
Higher order Briot--Bouquet differential equations 
Einar Hille 

1. Introduction 

Let P(x,  y) be a polynomial in x and y with constant coefficients, say 

(1.1) Po(x) y ~ + Pl(x) y n-1 +.. .  + Pn(x). 

Let tSj be the degree of  the polynomial Pj(x). A Briot--Bouquet DE of  order k is 

(1.2) P[w(z), w(k)(z)] = O. 

In this note k is supposed to be >2. 
The main problem of integration is to find necessary and, if  possible, sufficient 

conditions for the existence of what here will be called canonical solutions of  (1.2), 
that is, solutions which are transcendental single-valued functions, holomorphic 
save for poles in the finite plane. A more general problem, not considered here, 
is to find the equations with fixed critical points (branch points and essential sin- 
gularities). It does not seem to be significant for BB equations. 

Various facts are known about this problem, a few valid for all k, more for 
k =  1 or 2. Those which are needed or suggestive for the investigation are stated 
as lemmata. 

Lemma 1. Every elliptic function satisfies a BB equation of  given order. 

For if z-~f(z) is elliptic, so is its kth derivative and they have the same periods, 
so by a theorem proved by Charles Briot and Jean-Claude Bouquet in 1856 one 
is an algebraic function of the other, i.e. f ( z )  satisfies an equation of type (1.2). 

Lemma 2. A BB equation can have a canonical solution only i f  the genus of  
the curve 

(1.3) P(x, y) = 0 
is O or l. 
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For l~mile Picard proved in 1887 that an algebraic curve (1.3) can be rep- 
resented parametrically by 

(1.4) x ~- S(z) ,  y -~ T(z)  

where S and T are transcendental entire or meromorphic functions, only if the 
genus of the curve (1.3) is 0 or 1. In the Nevanlinna value distribution theory this 
is a consequence of the fact that a meromorphic function can have at most four 
completely ramified values. 

Lemma 3. I f  all solutions o f  (1.2) are canonical then Po(x) & a constant, say 
P 0 ( x ) -  1 and 

(1.5) 6j<=_(k+l)j ,  j =  1,2 . . . . .  n. 

For  k---1 this was proved by Lazarus Fuchs [2] in 1884. For a general k it 
follows from results due to Jean Chazy [1, p. 378]. 

Lemma 4. The canonical solutions are entire functions i f  

(1.6) 6j <-j, Vj. 

For  this condition excludes poles. 

Lemma 5. If k--- 1 or 2 the Nevanlinna order of  a transcendental meromorphic 
solution is <=2; it is <= 1 i f  the solution is an entire function. 

For k =  1 this follows from a result due to A. A. Gol 'dberg [3] in 1956. For  
k = 2  see Theorems 6 and 7 of [5]. The estimate is the best possible for a mero- 
morphic solution could be an elliptic function in which case T(r, w) exceeds a con- 
stant multiple of r 2. 

Lemma 6. I f  k-~l  or 2 and i f  w(z) is a solution which is an entire function 

with only a finite number o f  zeros then necessarily 

(1.7) w (z) = Ce"  

where C is a constant and a is a root o f  a characteristic equation. 

Lemma 7. The determinateness theorem o f  Painlevd holds for  k =  1 and 2, 
i.e. analytic continuation o f  a solution along an arc o f  finite length always leads to 

a definite limit, finite or infinite. 

The original theorem holds for DE's of the form w" = F(z, w) and is not valid 
for equations of second or higher order. For  a proof of  Lemma 7 see Theorems 
3 and 4 of [6]. 

Lemma 8. I f  k =  1 or 2 and i f  all solutions are single-valued then the solutions 

are rational functions either o f  z or o f  e ~ for  some a or o f  a Weierstrass p-function 
and its derivative where the argument is linear in z. 
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These are the functions for which Weierstrass proved algebraic addition the- 
orems. 

For k-- 1 the result is due to Fuchs [2]. For k = 2 see [7] where ideas of Fuchs 
and Ludwig Schlesinger [9] are combined with the results of Paul Painlev6 and 
Ren6 Gambier concerning second order DE's with fixed critical points. See E. L. 
Ince [8, Chapter XIV]. Birational parametrization of the curve (1.3) leads to a second 
order DE of the Painlevr---Gambier type. Of the 53 types shown by them to have 
fixed critical points only 17 could possibly be transforms of a second order BB- 
equation. Of these 15 lead to solutions which are of the type specified in Lemma 8 
and will preserve this form under the birational transdormation. The other two 
types have to be rejected because their solutions are p-functions of a non-linear 
argument. In one case the order would be 4 instead of 2 and in the other case there 
are infinitely many singularities which are limit points of poles and the solutions 
could not approach definite limits. 

Our program in this note is to extend the results for k =  1 and 2 to larger 
values of k. 

