) = @uyo [ [ & ="0by(1, x, ¥, n") u(y) dy dn”,
where by€S] , 4 is given by
(3.19) by = D, a,+e PPk (2, x, &) ag(t, ¥, 2, n")]gf,(co "

if k is the full symbol of K. In the next section, we shall study this type of equation
(which is a microlocal type of pseudo-differential operator). By using Proposition 4.1,
we may solve
{bo‘i‘zr‘,go, O<I<C,
ayli=o 22 0,

(3.20)

modulo $~*. Anticipating this result, we obtain the solution to the Cauchy problem
(3.3). Naturally, this can be done with ¢ replaced by 7—s, for small s, which gives
the following

Proposition 3.4. Let K(t, x, D.)eOp S(m, g) be an NyXN, system with prin-
cipal symbol k(t, x, &) satisfying (3.1). Then the Cauchy problem for |s|<e

{D,E‘S’+K(t, % D)E® =0, t=>ys,

(3.21) E(s)lt=s o IdNO,

microlocally near (0, (0, &), (0, &)), & =0, has a solution E®: &'(R"1)-2'(R")
in the form

Z’f
E(S) = jo o EJ('S) .
Here

EP u(t, x) = 2n)' " [ [ e@xn~0.m g (1, x, ) u(y) dy dn, j=1,
®; solves (3.4), a;cS(l,g), and
EPu(t, ) = Quyo= [[ &1 ay(1, x, ¥/, n") u(3) dy d’,
where ay€ Sy, o, v=0(dy—1), p=ko/(ko+1), dy=codim Z,.
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4. The micro-local pseudo-differential operator

We are going to study the system
i(D ’D ) ’ Il _ ~ 7 ”
@y [DIRIRE  O10 2y, 2R B, 10
SO, x, 2, 1") = fo(x, 2, n"),
modulo §~=, where fy, r€S} ,, have values in C%, and kc€S(m,g) is NyXN,
system (see Section 3). By Lemma A.2 in the appendix, we have r€Sj , o if f€S] , -

We shall also assume that k is symmetrizable, i.e. 3 symmetric NyXN, system
M, x, £)€S(, g) such that O<c=M and Mk-—-(Mk)*€S(1, g).

Proposition 4.1. Assume that k(t, x, )€S(m, g) is a symmetrizable NyXN,
system. Then, for every fy, r€S) ,,, the equation (4.1) has a solution f€Sj ,, in
a conical neighborhood of (0, 0, (0, 7g))€ RXR* =2 T*R"~%,

Proof. We shall solve (4.1) by iteration, modulo S77%, u=k/(ks+1)<1. By

Lemma A.2, we have

(4.2) PPk (t, x, ) f (8, ¥, 2/, n”)|£=x

=(6,1")
o 1(Dyf, D§'>k(t, x, é/’ ﬂ”)f(t, y;’ x//’ Z,, n;/)l{ o= k(t, x, Dx’) ﬂ”)f(t, X, Z’, 11//),

=3

modulo terms in S}_},. Also, we may assume k supported where [£—(0, n”)|<&(n")
and |t|<c. By cutting off, we may assume k, f supported where (n”)={nyy, and
Jo, ¥ having compact support. Put A={n;)"*=1, and let

4.3) w = (x", A7/, Aley”).
Then (4.1) becomes, by (4.2),
44 {D,f(t, X, WYk, (t, X', w, D) f(t, X', w) = #(t, X', w), t=>0,
S0, X', w) = fo(x', w),
mod S(AM—"e, )-2|dx’|2+ [dw|?), where f,, re S(A~Y/*, A~2|dx’|>+|dw[?), and
ka€ S(1+1& o+t Ao+, {dxf2 4 [dwi+-|dE P/(A~ 1 +1ET)?).

Clearly, we may assume v=0. If we make the symplectic dilation

y =2"1x’
4.5) {11 =,
then it suffices to solve the system A

(4.6) {D‘f(t’ s W+k,(t, v, w, D) f(t, y, W) = r(t, y, w), >0,

fO, y,w) = fo(y, w),
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modulo S(4, |dwl>+dy|?), where k,(t, v, w, €S ('™, g,),
g, = A2|dy|2+|dw|2+|dn|2/(n)?,

and f,, r€S(, jdw|®>+1{dy|?>) uniformly in A. By assumption, there exists a sym-
metric NoXN, system O<c=M,(t, y, w,n)€S(, g;), such that Mk, is sym-
metric modulo S(1, g;). To complete the proof we need to solve (4.6) with
J€S(1, |aw|*+|dy|®) uniformly in A. Going back, we obtain a solution in §j , 4 to
(4.1) modulo 5375

