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Introduction 

A partial differential operator with constant coefficients is said to be elliptic 
(hypoelliptic) if it has a fundamental solution which is real analytic (infinitely dif- 
ferentiable) outside the origin. It is said to be hyperbolic if it has a fundamental 
solution which vanishes outside some proper cone with vertex at the origin. These 
classes of  operators are well known and their properties have been studied in some 
detail (see e.g. H t rmander  [5] and Atiyah -Bott--Ggtrding [2]). We shall here make 
a detailed study of  a class of  operators called hybrid or hyperbolic-elliptic operators, 
defined by having fundamental solutions that are analytic outside proper cones 
with vertices at the origin. Like the elliptic and hyperbolic operators these hybrids 
have principal parts in the same class and weaker lower order terms are the only 
lower order terms that can be added to a hybrid operator without destroying its 
character. The hybrids between the hypoelliptic and hyperbolic operators, char- 
acterized algebraically by Shirota [9], do not share these simple properties. 
For  them, as for the hypoelliptic operators, the principal part is not a rele- 
vant concept. 

I shall now list the main results. First some notation and definitions. Points 
in R ~ will usually be denoted by 4, 17 while points in R will be denoted by s, t. When 
P ( O  is a polynomial, P ( D ) ,  D = ( O / i O x l  . . . .  , O/iOxn), denotes the associated dif- 
ferential operator. Homogeneous polynomials will be denoted by a. The class of 
hybrid or hyperbolic-elliptic operators having fundamental solutions analytic out- 
side proper cones with vertices at the origin, on which x = 0  or (x, 0 ) > 0  will be 
denoted by he (0). The subclass of homogeneous elements in he (0) is called He (0). 
Both these classes can be characterized algebraically. The results, parallell to those 
of  the hyperbolic classes Hyp (0) and hyp (0), run as follows: 
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(i) aEHe (0) if and only if there is a number c>O such that 

4, t real, O <  I t  < c ] ~ [ = ~ a ( ~ - i t 0 ) ~ 0  

(ii) PEhe (0) if and only if Pm(O)r Pm being the principal part of P, and 
there are numbers cl, c~ >0  such that 

4, t real, cl < t < c~l~l =,P(~--itO) ~ O. 

The connection between these two classes is given by the following statement 
that generalizes a theorem by S. Leif Svensson [8] for hyperbolic operators: 

(iii) PE he (0) ,~ Pm E He (0) and P ~( pro. 

Here Pm is the principal part of P and P~(Pm means that P is weaker than Pm in 
the sense of H6rmander [5]. 

As a corollary we get 

(iv) he (0) = he (-- 0). 

Replacing c in (i) and c2 in (ii) by oo we get the definitions of the classes Hyp (0) 
and hyp (0). The statements corresponding to (iii) and (iv) are, for these classes, 
well known. 

To describe the singular support of the fundamental solution of a hybrid operator 
we start by recalling some fundamental facts from the hyperbolic case. 

Let aEHyp (0) and let A denote the real hypersurface a ( r  Further let 
F(A, O) be the component of R " - A  containing 0. Then F(A, O) is an open convex 
cone and aEHyp (7) for every qEF(A, 0). The dual 

K(A, 0) - {x; (x, q'~ ~ 0VnEF(A, 0)} of  F(A, O) 

is called the propagation cone. 
Let PEhyp (0) have principal part a. Then P(D) has a fundamental solution 

E(P, O, x) with support in K(A, 0). Furthermore if P=a+b one has the formula 

E(.P, O, x) = .~o (-- 1)kb(D)t'E(ak+l,0,x), 

connecting the fundamental solution of  P with those of  the powers of  a. 
The singular support of E(P, O, x) can be described by introducing the localiza- 

tions ag of a. They are the first nonvanishing coefficients of  the expansions 

a(~ +t~) = tPar t ~ O. 

It turns out that a~EHyp (0) and F(Ar O)~F(A, O) for all CER". Also 

r(A, 0 ) =  N r(A~,0). 
O ~ R  n 
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The corresponding union 

W(A, 0) = O K(Ar 0) 
O# ~ ER'* 

is called the wave front surface. This is a closed subset of  K(A, O) containing the 
boundary of K(A, 0), and the fundamental solution E(P, O, x) is analytic outside 
w(A, 0). 

In the hybrid case there are corresponding statements. I f  a is the principal part  
of  P then 

PEhe(O), ~real # 0=~ acEHyp(O) 

and PEhe (r/) for each r/ in the intersection 

r ( A , O =  N r(Aoo). 
O # ~ E R  n 

The corresponding wave front surface is 

W(A, 0) : U K(A~, 0). 
O ~ E R  n 

The difference with the hyperbolic case is that the cone F (A, 0) is in general smaller 
than the component  of  the complement of  A containing 0. Correspondingly, the 
wave front surface does not bound its convex hull. If, e.g., a ( 0 = r  
0=(1 ,  1 . . . .  ,1)  and m > l  is odd, then aEHe  (0) and F(A, O) turns out to be the 
intersection of all the half-spaces qj +qk >0,  j #k .  The closure of  F (A, 0) then inter- 
sects A only at the origin. The wave front surface consists of  all x =  (xl . . . .  , xn) 
of  the form x~ = ~ - 1  where a (4) - 0 and has only the points (0, .. . ,  1, 0 . . . . .  1, 0, .. . ,  0) 
in common with the boundary of its convex hull. The special case r n = n = 3  was 
treated by Zeilon [9] and we give some other examples of  hybrid operators in sec- 
tion 2. 

Precisely as for hyperbolic operators, the interest in the wave front surface 
comes from the following statement. 

(v) I f  PEhe (0), P(D) has a fundamental solution which is analytic outside the 
wave front surface. 

For  second order hyperbolic operators, this is of  course classical. Zeilon [9] had 
it in the case he considered, A t i y a h B o t t - - G g t r d i n g  [2] proved it for hyperbolic op- 
erators and K. G. Andersson [1] proved it in a general case that comprises ours. 

Finally I would like to thank prof. Lars G~trding who introduced me to the 
subject which led to this paper  and who has given me much help and valuable advice 

as the work progressed. 
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1. Algebraic properties of hybrid polynomials 

We start by deriving necessary conditions for an operator P(D)  to have a fun- 
damental solution that is analytic outside a proper closed cone. By proper we mean 
that it does not contain any straight lines. 

Lemma L1. Suppose that P (D)  has a fundamental  solution which is analytic 
outside a proper closed cone K with vertex at the origin. Then there are positive locally 
bounded functions c o (rl), cl (rl) defined in the dual cone F = {17; (x, rl) > 0 V x E K -  {0}} 

o f  K such that: 

~, t real, ~IEF, Co0/) log (2+1~1) < t < ex0/)[~[ =" P(~- i t~ l )  # O. 

Proof. Denote the fundamental solution by E and let uEC *~ be a solution of  

P(D)u=O.  
Choose a cut-off function 9 E C  o such that q~(x)=l if ]x]<R and q~(x)=0 if 

Ix] > R  + 1, where R is a fixed constant. 
We have 

u(x)  = P ( D ) E . u ( x )  = P ( D ) ( q ~ E ) . u ( x ) q  

+ P(D)  ((1 - q~) E)  �9 u (x) = P ( h )  ((l - q~) E)  �9 u (x), 

since P (D) u = 0. Further, supp P (D) ((1 -- ~) E) c {x; R < ]x[ < R + 1 }. 
Put K~= {xERn; d(x,  K ) < , }  where d denotes the Euclidean distance and let 

be a C = function equal to 1 in K, and 0 outside K2~. 
Introduce for simplicity the following notation 

F1 = r  "q~)E) ,  F2 = ( 1 - ~ k ) P ( D ) ( ( 1 - - 9 ) E ) .  

/ / z. 

Figure 1. 