2. The Nevanlinna order 

We start with Lemma 5. 
Suppose that w(z) is a canonical solution of (1.2). Our first task is to study 

the nature of the DE in the neighborhood of a pole of order o~ of the solution. All 
poles may be of the same order but there are other possibilities and what they are 
is determined by the behaviour of the algebraic function x~A(x)  defined by 

(2.1) P[x, A(x)] = 0 

for large values of Ixl, The function A(x) has a finite number of finite algebraic 
singularities where the various determinations of A (x) are finite. Let R be so large 
that all the branch points lie in the disk Ixl<R. Further restrictions will be im- 
posed on R later when needed. There are n branches of A (x) at infinity and they 
are of the form 

(2.2) A (x) = x q {a o + ~'~=1 aJ x- j / ' }  

where q is a rational number, l < q < - k + l .  The values of q are determined from 
the diagram of Puiseux [6, section 2 for k =  1 and 2]. The coefficients aj are 
uniquely determined by P(x, y). The series in (2.2) converges for Ixl->R. We may 
assume that R is so large that 

1 
(2.3) ~j~=x lajlR-J/m < ~ Iao[ 
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so that for Ixl~R 

(2.4) 
1 

f x -qA(x) -a~ < X la0l. 

At the poles of  order a the corresponding branches of  A (x) have 

a + k  
(2.5) q - 

ct 
and m is an integer which divides 5. 

To each of the branches oi' A (x) corresponds a reduced first degree DE 

(2.6) w(k)(z) = [w(z)]q{ao+,~.=x aflw(z)]-J/m}. 

Suppose now that w(z) satisfies a reduced DE of  type (2.6) and has a pole of  
order ct at z = z  o. The solution is given by a convergent Laurent series 

(2.7) w(z) = 2 ~ = o  cp(z-- Zo)-'+C 

The series is absolutely convergent in a punctured disk 

(2.8) 0 < IZ-Zol < r. 

Here the coefficients cp are independent of  z 0 since the equation (2.6) is auto- 
nomous. The leading coefficient r is a root of  

(2.9) ao (Co) k[" = (-- 1) k ~ (5 + 1) ... (~ + k -  1). 

Once c o has been chosen then all the other coefficients cp are uniquely determined 
and this implies that r, the radius of  convergence, is known. The radius can have 
a value taken f rom a set of  at most  kn elements. Let Q be the infimum of  these kn 
positive numbers. 

I t  is now seen that with each pole of  w(z) we can associate a polar neighbor- 
hood 

(2.10) U, = {z; I z - z , l  < o} 

which contains one and only one pole z = z , .  The multiplicity of  the pole may 
differ f rom one pole to the next but 0~ is an integer and at most  equal to 
A = k [ m i n q - - 1 ]  -1. This means that we can estimate the enumerative function 
of the poles 

(2.11) n(r, co ;w) < 4Ao-ZrZ[1 +o(1)]. 

1 The estimate is obtained by determining how many disks of  radius -~ 0 can be 
placed in a large disk of  radius r when no overlapping is allowed. Each small disk 



Higher order Briot---Bouquet differential equations 275 

can contain a pole of  multiplicity at most A. N(r, oo; w) is at most half of  (2.11). 
Since the order is finite the proximity function of  the poles 

m(r, ~o; w) = O(log r) 
so that 

(2.12) T(r, w) < CrL 

Thus the Nevanlinna order is at most 2. On the other hand, this value 2 is reached 
whenever the solution is an elliptic function of  z or of  a linear function of  z. Thus 
we have proved 

Theorem 1. The Nevanlinna order of a transcendental meromorphic solution 
of  a kth order Briot Bouquet differential equation is at most two and this value is 
reached i f  the solution is doubly-periodic. 

3. The case q = k + l  

This case has many interesting features and merits a detailed study. It is present 
when Pn(x) attains its maximum allowable degree 5 n = ( k + l ) n  so that 

(3.1) Pn,(k+l) n 7~ O. 

Then at infinity all branches of  A(x) take the form 

(3.2) t~(X) : x k + l { a o J f - ~ . = l a j X - J } ,  

Here ~=1 so that all poles are simple, m--1 since m divides ~. There are 
n distinct sets of  coefficients {a j} and corresponding radii Rp, p- -1 ,  2 . . . .  , n 
so that for the pth branch the series (3.2) is absolutely convergent for Ix] >Rp. 

To each of these branches of  A (x) corresponds a reduced first degree DE 

(3.3) W (k) (Z) = [W (Z)] k +1 {a 0 _{_,~;=1 ai [w (z)]-J}.  