Choose a partition of unity {x;(y, w)}€S(1, |[dw|*+|dy|?), such that there is
a fixed bound of the diameter of the supports of x;, and on the number of over-
lapping supports. Replacing f;, r with x; fy, x;r, and translating in y, it suffices
to solve (4.6) with f€% uniformly, when f,, r€Cy uniformly with fixed support.
Since

A7k, (1, s wy )=k, (8, 0, w, )ES(YmFett gn), 2=1,

uniformly, we can replace k,(z,y,w, D,) by k,(t, w, D))=k,(t,0,w, D;) in the
system (4.6). By taking M, (s, w, n)=M,(t, 0, w, ) we obtain that M,k, is sym-
metric, mod S(1, g;,).

Now taking the Fourier transform with respect to y in (4.6), we want to solve

{D,f(f, 0, Wy +k, (6w, f(e n, w) = F(t,n, w), =0,
f(o’ ’79 W) :fo(ﬂa W)

The unique temperate solution to (4.7) is given by

@8  Jm,w) = Futn,w) (ol wy+i [ E s, n, w)F(s,m, wyds),

4.7

if F,(z,n, w) is temperate solution to
{DtF)'.(ta n, W)+k}.(t’ W, n)F}.(t’ 1, W) =0, =0,
F,(0, n, w) = Idy,.

Thus the proof is completed by showing that ¢ uniformly, which is done in
the following

Lemma 4.2, Let F, satisfy (4.9). Then the mapping XL 3(fo, r)—=f€S de-
fined by (4.8) is continuous, uniformly with respect to A.

(4.9)

Proof. Since Fourier transformation and integration are continuous in &, it
remains only to prove that multiplication with F;** is uniformly continuous. This
will follow from

(4.10)  O=c=|F(tnwi=C
@11) |\ DIDDEF, (1,1, W] = C jap () + 0G4 D+l
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To prove (4.10), we let

"’U";_ = <Mlv3 6)1 'DECNG’
then

4.12) c=|iE=C
uniformly. We obtain by (4.9) and (4.12)

010131 = K@, M) Fyv, Evy—i{M;k; Fyo, Eoy+i(M,Fyv, k,Ev)| = ClFol3,
so Gronwall’s Iemma gives (4.10) by (4.12), since Fjl¢=o=Idy,. By differentiating
(4.9), we get

) o
DL etk w0 == 2 (1) (3) (6) cor-p-me e
Ef]alt:ﬂ = D;Dv‘;l}!t=03

where Ff, =D]D;D!F,,;=—k and I},,=[D,, I;]-Tik is defined recursively.
Thus [I}]=C;({xY%*Y, and

oL =B 2 (1) (3) () oi-ips-mt -k
where the sum is taken over i+|6+y|<j+|a+-f|. Since

c<">k° if Iﬂl >0
Jinx NA
|D; D5, Dykey (2, w, )| = {c(ny‘o"" if 1Al =0,

we get (4.11) by induction. This completes the proof.

(4.13)

Remark 4.3. The argument above shows that the unique f€ solving (4.7) with
Jo» T€S, gives a continuous map B™XB™-B*, uniformly in 1. Here B™ is the
set of C* functions having L™ bounds on all derivatives.

This follows easily by writing (4.8) as an oscillatory integral and integrating by
parts, using (4.11). In fact, it suffices to estimate

f &*=rNa(y, ) dy dn
where, according to (4.11),
ID3DEa(y, n)| = Cp(nr+101bo,

and the constants depend on the B> seminorms of f;, r and the seminorms of F,.
Integration by parts gives a convergent integral and the desired estimate.
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5. The propagation of singularities

In this section, we shall construct a microlocal parametrix for the NyXN,
system P=D,Idy +K(, x, D,), where KcOp S(m,g) has principal symbol k
satisfying (3.1), and study the propagation of singularities. This will be done by
using Duhamel’s principle and the parametrix for the Cauchy problem constructed
by Proposition 3.4.

As before, it suffices to consider w=(0, 0, 55)€Z,. Let g, be the restriction to
{t=s} and @€S?, have support in a conical neighborhood of w, such that
w¢WF (p—1) and N*{t=s5}nWF ¢ =0, Vs, where N* is the conormal bundle.
Then the composition g,o0¢ is well defined, and we put

(5.1 Ef = ft_eE(‘)ogsoqpfds, fe ' R,

tc€]—e, e[, where E® is the solution to (3.21) for sufficiently small ¢>0. Then E
is a microlocal parametrix near w, since

PEf=E%Yo g,o<pf+fr_g (PE®)op,0pfds = ¢f modC™.