The supports of  F1 and F2 intersect in the shaded areas. 
According to the above we have 

u(x) = F~ , u(x) + F , ,  u(x) 
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which implies 
D~u(O) = F1 .  D'u(O) + D'F2*u(O). (1.1) 

To obtain the condition in the lemma we shall choose u as an exponential 
solution d <x'O, P(~)=0  and estimate the right hand side of (1.1). 

To estimate the first term let A be a compact subset of  F. By choosing e small, 
we can find a compact neighbourhood o of  supp F1 such that 

h (r/) = sup (x, r/) 
xE(O 

has a negative upper bound in - A .  
Let zEC ~176 be equal to 1 in a neighbourhood of supp F1 and 0 outside co. Then, 

if m denotes the degree of P and M the order of  E on co, we have 

F~ (v) = F 1 (Zv) = g ( ( 1  - -  ~o) P ( -  D )  (OZv)),  
implying 

IFx (v)[ =< C Zip  aM+,, (sup ID a q~[ + sup [D p ~kl). Z al aM+ m sup I Davl. 
o) 

Here C is independent of ~o and ~p. Using this we get the following estimate for 
the first term in (1.1): 

IFl Cc Dau(O)I = IF~(D'u(-y))] ~_ 

~_ C~',FalaM+,, , (sup IDQo[ + sup IDa ~kl), [C'l (1 + [C[)M+me h(Im~). (1.2) 

Here and in the sequel C denotes various constants independent of  a. To estimate 
the second term in (1.1) we shall use the analyticity of  E outside K. We then need 
to control the derivatives of ~o and ff so we choose ~o = ~oN, ~k = ~k N depending on N, 
such that 

sup [D~q~N[ + sup [DamON[ ~ Clal+lN lal (1.3) 

when [~I_~N. That  this is possible will be proved later. On compact parts of R " - K ,  E 
satisfies 

IO~,E(y)J <= Cl~,l+J 1~1% 

and this combined with (1.3), with N replaced by N-t-m, and Leibniz' formula 
gives 

[O'F2(Y)l <- Cle~l+m+X(N--Fm) Ial+" if  I=l --< N, 

and from this we get 

]D~Fa*u(O)[ ~_ Cl~'t+m+l(N+m)l~l+me ~lxm{I (1.4) 

if [7[<--N. Combining (1.1), (1.2), (1.3) and (1.4) for suitable ~ with [~[=N, we get 

ICI ~ <- C ( N + m )  M + m [fflN(1 + [~[)M + rn eh(Img) -I- c N  + m + l ( N"l -  m ) N  + rn e cllmgl. 
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We now choose N=[]~[/Coe]-m and get when I~l is large 

1 <= C(1 + [~l)zM+~me h(ImO q- C(1 + [~l)m+le ctIm; -cqr 

Putting ~=~--itrh [4 large, r/EA (to make h ( - r / )< :0 ) ,  we see that  this inequality 
in violated if 

c o l o g ( 2 + ' ~ l )  < t -< Cal~l 

provided that  co and el are properly chosen. 
This last inequality contains, after a further choice of  c o, the condit ion that  

be large so the lemma is proved apart  f rom the verification of  (1.3). We formulate  
this as a separate lemma. 

Lemma 1.2. Let A be a subset of  R". Put Ao = {x E R"; d(x, A) < 6} and let O< 6a < &. 
be given numbers. Then for each N there exists a function q~u E Co (Aa) such that 

1. qJN(x) = 1 when xEA~I, 

2. [a[ - N: :*  sup ID~oN] <= CI~I+IN I~ , 

where C is a number independent of  ~ and N. 

Proof. Choose  q~ECo~(ix]<l)  with q~(x)-_>0, f~o(x)dx=l. With ~pj(x)= 
=j"q~(jx) we put  

~ON = ~o2- ~02u * ... * ~o2N. 

N f a c t o r  s ' 

Then ~NE Co ([x[ < l ), f~bn(x)dx=I and r is non-negative. Letting at most  one 
derivative fall on each o f  the N last factors and no derivative on q~2, we get 

D=~kN(x)I ~_ sup ~%. (2N)'=' ( sup f I~or dx) '=' 
I#1 = 1  

i.e. [D~O~(x)[ N CI=I+INI=t when [c~] <- N. 
N o w  let 6 be a number  satisfying a <a<a= and let Z be the funct ion equal 

to one on Aa and equal to zero elsewhere. With  O}(x)=e-"O~(x/e ) we put  

Then one easily checks that  if e is fixed, e < 6 -  61, e < 6 z -  6, ~pu = 9~v has the required 
properties. 

Next we shall eliminate the logari thm occurring in lemma 1.1. 

Lemma 1.3. Let 1" be an open cone and let Co01), c~01) be two positive locally 
bounded functions defined in 1". Assume that the polynomial P satisfies the condition 

4, t real; ~I E r ,  co(q) log(2+[~l )  -< t -< c101)[{ [ :=* P({ - io?)  # O. 



Hybrids between hvoerbolic and elliptic differential operators with constant coefficients 215 

Then there exist two positive locally bounded functions e o 01) and c~ (q) defined in f 
such that 

4, t real, qE F, e0(q) < t < c~(q)14 ] =- P(4- i tq )  ~ O. 

Proof A subset o f  R" is said to be algebraic if it is defined b y  a finite numbei  
o f  polynomial  equalities or  inequalities. Finite unions o f  algebraic sets are called 
semi-algebraic. Let M be a semi-algebraic subset o f  F and let e be a real number. 

According to a theorem of  Seidenberg and Tarski, (see H 6 r m a n d e r  [5] appendix) 

we are allowed to use the symbols V and ~ in the defining relations o f  a set with- 
out  destroying its semi-algebraic character. Thus it follows that  the set 

B, = {s; P(4--itq) ~ 0V~, t, r/; 14[ = r, r /EM, s < t < cr} 

is semi-algebraic. 

As in H6rmander  [5] appendix, we conclude that  there are numbers a and b 
such that  

inf  s = arb(l+o(1)) as r ~ r  (1.5) 
sE B. 

provided that  B, is non-empty  and we allow a to be - ~ .  

The assumptions imply that  B, ~ 0 if  e is chosen properly. Since s =  C log r is 
in B, for  large r and suitable C we must  have a ~ 0  or  b-~0 in (1.5) which implies 
the lemma. 

Lemma 1.4. Suppose that the polynomial P satisfies the following condition: 
There is an open cone 1" and two positive locally bounded functions Co and el 

defined in F such that 

4, t real, flEE, Co(r/) < t < Cl(q) ]41  ~ P(~--itq) ~ O. (1.6) 

Then it follows that P,,Ol)r for all qEF, where Pm denotes the principal part of P. 

Proof Assume that  Pm (r / )=0 for some ~/~ F. We exclude the trivial case when 
P is a constant and consider the function t ~ P ( 4 - t q )  (4 not  necessarily real). 

Case 1. P(4-t~I)=P(4)V4, t. Choose 40 with P (4o)=0 .  We have 

0 = P(4o - tr/) = e ( R e  4 o -  R e  t ~ / -  i Im  t(n - I m  ~ 0 / I m  t)) .  

This clearly contradicts (1.6) if Re t, Im t and Re t/Im t are large enough. 

Case 2. P(~- tq)=Q(~) tV+R(r  t) where v<m, Q~O and R(4, t) has degree 
less than v in t. 

a) Q not  constant.  

Then take 40, 4~ with Q(4o)=0  but  Q(~o+S~O~O. This implies that  there is a 
roo t  t = # ( s )  o f  P(4o+s4~--tq) such that  ]#(s) ~ as s ~ 0 .  A Puiseux expansion 
of  # ( s )  then shows that  #(s)=as-b(1 +O(1)) when s ~ 0 ,  where a ~ 0  and b > 0 .  
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From this we see that for given e>0,  we can find a straight line through the 
origin in the complex plane such that when s is restricted to this line we have Im # ( s )<  
< e  [Re ~t(s)] and I m / ~ ( s ) ~ o  as s~0 .  

Combining this with O-=P(r162 - 
- i l m  p(s ) (~ / - Im ~o/Im # ( s ) - - Im  sr #(s)),  we get a contradiction to (1.6). 

b) Q (~) = c is constant. 
Choose 4o with P,,(~o)~0 and let /~x(S) . . . . .  pv(s) denote the roots of 

e (s~0 - tr/) = 0. 
We h a v e / / ~  #i (s) = ( -  1 ) ' /c .  P (S~o) and since by assumption v < m and P (s~o) 

has degree m is s, at least one of the roots, say pl(s),  must have a Puiseux expansion 
around infinity with leading term a . s  b where a ~ 0 ,  b > l ,  i.e. lq(s)=asb(1 +o(1))  
as s-~ ~o. 

Again from 

0 = P (s~ 0 - Pl (s) 1/) = P (Re s~o - Re #1 (s) t / -  i Im #1 (s) ( r / -  Im s~o/Im/q (s))) 

we obtain a contradiction letting s tend to infinity along a suitably chosen straight 
line in the complex plane. 

Definition 1.5. We say that a polynomial P is hyperbolic elliptic or a hybrid 
if there is an open cone F, two positive locally bounded functions co (r/), c1 (t/) defined 
in F such that P satisfies (1.6). 

This class of polynomials will be denoted he (F). 
We can now collect some of  the previous results in the following. 

Theorem 1.6. Suppose that the differential operator P(D) has a fundamental solu- 
tion which is analytic outside a proper closed cone K with vertex at the origin. Then it 

follows that PEhe (F), where F={r/ER' ;  (x, r / )>0VxEK-{0}} .  

2. Homogeneous hybrid polynomials 

Let a be a homogeneous polynomial belonging to he (F). Then it follows im- 
mediately that a satisfies 

~, t real, r/EF, 0 < ltI < c(~/)[~l =~ a(r ~ O, (2.1) 

where c(t/) is a positive locally bounded function in F. 

Definition 2.1. The class of  homogeneous polynomials belonging to he (F) will 
be denoted by He (F). 

We have 
aEHe (F) if and only if a satisfies (2.1). 



Hybrids between hyperbolic and elliptic differential operators with constant coefficients 217 

Lemma 2.2. I f  Pro aenotes the principal part of  P we have 

P r h e  (/') =* P,, C He(F).  

Proof. zmP(z-l(~-it~l))-*Pm(~-it11) when z-+0, and the convergence is locally 
uniform in t when 1/2<[4]<3/2 and */EM, where M is a compact part of  F. 

By lemma 1.4 the limit is not identically zero, so it follows from the 
argument principle that the zeros of  t~P,,(~-it~l) are limit points of  the zeros of 
t~xmP(*-l(~--it~l)). This and the fact that there are constants Co, c1>0 such that 

4, t real, 1/2 < < 3/2, �9 > o, ~/EM, 

Co t < t < c 1 =a. zmP(~-l(~-ittl)) ~ 0 
implies that 

Pm(~--i tq)~O if  ~ , t  real, Ill = 1 ,  ~/EM, 0 < t < c z .  

Now the lemma follows from the homogeneity of Pro. 
We shall now prove that condition (2.1) for a single vector ~ is in fact sufficient 

to ensure that (2.1) is valid for some cone F containing ~/. So we introduce the follow- 
ing definition. 

Definition 2.3. A homogeneous polynomial a will be called hyperbolic elliptic 
or a hybrid with respect to 0 if there exists a constant c > 0  such that a satisfies the 
following condition 

{, t real, 0 < [tl < clgl ~ a({+ito) # o. (2.2) 

This class of polynomials will be denoted by He (0). 

Examples. Let aEHe (8) and let 21({) . . . . .  2m(i ) denote the zeros of the poly- 
nomial t~a({+tO) so that (note that a(O)r is a consequence of (2.2)) 

a (4 + to) = a(8) ( t -  (4)). 

The condition (2.2) can then be expressed as a condition on the zeros 2k({) namely 

real=~ Imak(~) = 0 or 2k(~)] -> cl~[ for each k. (2.3) 

To see this, we note that from a(~+ReAkO+iImAkO)=O it follows that either 
I m2k=0  or IImAkl=>Clr In the latter case either IRe2~[_->l/(210l)[~l or 
else Im2  k >c/2.141 so (2.3) follows. 

This is true for elliptic and hyperbolic polynomials where none of  respectively 
all of  the 2k(4 ) are real. Since obviously products remain in He (0), products of 
elliptic and hyperbolic operators in He (0) are in He (0). 

The lineality L(P) of any polynomial P is the set of r/ for which P(~+trl)= 
=P(~)V~, t. L(P) is a linear space and L ( P ) = 0  means that P is complete in the 
sens~ that it is not a polynomial in less than n linear combinations of the variables 4. 
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It follows f rom (2.2) that a non-hyperbolic polynomial in He (8) must be complete. In 
fact, if q ~ L (a) and a (4 + itS) = 0 for some real r and t it follows that a (4 +st l - -  itS) =-- 0 

for all s, which implies that t = 0  or It ~ c ] ~ + s t  1 for all s by (2.2). Now the latter 
condition is absurd so the statement follows. 

The polynomials in He (8) of  degree 0 are the nonvanishing constants. When 
the degree is one we can after a linear change of variables write a(~) as a multiple 

of  41 or  ~1+i~2. Since ~ICHyp (0, 1) when 01r  it follows that He ( 0 ) = H y p  (0, 1) 
except when n = 2 ,  in which case He (0) also contains elliptic elements. The only 
real non-elliptic elements in He (0) of  degree two are the hyperbolic ones. In fact by 
a change of variables and after multiplying by a constant we can assume that 
0=(1 ,  0 . . . .  ,0)  and a ( r  2 2 �9 + ~ p -  ~-p+l - . . -  - ff~. An easy argument shows that 
then necessarily p = 1. 

Let A be the real hypersurface a (~)=0.  I f  a is real and A is non singular outside 
the origin, then a ~ H e  (0) provided that no real straight line with direction 8 is 
tangent to A outside the origin. In fact, then a (8) r  0 and the real zeros of  t ~ a  (4 + tO) 

are distinct for all real r r  Since a is real the complex roots come in pairs. Using 
the continuity of  the zeros, this would imply the existence of  a multiple zero if the 
complex roots were not bounded away from zero on the unit sphere. 

This criterion shows that the polynomials 

a ( 4 ) = ~ ' + . . . + ~  m=>3 ,  m odd 
are in He (8) when 

j ~ k ~ 8j + Ok > 0, (2.4) 

(when m is even they are elliptic and hence in He (8) for all 8 r  In fact, it suffices 
to verify that then 

I T +  "" t i  m = 0 ~ 8 J : m - - l +  ra--1 1 ~1 ' ' "  + 811 ~rl > 0 

for all real ~ r  When all 8 k are > 0  this is clear. Otherwise it follows f rom (2.4) 
that at most  one Ok, say 8n, is <_--0. By Jensen's inequality, 

1 1 
I~1 <-- (l~.llm+-..  + l~n- l lm) ~ ----< ( ~ , - 1 +  . .  § 

so that then 

81 ~15m--1+ --" + 8n into--1 >~ (81 + 8 . )  ~[n--1 2_ . . .  + ( 8 1  + 8n)r lm-1 > 0 ,  

I t  is easy to see that if m > 0  is even the polynomials a ( ~ ) = ~ ' - ~ ' - . . . - - . ~  
are in He (8) when 8 = (1, 0, ..., 0). 

In the following theorem we will use the notions of  localization and local hyper- 
bolicity. For  convenience we will state the definitions here. The reader is referred 
to A t i y a h B o t t - - G g t r d i n g  [2], Ggtrding [4] and H/Srmander [6] for details. 
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Definition 2.4. Let a(O be a homogeneous polynomial and expand a(~+tO in 
ascending powers of t 

a(~+t~) = tPae(O+O(t p+x) as t ~ 0 ,  

where ae (0  is the first coefficient that does not vanish identically in ~. The polynomial 
~ a e ( ~ )  is called the localization of a at ~ and p is called the multiplicity of a at 4. 