We shall study the singularities of this parametrix. Recall that X'=U}., S;,
where S; are non-radial hypersurfaces. Let C;cS;XS; be the forward (in 7) Ha-
milton flow on §;, j=1, ...,r,, and 4* the diagonal in T*R"XT*R"

Proposition 5.1. Let P=D,+K (¢, x, D,) be an Ny X N, system, with K¢ Op S(m, g)
having principal symbol k satisfying (3.1). If E is the parametrix for P defined by
(5.1), then WF’ Ec(U}., C;)vu4*, microlocally near (w, w)€Z;XZ,.

Proof. We have WF (g,9f)=n(WF (o)), Where =n: (f, x; 1, &)~(1, x, &)
is the projection. Thus, it suffices to show

(5.2) WE (ED fless © U, Cio8 T (WE ), fo€2'(R™),

where ¥: TX R">T*R"-! is the dual to the inclusion of R~ as the surface
{t=s} in R Now, (5.2) holds for E}‘) Jo» j=0, since @; solves (3.4). It is clear that

WE (E® fo)l»s © Coolt (WE£,), foeD’ (R™Y),

where CocZyXZ, is the set of (wy, w,) such that wy and w, are in the same leaf of
%, and #(w))>1(w;). Thus it suffices to prove that E®cC>= microlocally near
(#, x, (0, m5), 2, (0, 7)) when x’z’. By translation we may assume s=0.

Now applying P to E® we obtain by (3.17)—(3.20) and Lemma A.2 in the
appendix

53 {Dta0+ei<D"'Dg')k(ta X, 6’3 n,,)ao(ts J", x”a Z', ﬂ”)l{':O = ROaO, t > O’
=9,
©-3) 250, x, 2/, n") = 0, 7
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mod S$~*, microlocally when [x’—z’'|=e>0, Ve=>0. Here R,: S‘l’,mo—»S};‘o, Y,
and k is the full symbol of K. (This follows since (5.2) holds for E{, j>0.) Also,
(5.3) is determined mod S—* by the restriction of a, to {|y’—z’|>¢/2}, and k to
{I¢'I=C{")}. We shall prove q,€S~= in {x"#z’}, by showing that @57, ,=
a€ Sy MR, Vv, there.

Thus assume @y€Sj , o near (f, Xo, Zg, flg), |Xo—2ol=@=>0. By translation
and localization, we may assume x;=0, @,€S} ,, supported where {n”)=(1q),
and k supported where |&|=C{u"Y=C{;). Let A=(n;)*, and make the change
of variables (4.3) and (4.5). Then a,(, y, W)ES(A™"", &), k(1, y, w, )€ S({n)or, g3),
where e is equal to the euclidean metric and we may assume v=0. Clearly |w|>
@A~ Observe that (5.3) holds mod S('¥, e), VN, when |y]=|A"1x'|<gi™Y/2.
Choose &(s5)€Cy (R), such that @(s)=1 when [s|=1/2, &(5)=0 when [s|>1,
and put

X, w) = P(44|y*/@*+CA|wDES (1, Aldyl*+|dw]?).

Then by=2A""2yq, satisfies

Dby+ko(t, w,D))by =1, O<t=<g,

bole=0 = 7o,

(5.4) {

where Ko (t, w, n)=Kk(t,0, w,n), and r;€Cy are uniformly bounded in B>. In
fact, ya,cS(A", e), VN, at t=0. Also, the calculus gives

27121k (t, w, D,), x1€Op S((n)*, &),
/1_1/2?((1%(@ ys w, Dy)_ko(ta w, Dy))EOp S(<">k°+19 gz)a

where g, =A|dy|2+|dw|2+|dn|?/{n)?. Then Remark 4.3 gives that b, is uniformly
in B=, 0=t<e¢. Thus ya,€S(A2, e), and since this is uniform in / when |x"—z’|=
0=>0, we obtain the proposition.

and

Proof of Theorem 1.3. As mentioned before, we only have to consider weZ,.
By Proposition 2.3 it suffices to prove the propagation of singularities for the system
P=D,Idy +K(t, x, D) satisfying (3.1). The adjoint P* satisfies the same con-
ditions, so by Proposition 5.1 we can construct a parametrix E for P* such that
WEF Ec(u C;)u 4*, microlocally near (w, w)€2,XZ,. Cutting off, we may
assume u€é&’ and weX,\WF Pu. Then u=E* Pu modulo C~, and since we may
change ¢t to —t, this gives the result.
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Appendix. Some calculus lemmas
We are going to study the composition of conormal distributions having non=
standard symbols. Let a,(x, D)e2’'(R*XR" be given by
(A1) a,(x, D)u(x) = 2r)~" [ x=rm+eCDa(x, myu(y)dy di,

ucCy (R"), where acS(m, g), ¢(x, n)eC=(T*R"\0) is homogeneous of degree 1
in the % variables and satisfies (3.5). Here g, m are defined by (2.6)—(2.7). The com-
position with p(x, D) is given by