Definition 2.5. A function f (O,  analytic in a neighbourhood of  the origin in 
C n, is said to be locally hyperbolic with respect to 0ER n if 

~ER", I m t  ~ 0 = ~ f ( ~ + t 0 )  ~ 0 (2.5) 

when 4, t are small enough. The class of  these functions is denoted by Hyploc (0). 

Definition 2.6. A homogeneous polynomial a(O is said to be hyperbolic with 
respect to 0ER" if (2.5) holds for a. This class of polynomials is denoted by Hyp (0) 
(Hyp (0, m) if the degree of a is m.) 

Definition 2.7. When a is a homogeneous polynomial, let A denote the real 
surface a(~)=0,  ~ER". If  aEHyp (0), let F(a, O)=F(A, O) be the component of 
R " - A  that contains 0. 

L e t f ( O  be analytic in a neighbourhood of the origin in C n. Expand f i n  homo- 
geneous terms fv of degree v, f : ~ o f ~ .  We denote the first nonvanishing term fm 
by Pf. The number m is called the degree off .  The subclass of functions f i n  Hyploc (0) 
of degree m will be denoted by Hyploc (0, m). We have 

f E  Hyp~o, (0, m) =~ PfE Hyp (0, m). 

This follows, as in the proof  of lemma 2.2, from r-"f(r(~ +tO))~Pf(~+tO), if  we 
know that Pf(O)#0. In fact this was included in the original definition of local 
hyperbolicity, but was later found to be a consequence of (2.5) (see Gfirding [3]). 

When fCHyplo~ (0) we put F0(f,  O)=F(Pf, 0). We will use the notation T~ to 
denote the translation operator, i.e. (T~f)(O=fOl+O. When the localization a~ of 
a at ~ is hyperbolic with respect to 0, we put F(ag, O)--F(Ag, 0), where Ar denotes 
the real surface a~(O=0, ~ ~R ". 

Definition 2.8. A map z~c~, from a topological space to open sets in some 
R ", is said to be inner continuous if any compact set contained in C,o is also contained 
in c~ when z is close enough to %. 

It is proved in Gfirding [4] that if h CHyplo~ (0), the function 

R" -- {0} 3 r ~ ro(Tr o) 

is inner continuous when ~ is small enough. 
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Definition 2.9. A map z ~ M , ,  from a topological space to compact sets in some 
R" is said to be outer continuous if any compact neighbourhood of  M,, contains Mr 
when z is close enough to z o. 

For reference we quote the Main Lemma of G~trding [4]. 

Main Lemma. Let fEHyploc(0 ) and let tl belong to a compact part of Fo(f, 0). 
Then 

~real, I m s I m t  ->0, I m ( s + t )  # 0 =~f(~+sO+trl) # O, 

provided that ~, s, t are small enough. 

Now comes one of the main results: 

Theorem 2.10. A homogeneous polynomial a belongs to He (0) / f  and only i f  
all the functions ~-~ Tg a(4) are in Hyploc (0) when ( ~ 0 is real. I f  these conditions hold 
then aEHe(F)  where 

r =  fl r (&,0) .  
0 # ~ E R  n 

Proof. Let aEHe(0)  and let 0 # ~ E R  n be fixed. Then a((+~+tO)= 
= a ( ~ + ~ + R e  tO+i Im tO)#O provided that 0 <  [Im t]<c , r + ~ + R e  t01. 

This is clearly satisfied if ~ and t are small and Im t # 0 ,  which means that 
T, aEHyploc (0). Conversely assume that T~aEHyploe (0) for all real ( # 0 .  Then by 
definition a(~+~+itO)~O if  4, t real, ]~]<3~, 0<] t [<6~.  A covering of the unit 

sphere then gives 

r t real, r = 1, 0 < Itl < 6 =" a(~+itO) # O, 

which by homogeneity implies that a EHe (0). 
From Tr (0) we conclude that the cones (~Fo(Tr O)=F(Ar O) (note 

that PT~a=a~) form an inner continuous family. Since Nr F(Ar O) contains 0, 
it follows from this, that F is an open cone containing 0. 

Let K a compact part of  F. Then the Main Lemma of  Ggtrding [4] gives 

a(~ +~ +itq) # 0 

provided that ~ and t are small real, t # 0 and ~1E K. As before a covering of the sphere 

I ( l= l  proves that aEHe(/O.  
We will call a polynomial aEHyp (0) strongly hyperbolic with respect to 0, 

if the roots t of  a(~+tO) are real and different for all real ~ which are not propor- 

tional to 0. 

Proposition 2.11. Let a be a homogeneous polynomial with real coefficients. Sup- 
pose that the loealizations a: are strongly hyperbolic with respect to O for all real ( #0.  
Then it follows that aEHe (0). 
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Proof. Let p denote the multiplicity of a at ~ and m the degree of  a. Expanding 
a((+~+tO) in powers of t we get 

a(( + ~ + tO) = z~o t~f, (4). 

For  4 =0  we havef~(0)=0 when 0 ~ _ v<p andfp(O)=a~(O)~0 by assumption. From 
the continuity of  the roots it follows that for small ~, p of  the roots of  t-~ a(4 + ~ + tO) 
are small, while the other roots are bounded away from zero (depending on (). We 
shall prove that the small roots are real when ~ and ~ are real and ~r  

Factorizing we have 

a (~ + 4 + tO) = a (0)/-17 (t + #g (4)) (2.6) 

where -/~j(~), 1 <=j<-m, are the zeros of the polynomial. We arrange the labelling 
so that - p ~ ,  . . . ,  -/~p are the small roots. Also, factorizing ag(~ + tO) we have 

ar (4 + tO) = a; (0) 1-[~ (t + 2k (4)), 

which defines the roots --2k(4), 1 <=k<=p. From (2.6) we get 

T- ~'a (~ + �9 (4 + tO)) = a (0) 1~; (t + Pk (z4)l'r)" 1~"~+~ (zt + It~ (~4)) 

and this, combined with the continuity of the roots and the fact that 
T-Pa((+z(4+tO))~ar when z ~ 0 ,  implies that 

ltk(~4)/Z ~ 2k(~) as �9 ~ 0, (2.7) 

if the roots are labelled properly. Also, the convergence is uniform on compact sets. 
Now assume that for arbitrarily small z some pi(z4), l<=i<=p, is non-real for 

some ~ with 141<_-1. Then there are sequences zv~0 and ~ o ,  i~1_<_1, such that 
say Im/ll(z~4~)>0 for all v. The set 

V = {(z, r Re t, Im t) E R ~ * 3; z -  p a (~ + z (4 + tO)) = 0} 

is algebraic and from what has just been said it follows that the point (0, 4 ~ 0, 0) 
belongs to the closure of  Vfq{(v, 4, Re t, Im t)ERn+s; Im t>0}. The curve selec- 
tion lemma (see Milnor [7]) shows that there is a real analytic curve s~(z (s ) ,  4(s))E 
ER n+l, defined for small s, such that (z(0), ~(0))=(0, ~~ ~ ( s ) ~ 0  and such that 
some root p,(z(s)-r  l<-i~p,  say # l (z(s ) .  4(s) ) is  non-real when s > 0  is small. 
Since #i (~) is real if r is proportional to 0, a Taylor expansion shows that for some 
k_->0 we have 

~(s) = p(s)o + s ~  + o ( s  ~+1) 
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where p is a polynomial of  degree less than k and q is not proportional to 0. 
Since/~1(r +sO) =P1(r + s  we conclude that/~l(Z (s) .  (skit + O(sk+l))) is non-real and 

from (2.7) we get 

#~(Z(S)(skq+O(sk+I)))/~(S)S k --, 21(r/) when s ~ 0, s > 0. (2.8) 

Now, since the coefficients of a are real/71 is also a root, say fi1=/~2 and since by 
assumption 2a is real, we conclude, taking complex conjugates in (2.8), that 21(q)= 
=220/). This contradicts the strong hyperbolicity of a; and thus proves that #i(zO, 
1 <=i<-p, are real when 4, z are real, r <~ 1 and z is small. This, combined with (2.6) 
and the fact #k(O are bounded away from zero when p<k<=m, shows that when ( 
is a fixed real vector different from zero, we have 

4, t small real, t ~ 0 =~ a (~ + ~ +itO) ~ O, 

and as before a covering gives the desired result. 
We shall give an example showing the necessity of the assumptions in this pro- 

position. 

Example. The polynomial 

a (4) = 4~ + 4~ + 2i4143 

is not in He(0),  0=(1 ,0 ,0 ) .  In fact, a(it, 1 , 4 z ) = - ( t + 4 z ) 2 + l + 4 ~  has a root 
t ~  1/(2~3) for large ~3- On the other hand the localizations a; of a are either con- 
stants (when a (0  r 0) or we have a~ (4) = 2i(3 41 (when a (0  = 0~=~1 = ~2-  0) and these 
are all strongly hyperbolic with respect to 0. This shows that the condition that 
the coeff• are real in the previous proposition is necessary. That  the localiza- 
tions have to be strongly hyperbolic for the conclusion to be valid follows from the 

example 
~2 4 2 ~  a(4) =(4~+4~)  + 4148 

where the localizations a~ are either constants or multiples of ~ .  Since this polynomial 
has the previous one as a factor, it is not  in He (0), 0 = (1, 0, 0). 

The wave front surface. We shall end this section by studying the wave front 

surface 
W(A, O) = U K(Ar O) 

O # ~ E R  n 

of  a polynomial aEHe (0). Here the cones 

K(Ar 0) = {x; (x, r/) => 0Yr/EF(Ar 0)} 

are called the local propagation cones. Putting as before 

F(A, 0 ) =  [q r ( & , 0 ) ,  
O ~ E R  n 



Hybrids between hyperbolic and elliptic differential operators with constant coefficients 223 

we shall call its dual 
K(A, O) = {x; (x, q) --> OVqEF(A, 0)} 

the singular propagation cone of a. We have 

Lemma 2.12. Let aEHe (0). Then the wave front surface is a closed set whose 
convex hull is equal to the singular propagation cone of a. 

Proof. From the inner continuity of the map ~ F ( A r  O) we conclude that if 
x ~ K(Ar 0), then y ~ K(A ~, 0), provided that y, ~ are close to x and 40 respectively. 
This and a covering argument shows that if x~ W(A, O) there is a neighbourhood of 
x which is disjoint from W(A, 0). 

We know from theorem 2.10 that aEHe (0) implies that aEHe (F), where 
/ ' =  Nr F(Ar 0). Since aEHe (/~) implies that a~EHyp (q) for all real ~ # 0  and 
all ~/E/~, it follows that F is the maximal cone for which aEHe (F). 

Assume that ch W(A, O)~K(A, O) where ch denotes the convex hull. Then 
according to section 4. and theorem 1.6, aE He (F1) where F1 is the dual o fch  W(A, 0). 
But / ' ,  being the dual of K(A, 0), is strictly contained in F1, contradicting the maxi- 
mality of F. 

The following lemma is proved in the hyperbolic case in [2]. The same proof  works 
in the hybrid case so we have: 

Lemma 2.13. The wave front surface is contained in a proper conical subvariety. 

Examples. We have sketched the image in real projective two-space of some 
A and W(A, G). The figures to the left show A and the ones to the right the cor- 
responding W(A, 0). Dotted lines indicate the boundaries of F(A, O) and K(A, O) 
respectively. 
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3. The non-homogeneous case 

Precisely as for homogeneous polynomials it is possible to simplify the defini- 
tion of he (0) by requiring the crucial condition (1.6) for only one vector The defini- 
tion runs as follows: 

DefinitiOn 3.1. A polynomial P is said to be a hybrid or hyperbolic-elliptic with 
respect to 0 if 

(i) Pm (0) r 0 where Pm denotes the principal part of P. 
(ii) There are constants el, ez>0 such that 

4, t real, cl < t < c~[~[ =>P(~-itO) ~ O. 

The class of these operators will be denoted by he (0). 
Note that (i) is not a consequence of (ii) as follows from the example P(~)= 

= i ~ §  0=(1, 0). 
Lemma 2.2 still holds and the proof is the same. We have 

Lemma 3.2. PEhe (0)~P, ,EHe (0), where Pm denotes the principal part of P. 

The class Hyp~or (0) of locally hyperbolic functions was an important companion 
to He (0). The corresponding companion to he (0) is the class hyptoc (0) of locally 
impurely hyperbolic functions. The definition is as follows (Gftrding [4]). 

Definition 3.3. A function f(~, ~), analytic in a neighbourhood of the origin, 
is said to be locally impurely hyperbolic with respect to 0ER", if there is a number 
e > 0  such that 

4, t real, Imt/z  > c::* f (~ - tO ,  ~) ~ 0 (3.1) 

when 4, t, z are small enough. (When ~=0  the inequality should read Im t r  
The class of functions satisfying (3.1) will be denoted by hyplo c (0) (hyplor (0, m) if 
m is the degree o f f ( . , 0 ) ) .  

Note. GgLrding has Jim t]>e[z[ in (3.1) and he also requires that Pf(O, 0)~0 
where P denotes the principal part. The last requirement is superfluous because 
f(~, ~)E hyploo (0) obviously implies that f(~, 0)E HypIo~ (0). As explained below the 
first requirement is also superfluous. 

We shall need some of G~trding's key results, but since we cannot quote them 
directly, we shall state the modified versions here. First, Gg~rding's version of Svens- 
son's theorem. 

Svensson's theorem. Let f(~, ~)E hyploc(O, m) and expand in powers of  z 

f({,  "0 m--1 :- ~v=0 XVfm, v(~)-l-zmfm(~' ~)" (3.2) 
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Then degfm,~=>m-v when O < v < m  and the quotients 

t~f,,.v (4 - itO)/fm, o (4 -- itO), 0 < V < m, 

are bounded for small (4, t)#(O, 0). Conversely, /ffm, 0EHyploo (0, m) and i f  f,,.v, 
0 <  v <-m, are analytic, the quotients bounded and f defined by (3.2), then f belongs to 
hyplor (0) and there is a constant c > 0  such that 

4 real, Im t[ > el z =>f(~-itO, z) # O, (3.3) 

when 4, z, t are small enough and z is allowed to be complex. 
The proof is the same as in G~rding [4], only change the formula on page 77 

to s real=~Im#k(S)/s<=e and on page 79, Im2k(r )=O(r  p+I) shall be changed to 
Im2k(r)/rv+i<--c. 

For the reader's convenience we also state Gfirding's Main Lemma*, which we 
shall use later. 

Main lemma*, When fEhyploc (0) satisfies (3.3) for complex % and q belongs 
to a compact part of  Fo( f ( . ,  0), 0), then 

~real, I m s I m t - > 0 ,  IImsl >c[z[  =~f(4+sO+tq, z ) # O  

when 4, z, s, t are small enough. 

The following theorem connects the definitions 3.1 and 3.2. 

Theorem 3.4. Let P be a polynomial of  degree m with principal part a. Then 
PEhe (0) i f  and only i f  the functions fr z ) = z " P ( z - l ( ~  +~)) are in hyp~oc (0 ) fo r  
all real ~ ~0.  I f  these conditions hold then PEhe (F) where 

r =  N r (Ao O). 
O # ~ E R  n 

Proof. Let PEhe (0). Then from the definition P( z - a ( ( + ~ - t O) ) # O  provided 
4, (, z are real, z#O and 

cl < Im t/z < c ~ ] ( + ~ - R e  tO)]/[z I. 