(A2 p(xD)ay(x, Dyu(x) = )™ [ [ itx=n+0-rm+e0:m p(x, &)

Xa(y, Nu(z) dz dn dy d¢ = by(x, D)yu(x),
if p, a€%, where

(A3) b(x,n) = @n)~™" [ e~ p(x, Ea(y, ) dy dE
and E=(y—x, {~m—o(y,n)+o(x, n)=(y—x, 8—n), if we put
(A9) 0=¢—f : 3,0(x+s(y~x), 1) ds.

Now yx: (x, &y, n)—~(x, 0; y,n) is a diffeomorphism. Thus if we let
f(x, 05y, 1) = p(x, O)a(y, ),

we obtain

(A5) b(x, n) = P»P f(x, 0; y, n)lg:;

. 140, 9| _ . .
since m =1. This can be extended to general symbols by the following

Lemma A.l. Assume @(x, n)€C=(T*R™\0) is homogeneous of degree 1 in the
1 variables and satisfies (3.5). If acS(n#, g), k€Z, has support in a sufficiently small
conical neighborhood of {5’ =0} and p€S(m,g), then the composition is given by
(A.2) where BES(m**Y, g) satisfies (A.5), and has the expansion

(A6) b(x,m) = 37 (i(Dy, D,—(36/0¥) D)) p(x, O a(y, Ml
modulo S(m**1hY, g), with 0 given by (A.4).

Proof. If ¢=0 then (A.5)—(A.6) follows from the Weyl calculus, since
g(t, —71)=g(t,7) (see Th. 18.5.4 and 18.5.10 in [5]). Now p(x, &)a(y, m€S(M, G)
where M, m)=m(E)m*(n) is a weight for G=g, .(dx, d{)+g,, ,(dy, dn). Thus,
if we can prove that x*S(M,G)=S(M, ), then we would obtain (A.6) since
0:1=(0,1d;0,0) and 9,x=(0, 36/dy;1d, 0). Now we only have to consider the
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case when
A7) |0 —nl = e(}6]* +In*),

since otherwise we may integrate by parts with respect to y in (A.3) to obtain
beS~=. Infact, (3.5) gives |0—¢|=¢ln’|, when 5 is in a small conical neighborhood
of {#" =0}, and for small ¢ we find |0]*+|n[*=c(¢|*+|n|*). When (A.7) holds for
small &, we obtain

le = (@Y +0 D+ M) =c.
This gives [{0)— (&)l =oln'|=Co(B), and

Oy +101 = C(EP+1E1+ " (P +1n'D) = C(EYF+1E1+ " (8 +(6D)-

For small ¢ we find (8)*+|0'|=C((&)*+1&]), and similarly (€Y +(&|=C(8)"*+
[6]). Since m(&)xh*~1(E)(E) "%, we have y*M=~M for # in a small conical
neighborhood of {#'=0}. Clearly, 86/dn”=0((|nl/In])*?), 06/on’=0(1) and
00/0x=0(n']), so x*Ga~G in a small conical neighborhood of {r'=0}. Thus by
Lemma 8.2 in [4] we obtain x*S(M, G)=S(M, G) if

(A8) Gx(w)(x(k) (W; tl, [ERT) tk)) = Ck ]] :‘=1 Gx(w) (X'(W, ti))
for k>1, where ¥* is the k:th differential. This means that
105070%6”(x, 3, M = CopyCy~ 1" (G + 1)t~ 141
105059%0” (x, ¥, Ml = Copy =¥ () + I 1) 17,

for |aj+]B]+|y|=1, where 4 is given by (A.4). Since 8 is homogeneous of degree 1,
the second inequality follows from ()~ 1=2({)*+|n’l)~1. Similarly, we get the
first when |f’|>0, and otherwise

Ia;ag’:’ai 0,(3(, ”)l = Caﬂ"y Iﬂ,l<’1>—m"|9

according to (3.5), which proves (A.9) and the lemma.
Next, let Sj,, be the symbol classes defined by (3.14), p=ky/(ko+1),
v=u(dy—1) and dy=codim Z,. For a€Sj , , we define a(x, D")€2’(R"XR") by