This condition certainly holds if Im t/z >c~, ~ # 0  is fixed ano ~, ~ are sman. w'hen 
z = 0,f~ (4, 0) = a (~ + ~), and by lemma 3.2 and theorem 2.10, this belongs to Hyplor (0). 
This shows that fcEhyplor (0) when .~#0 is real. Conversely suppose that this holds 
and let K be a compact part of F. Then, by Svensson's theorem and Main Lemma*, 
to every real ( with ]~[:1 there are numbers c~ and d; such that 

real, ~/EK, I'mt[ > e~lz I =~ ZmP(z-i(~+4 +tq)) # 0 

when [4[<d~, It]<d o [z[<d,. Hence, by a covering argument, there are numbers 
cx and dl such that z"P(z-~(~+t~))#O when ~ is real, [~]=1, Jim tl>ci[z] and 
I t l<dx,  ]~ < d l .  Letting z=0 ,  we see that a(~+t~l)#O if~ real ]~[=1, Im t#0 ,  and 
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[ t]<dl ,  which implies in particular that a(t/)#0. Letting instead z # 0  real, t=izs 
purely imaginary and ( =  z4, we get that P (4 + isq) # 0 when c<  Is] < d 1 [4 ]. This proves 
thetheorem and also gives; 

Corollary 3.5. he (0)=he ( -0 ) .  

A polynomial P is said to be weaker than another polynomial Q, and we write 
P-< Q, if there is a constant c such that 

P (4) -<- c~(4) 
for all real 4, where 

1 

P(4) = (ZIP<:) (4)12) ~ 

(HSrmander [5]). The following theorem extends Svensson's original result. 

Theorem 3.6. Let P be a polynomial of  degree m with principal part Pro. Then 
PEhe (0) / f  and only i f  PmEHe (0) and P is weaker than Pro" 

Proof. Put fr z)----zmP(v-*(~+4)). Suppose that PEhe (0). Then by theorem 
3.4 we have f~Ehyploc (0) when ~#0  is real We have f~(4, O)=Pm(~+4)=Pm~(4)+ 
+R(4,  ~). Denoting the multiplicity of  Pm at ~ by v, we thus have f~Ehyploc (0, v) 
where v depends on ~. Expanding f~(4, ~) in powers of ~, we get 

A(4' "C) = ~k=o'~k em_k(4"~-~) 

where P~ is the part of P that is homogeneous of degree #. From Svensson's theo- 
rem we can now conclude that there is a constant c:, depending on ~, such that 

I?e,,_k(4+~ +itO)] ~ c~ em(4 +~ +itO)l (3.4) 

if k <  v and 4, t are small real. We fix k and put 

Ak = {~ER"; l~[ = 1 and Pm(')(~) = OVa; [a[ = k}. 

When ~EAk we have v=deg  Pm~>-k+l, so (3.4) is valid in A k. Since Ak is compact, 
a covering argument proves that there is a constant c such that 

ItkPm_k(4 +itO)l ~ clPm(~ +itO)l, 

provided that t is small and ~ is in a neighbourhood of  Ak. By homogeneity we get 

[e,n-k(4 + iO)r ~ c[em(4 + iO)[ 

if [41 is large and 4 belongs to a conical neighbourhood ofAk. Lemma 3.1.5 in HSr- 
mander [5] then implies 

Pm-~(4 + iO) ~-- CPm(4 + iO) 
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for large and hence for all r in a conical neighbourhood of A k . Finally Taylor's 
formula implies that 

Pm-k(O <- cPm(O 
in this neighbourhood. 

Outside a conical neighbourhood of Ak we have trivially ffm(O>=Cl~[ "-k and 
this combined with the above gives 

P~-~(O <= cP~(O 

for all 4, i.e. P,,-k is weaker than P,,. 
Conversely, if P, ,EHe (0), theorem 2.10 implies that P, ,EHe (F), with F as in 

that theorem. Thus we have 

Pm(4 +(  +iO) = Pm(~ +Re~ +i(O+ImO) ~ 0 

if ~ is real and large and ( is small. From lemma 4.1.1 in HSrmander [5] it then 
follows that 

IPCm~) (~ + iO)l ~ c IPm (~ + iO)' 
if [~[=>Cl, say, and thus 

P,,(~+iO) <- CIem(~+iO)[ if 141 -> Cl. 

Since P'<Pm implies Pk'<Pm according to lemma 5.5.1 in HSrmander [5], we get 
(c denotes different constants) 

]ek(4 q-iO)[ ~ Pk(~ +iO) <= CPk(O <- CPm(O < -  CPm(~-~iO) ~ clP,,(~ +iO) 

if 14[ ~ cl. 
By homogeneity this implies 

[Pk(~ +itO)! <= clt[~-mlem(~ +itO)l if 141 --> clItl, 
and thus 

IP(~ + itO) --Pm(~ + itO)] ~ clt[-xle,,(~ + itO)[ 

if  [~ =~c~[t]. This implies that P(~+itO)#O if  r and t are real 2c<[t1<1/c~[r and 
P,,(~+itO)#O, from which we conclude that PEhe(0).  

We end this section by proving a result that will be needed later. 

Theorem 3.7. Let P=a+bEhe (0) have principal part a and degree rn. Further 
let 4~Mr be an outer continuous function with Mr a compact part of  F(Ar O) 

satisfying Mte= Mr when t#O is real. Then there are positive constants co, Cl and c~ 
such that 

~, t real, nEMr cl < It[ < e~[~l =~ IP(~-itn)[ >= c0[t(". 

Proof. We have from theorem2.10 that Tr162 for all real ~ dif- 
ferent from zero, where p denotes the multiplicity of a at ~. Factorizing we can 
write 

Tea (~ + tq) = F((, t, q)II~ (t + 2k (~, rl)) 
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where the 2 k, 1 ~ k <_-p, are real and equal to zero when ~ = 0. Further F is continuous 
when ~ and t are small and t/EMr Since F(0, 0, ~/)=a~(r/)r when r/EMr we get, 
with some cr 

[a(~ +~ + itq)[ >= c,]t[ p 

provided that ~, t are real and small. A covering of the unit sphere then proves the 
theorem if P = a  is homogeneous. 

Now we can as in the previous proof  use lemma 4.1.1 in H6rmander  [5] to 
conclude that 

b (4 + itrl)l <= c [t[-1 ]a (4 + itq)] 

when 4, t are real, r /EM,, 1 < [t[<cl[{I, and f rom P = a + b - a ( 1  +b/a) the theorem 
follows easily. 

4. Construction of  fundamental solutions 

Let PEhe (0) have principal part  a. We are going to show that P laas a tuncla- 
mental solution which is analytic outside the wave front surface W(P, O) of  P, 
defined as 

w(P, 0) = U K(A~, 0) 
~ o  

where 
K(A~, 0) = {x; (x, ,I) --> 0v~Er(A~,  0)} 

is the so called local propagation cone belonging to the localization ar of  a at 4. 
This result is a special case of  a theorem by K. G. Andersson (see [i]). The proof  
in our case is simpler and is similar to the presentation in At iyah- -Bot t - -Gf i r -  
ding [2]. 

Let PEhe (0) have principal part a. From theorem 3.7 with Me={0} we see 

that to and 7 can be chosen so that ]P(~-itoO)[>=const>O if I~1->~. In fact, with 
the notation in that theorem, we just choose to with to>C1 and 7 satisfying y>to/c 2. 

We can thus define a distribution E by 

E(rp) = 
~ ( - 4  +itoO) 

P(r -- ito O) 
d~, (4.1) 

where ~oECo, ~b(~)= fe-i(X'Oq~(x)dx and d~=d41 ^ . . . ^  d4,. Here E = E ( P ,  O, to, ~) 
depends on t o and 7 but we have: 

Lemma 4.1. Let PEhe (0) and define E as above. Then, modulo entire analyti~ 
functions, E is a fundamental solution o f  P(D) and is independent o f  t~ and ~ as lon~ 
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as to and 7 are chosen so as to satisfy the condition cl<to<c21~ in theorem 3.7, when 
[4 >7 .  

Proof. We have 

e(D)E(~0) = e ( e ( - D) ~o )  = (2,0-" f~_~, ~ ( - 4 +  itoO) d~ = 

= ( 2 ~ ) - " f r 1 6 2 1 6 2 1 6 2  

Put OR={~=-4+isO; [~[<=R, 0<-s<=t0}. Since ~b is analytic it follows that the 
form $(~)d~, d~=d~l^ . . .^ d~,, is closed which according to Stokes' theorem im- 
plies that 

foo,  O (0 ar = o. 

On the part of the boundary gO R where 141=R we have by the Paley--Wiener 
theorem that 

[4~(-~ +isO)] <= CN(I +I--4 +isOI)-N :'o I~ <-- C~R -N 

We can thus let R tend to infinity in the above integral and get 

f ~(-~+itoO) d~ = f ~(-~)dr  = (2~)"~0(0), 

where the last equality follows from Fourier's inversion formula. We thus get using 
the definition of the Fourier transform and Fubini's theorem that P(D)E=6+h, 
where h(x)=-(2zc)-"fl~l~_rexp(-i(x,--~+itoO))d~ is entire analytic. Thus 
choosing f entire analytic with P(D)f=h proves the first part of  the lemma. To 
show that E(P, O, to, 7o)--E(P, O, fi, 71) is entire analytic we first note that if 7o<7 
we have 

(E(P, O, to, 7o) -  E(P, O, to, 7))(q~) = (2re)-" [ 4~ ( -  4 + ito O) d4. 
a ~o<tr P(~-itoO) 

It follows from the definition of  the Fourier transform and Fubini's theorem that this 
defines an entire analytic function, so it suffices to show that E(P, O, to, 7)-- 
--E(P, O, q, 7) is entire analytic when 7 is large. 

We then choose 7 so large that the condition cl<sto+(1-s)t1<c27 in theorem 
3.7 is satisfied for all 0=s<- l .  Then P(~-i(sto+(1-s)q)O) =>const>0 if 0<=s<=l 
and 141->7. so the form $(-~)/P(~)d~ is holomorphic when ~=~-i(Sto+(1-s)q)O, 
0 - < s < l  and 141->~. The same reasoning as above with f2 R now equal to 
{(=4-i(Sto+(1-s)q)O; 0<-s<_--l, 7-<_I~I<_-R} shows that 

(E(P,O, to, y)--E(P, O, q, 7))(9) = (2~z)-" : O( -~)  dff, 
a ~ P(~) 

where K= {~ = ~ - i(Sto + ( 1 - s) fi) 0; [41 = 7, 0 <= s <= 1 } with proper orientation. Since 
K is compact it follows that the last integral defines an entire analytic function. 
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To prove that E is analytic outside the wave front surface we shall replace the 
constant vectorfield 4~toO in (4.1) by a smooth variable vectorfield 4~v(4) .  We 
collect the facts that we need about v in the following: 

Lemma 4.2. Let PEhe (0) have principal part a. Then 
1. There exists a C "  vectorfieM v, homogeneous of  degree one, such that v (4)E 

E F(Ae, O) i f  4 r  and a piecewise smooth homotopy w(s, 4) that for suitable to con- 
nects w (o, 4)= to 0 and v (4). Further the derivative of  w is bounded by a constant 
times 14[ and P ( 4 - i w ( s ,  4))l->const>0 when 4 is large and as 0=<s<=l. 

2. I f  xC[ W(P, O) we can choose the veetorfield v(4) and the homotopy w(s, 4) 
in 1. so as to satisfy (x, v (4) )<0 respectively (x, w(s, ~))<_-const for all 4 ~ 0  and for  
a//0-<s-< 1. 

Proof. Let x l  W(P, 0). Then x~K(Ae ,  O) when 4 r  and hence, by definition 
we can find an ~I~EF(A~, O) such that (x, t/~)<:O. From the inner continuity of  the 
map 4 ~F(A~,  O) we see that q~EF(A~+~, O) then ~ is small. A covering of  the unit 
sphere gives points t/i and neighbourhoods U~,, 1 <-i<-N, such that ~hEF(A~, O) when 
4E U~, and such that (x, th)<O for all 1 <=i<-N. Let ~o~ be a partition of  unity on the 
unit sphere subordinate to the cover U~, and put 

v (4) --  141 Z f  ~o~(4/I4l)~h. 

Then v(4)EF(A~, O) and (x, v(4) ;<0.  
By choosing M e in theorem 3.7 as {sO+(1-s )v (4) /4[ ;  0 <-s-<-l} we see that 

[P(4 - it(sO + (1 - s)v(4)/141))] >- eo tm 

if 4, t real, O<=s<= 1 and ea<t<c~ [4l- Choosing a t=to in this interval and varying 
s, we obtain a homotopy between too and toV(4)/14l and then by varying to we obtain 
a homotopy connecting toy(4)~ 4 and cv(4) if cl<ev(~)<c.z]4[, which is satisfied 
for large 4 and suitable e. Since (x, v (4)) < 0 if 4 r 0 it is trivial that (x, w (s, 4)) <- const 
when ~ r  0<=s<= 1, and that proves the lemma with v=cv. 

Theorem 4.3. Let P E he (0). Then P has a fundamental solution that is real analytic 
outside the wave front surface. 

Proof. Let Xo r W(P, O) and choose v according to the previous lemma such 
that (x0, v (4)) < 0 for all 4 ~ 0. If to is a small neighbourhood of  x0 we thus have 
with a positive constant c, 

(x ,v(4))  <=--cl4[ when xEo) and 4 ~ O. (4.2) 

Let ~o E C0"(to) and put 

f2g = {~ = 4 - i w ( s ,  4); ~ <= 141 <= R, 0 <_- s <= 1}, 

where w(s, 4) is the homotopy in lemma 4.2. Then IP(Ol=>const>0 in 12 R if 1~ is 
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properly chosen. Since q~(- ( ) /P(O is analytic in O R the form ~ ( - ( ) / P ( O d ( ,  
d ( = d ( l ^  ... ^ d(, ,  is closed, which according to Stokes' theorem implies 

f o  d( = 0. (4.3) 
r  

Since (x, Im ~) is bounded from above when x E 09, ~ E f2R we have l~ ( - 0 [  = O ([~[-N) 
for all N if (Cf2 R. This implies that we can let R ~  in (4.3), giving 

E(P, to,  r/, ?)(~#) = (2=)-"f~ e(-()/P(~')d~ + (2.)-"f~=~_,o(r162 d~ (4.4) 

with K - { [ ( f 2 R :  IRe (1= 1} properly oriented. Since K is compact the first integral 
defines an analytic function in C" and since (4.2) holds, the second integral defines a 
real analytic function in 09. This proves the theorem. 

To abbreviate we will not write out the dependence of to and ? in E(P, to, rl, ?) 
in the sequel. We will always assume that they are properly chosen and write E(P, rl) 
or E(P, q, x) when x r W(A, 0). 

It is now easy to prove the following result mentioned in the introduction. 

Theorem 4.4. Let P= a + b E he (0) have principal part a. Then, with convergence 
in the distribution sense, we have 

E(P, 0) = •k=0 (-- 1)kb(D)kE( ak+l, 0). 

Proof. From (4.1) we have 

E(P, 0) (~p) ------ (2re)-" [ ~ ( -  ~ + itO) ,, 
�9 a let~-r P ( ~ - i t O )  a~. 