(A.9) {

(A.].O) a(x, D")u(x) = (2n)’°-"ff ei<x"'-y".'l">a(x, y” rl”)u(y) dy dn”,
u€Cy (R". If p, ac, then the composition is given by
(A.11)  p(x,D)a(x, D")u(x) = 2r)yo=> [ [ a0+t~ p(x, &)

Xa(y, ', 4yu(z) dz dn” dy d¢ = b(x, D")u(x)
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where
(A12)  b(x, 2, n") = Qo) [[ 2= Omp(x, Oa(y, 2/, n") dy dé

= ¢iPyDp p(x, EYaly, 2/, 1" )y= .
» P2 p(x, a(y W)!%’::(co’q,,)

For more general symbols we obtain the following lemma.

Lemma A.2. If p€S(m, g) and a€Sy ,,, then the composition is given by (A.11)
where beS] , o satisfies (A.12) and

(A.13) b(x, 2/, 5”) = P> p(x, &, na(y’, x7, 2, n”)lﬁ;:g, +Ra,

where R: S, o—Si L, is continuous. Also, b and Ra are determined modulo S~

by the restriction of a to {|y—x|<e}, and p to {{& -0, n")l<e{n")}, Ve=0.

Proof. Let

G gy, = 1AX2+1AE [BAEY +IE 2 +1dEBIEN?
+ 1Ay’ B+ | dy" 2+ d2 [ P+ dn P )
and A(x, &, y, 2, n")={(p, ). Then the dual metric is given by
G ey ny (05 dE, Ay, 0) = |dE'12/{n" Y +|dE” 12+ 1dy P(EY +1E 1)+ dy"*(E),

and equal to oo otherwise. We have p(x, §a(y, z/,n")ES(M,G) where
ME, n")=m(&){n”Y. In the following we shall suppress the z” variables, which are
not important.

Now, G is slowly varying, G=G4 at A={{=(0,n")Ay=x} and G is 4 tem-
perate with respect to 4, i.e.

G(x¥§:Yy"”) = CG(x’(Or't")sxv””)(l +Gl(4x:§syx’f”) (0’ é_(o’ n”)’ y—x’ 0))N'

This follows since

WPHEP+IED+0IKE) = CA+IE" =",

and similarly M is 4, G temperate with respect to 4, since

M(E n)M©0, 1), 1) = 1+(|&1/Ey )+

[ETEW = (1€1/ "YW EY = CA+IE "+ —n"])>

By Theorem 18.4.10" in [5] we obtain that b€Sy , o satisfies (A.12).
In order to prove (A.13), we observe that

and

&0y Dy = (D), Dot 6 @i{Dym Dgry |
If A%(x, & 3, 1")=(¥", &") we obtain
GA"(O’ dé”, 0, dy", 0) =G4 (O, df”, 0, dy”, O),
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and equal to +<c otherwise. We have G={n")"2G4" at A"={"=n"Ay"=x"
and G is A” temperate with respect to 4”, since

(L& W IEDICE +IE DL nWIKEY = CA+|E"—=n").
Similarly, M is A”, G temperate with respect to 4”, so Theorem 18.4.11 in [5] gives

¢ = ei®y2e p(x, &) a(y, n”") €S (M, G),

where G, M are the restrictions of G, M to A”. Here c=p(x, &)a(y, n")|,» modulo
S(M,, G), where I :M(;{’)*l,
If A,(x’ éa Y, ’1”):<y,, €’>, we get

G# (0, d¢’, dy’,0) = G40, d¢’, dy’, )|y,

and equal to -+ otherwise. Then (=G4 at A'={¢’=0A)"=x'} in 4”, and
G is clearly A’ temperate with respect to A”, since it is the restriction of an A tem-
perate metric. Similarly, M is 4’, G temperate with respect to 4’, since it is the
restriction of an 4, G temperate weight. As before, we obtain that

b(x,n") = Py Prc(x, &, ¥, n") 4 €S53 40
satisfies (A.13), since
Gla = Gly ~ |dxE{n" ¥ +|dx" |+ |dz'[2 (g ) + |dn " 12/ {n" ).

Outside the support of the integrand in (A.12), the symbol decays as any power of
the G4 distance to the support (see [5, Section 18.4]). Thus, the last statement fol-
lows from the fact that

G4(y=x, E=(0, ") = |y—xI*(n"y+1E—(0, n")|*n "),
at (x, (0,%”), x,n”), where O<pu<1. This completes the proof of the lemma.
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