From the proof  of  theorem 3.6 we have that [b(~-i tO)[~c.  t -~ ]a(~-itO)] for large 
~, implying that 

1 1 [b(r k 
P(~ - itO) -- a(r -- itO) "~~176 ( -  1)k [a (r -- itO)) 

with uniform convergence if t>2c. Thus choosing V and t properly we can integrate 
term by term which proves the result. 

When P = a  is homogeneous we can simplify our formulas by introducing polar 
coordinates. As a preparation, put 

Zp(z) = (2~c)-" f~ei '~rp- ldr  when I m z  > 0. 

From Z~ (z) -- iz, + l(Z) and Z1 (z) = (2zc)-" id~/z we get 

Zp(z) = (2~)-"iP(P-- 1)! 
zp +fp (z), p ~ l ,  

Zp (z) = (2~z)-* i ~- P z-P log z 
(_p)  ! +fp (z), p --<_ 0, 
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where fp(Z) are entire analytic functions for all p. We will denote the singular part 
of Zp by Z ~ i.e. Z~ To simplify the calculations we will also assume 
that the constant y appearing earlier can be chosen equal to one. This can always be 
achieved by a change of scale if necessary. 

Theorem 4.5. Let aCHe (0) be a polynomial in C ~ of  degree m. I f  Xo~ W(A, O) 
there exists a neighbourhood ~o Of Xo, a vector field v(~) such that, modulo an entire 
analytic function, a (D) has a fundamental solution of  the form 

F(a ,O,x )= fox~ when x~m. (4.57 

Here q = n - m ,  ~o(~)= ~ (-- 1)i~ d~l^.. .  ^ d ~ ^  ... ^d~, and 

a = {ff = ~ - i v ( f f ) ;  I~1 = 1}. 

Proof. Formula (4.4) shows that when q~CCo(co ) and (x, v(r when 
x ~ o~, the integral 

1 ( -  ~) 
F(a, 0) (~0) = (2r 0 - "  [ d~ 

I~l>l  

defines a fundamental solution of a(D) modulo an entire analytic function. Inserting 
the definition of  the Fourier transform and switching to polar coordinates gives 

F(a, O, x) = (2=)-" f~=e-i.(o o~(0 fU e"<~'r r n - l - m  dr  : 

= 

and since obviously fafq((x, ff))a(~)-lco(~) is entire analytic the result follows 

The Herglotz--Petrovsky--Leray formulas. One main point of  [2] was to prove 
that, outside the wave front surface, the derivatives of the fundamental solution of  
hyperbolic operators are periods of rational closed differential forms in projec- 
tive space. The corresponding formulas were named after Herglotz, Petrovsky and 
Leray who found various special cases. We shall sketch the corresponding result in 
the hybrid case. 

To state it we shall need the Petrovsky homology classes, defined as follows. 
When x is outside the wave front surface W(A, 0), there are real C = vector fields 
v (~), absolutely homogeneous of degree one, i.e. v (2~) = [2l v (~), such that v (~) 
6Re XNF(Ar O) for every egO. Here X is the complex hyperplane (x, if)=0, and 
in the sequel we let A denote the complex surface a(ff)=0. Let Z be C" and let Z* 
be the corresponding complex projective space, i.e. Z*=Z/C.  When t > 0  is small 
enough, the map ~ - ~  itv(~) from the real (n-1)-sphere  oriented by (x, ~)o9(r 

where r  into Z* defines a (n-1)-cycle 
of  the pair (Z*--A*, X*). Here the star denotes images in projective space. All these 
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cycles are homologous and define a homology class in H,,_a(Z*-A*, X*) denoted 
by 2~(A, x, O)*. The boundary ~(A,x,O)*=c%~(A,x,O)*EH,,_2(X*--A*NX*) is 
called the Petrovsky cycle (class). 

The difference F(a, O, x ) -F (a ,  -O, x), where Fis  given by (4.5), can be analyzed 
precisely as in [2] p. 175--176. Keeping track of the entire function that appears 
in the hybrid case, one gets the following result, where tx: H n - 2 ( X * - X * N A * ) ~  
~ H , _ I ( Z * - A * U X *  ) is a tube operation described in [2] p. 173. 

Theorem 4.6. Let aEHe (0) be of  degree m and let E(a, O, x) be the fundamentai 
solution of  a(D) with singular support in W(A, O) given by (4.5). I f  x is not in +_ W(A, O) 
then, modulo entire .functions, we have 

DV(E(a, O, x) -E (a ,  -O, x)) = cv f,, (x, ~)~a(~)-1o9(~) (4.6) 
if  q >= O and 

DV(E(a, O, x) - E(a, - O, x)) = cv J]xP* (x, ~)~a(~)-l~o(~) (4.7) 

when q<0.  Here q = m - n - I v [ ,  e~ ~ 0  is a constant, ~* =~(A, x, 0)* E H , _ I ( Z * - A * ,  X*) 
and/~*=0c~(A, x, O)* E H,_~(X*-X*NA*)  is the Petrovsky class. 

In the hyperbolic ease the term E(a, - 0 ,  x) vanishes when x is not in - K ( A ,  0); 
in the hybrid case it is real analytic there. 

Lacunas, sharp fronts, the Petrovsky conditions. A component L of the comple- 
ment of the wave front surface W(A, O) is said to be a lacuna for PEhe (0) (with 
principal part a) if there is an entire function f such that f(x) is equal to the funda- 
mental solution E(P, O, x) when x is restricted to L. The fundamental solution 
E is said to be sharp from L at a point yEOL if E has an analytic extension from 
L to L U N, where N is a neighbourhood of y. In the hyperbolic case, these notions 
were studied in detail in [2] and [3]. We shall touch briefly on some results for hybrid 
operators that follow from these two papers. 

The question of  lacunas is tied to the Petrovsky condition, 

/~ (A, x, 0)* = 0 in H,_2 (X* - X* (-/A*). 

It follows from (4.7) that if aEHyp (0, m) and this condition holds for one x in L, 
then E(a, O, x) is a polynomial of degree m - n  in L. More generally, by theorem 4.4 
the fundamental solution of any PEhyp (0) whose principal part is a power of a 
is an entire function in L. Hence the Petrovsky condition implies that L is a lacuna 
for every such P ([2] Theorem 10.3). In the hybrid case the Petrovsky condition 
only implies that the fundamental solutions E=E(P)  have sharp fronts at all points 
of OL except the origin. In fact, then the term E(a, - O, x) of (4.6) does not necessarily 
vanish and although it is holomorptic at W(A, O) outside the origin, it need not be 
holomorphic at the origin. 
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l~or many  llybr]d operators  a, the t ' e t rovsky condit ion llolds in some componen t  

L of  the complement  o f  the wave f ront  surface. If, e.g. n = 3 ,  then according to [2] 
formula  (6.26), an equivalent condit ion is that  .4* N X * be real. In  example 1 page 223 

this is true when x is inside the curved triangle that  constitutes W ( A ,  0). Hence in 
this case the fundamental  solution has sharp fronts f rom inside the wave f ront  

surface except at the origin. This is also a consequence o f  the fact that  the local 
Petrovsky condit ion ([3] Chapter  I I I ,  formula  (10.2)) applies equally well to hyperbolic 

and hybrid operators.  It states that  

fl (A, x, 0)* 6 H ,_  2 (Y* - Y* N A*) 

where x is in some componen t  L of  the complement  o f  wave front  surface and close 

to a point  O # y ~ O L .  The formula  should be taken in the sense that  the Petrovsky 
class belongs to the image of  the right hand  side induced by projections Y * -  Y* A 

A A * ~ X * - X * f ~ A * .  When  the local Petrovsky condit ion holds, then all funda- 

mental  solutions of  hybrid operators whose principal par t  is a power o f  a have 
sharp fronts at  y f rom L. The p roo f  is as in [3] p. 183 and example 10.3 o f  [3] shows 
that  outside the origin all the fundamental  solutions o f  our  examples 1, 2, 3, 4 page 

223 have sharp fronts f rom inside the regions bounded  by lines tha t  curve inwards 
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