Besides these DE's we are also interested in the associated DE's 

(3.4) 

Here right at the outset we are faced by the question: Given a canonical solu- 
tion w(z) of (1.2) which satisfies a particular branch of  (3.3) does it also have to 
satisfy an equation of  type (3.4) I f  so, how is the equation to be found? We shall 
sketch a method of  construction for the second equation which amounts to an 
existence proof. 
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Theorem 2. Let Ai(x) be the ith branch o f  A (x) at oo. Let w(z) be a solution o f  

(1.2) which satisfies 

(3.5) w (k) (z) = Ai [w (z)] 

in the polar neighborhoods Uij of  the poles zij o f  w (z). Then there exist k convergent 
Laurent series 

(3.6) Bi~(x) = xe{Cov + ~ ' = 1  cJv x - j }  

so that w(z) satisfies one o f  the DE's  

(3.7) w' = Bi~ (w) 

in polar neighborhoods Uij. Here co is one o f  the kth roots of  

(3.8) a0 = k ! co k 

and the coefficients are determined uniquely in terms o f  Co and the aj's. 

Preliminary sketch. We shall discuss the case k = 3  here. The general case 
will come out as a byproduct  of  other considerations. We are given 

(3.9) w(3) = w4{ao +~ '~=x  ajw-J}  �9 

We postulate 

(3.10) w" = w2{co+~~ cjw-J} -- weB(w). 

Then 
w" = [2wB(w) + w e if(w)] w" = 2w 3 B e (w) + w 4 B(w) B'  (w) 

and 
(3.11) w (3) = 6w'B3(w)+w5B2(w)t8B'(w)+wa"(w)]+w6B(w)[a'(w)]L 

At w =  ~o these three terms are of  order 4, 3 and 2, respectively. Here we substitute 
the series for B, B" and B", multiply out, collect terms and equate the result to 
(3.9). The first two results are 

(3.12) 6c~ = ao, 12c~cl = al. 

The coefficients cj are uniquely determined once the value of  co has been chosen. 
For  a particular cy makes its first appearence among the coefficients of  w 4-j in 
the first term of  (3.11) where it is multiplied by a positive integer times ~ -1 .  In 
the second complex cj goes with w 3-j  and in the third complex with w 2-j. This 
shows that c~ is uniquely determined in terms of  c o and ao, al . . . . .  aj. Questions 
of  convergence are left open for the time being. [ ]  

Our  main interest in the associate DE (3.5) is due to our desire to study 

(3.13) w'(z) [w(z)] -2 - a ( z )  
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for z in the open set 

(3.14) U-~ {z; [w(z)l > 2). 

Such a study will lead to a number of  important results. We shall need 

Lemma 9. Let w(z) be a solution of  (1.2) where p, ~k+l),;~0. Then for zEU 

(3.15) w~k)(z) = B(z, w)[w(z)] k+l 
where 
(3.16) IB(z, w)I <- 2 M + l  and M - -  max IP~i]. 

Proof. We have [ej(w)[<-2MIwl (k+l)~ and well-known estimates of  the roots 
of  an algebraic equation in terms of  the coefficients yield (3.16). I I  

We aim to show that Q(z) is holomorphic and bounded for z in U. We have 
an estimate of  w~k)(z) in terms of  w(z) in U and we want to find an estimate of  
w" (z) in terms of w (z). This is a variant of  the classical Hadamard- -Kolmogorov- -  

L a n d a u  problem: Given estimates of a function and its derivative of  order k, find 
bounds for its j th  derivative, l<=j<=k. For the literature see [4] and [10]. In the 
H--K-- -L  theory the estimates refer to normed vector spaces and take the form 

(3.17) 

I f  we have 
(3.18) 
then 
(3.19) 

IIf~J)ll k<= Cjk Ilf llk- J ll f(k)ll j, 

IIf~k)ll ~ (2M+ 1)Ilfll T M  

Ill'l] ~ Cllfll 2 

for some fixed constant C. This is the desired estimate, but where is the space? 
We shall find one below when the situation is clearer. 

Consider now a particular branch of  A(x) given by (3.2) in some subset of 
U, in particular the polar neighborhood Uij of the pole z~j.. All the poles are simple 
and at z=z l j  we have an expansion 

(3.20) w(z) = Z ~ ~  bp(z-ziAp-1 
and 

(3.21) a (z) = Z o~= o qp ( z - zij)'. 

Since the DE is autonomous the coefficients bp and qp are independent of  z~j and 
depends only upon what branch of  A (x) and what value of  b0 have been chosen. 
There are n different branches to which correspond kn sets of  coefficients {bp} 
and {%}. There are also 2kn radii of  convergence R~ and R~ for the two types of 
series (3.20) and (3.21). 

Here R~ is the distance from a pole in the/-series to the nearest pole of  w (z) 
and this pole may be either in the /-series or in a different j-series. In either case 
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the direction from the pole to the nearest pole is the same for all poles of the 
/-series. I f  the nearest pole is also in the/-series, this means that the/-series contains 
a string of  equidistant poles zio+nco i. I f  the nearest pole is not  in the/-series but  
say instead in the j-series, then at a distance R) there is another pole which may 
belong to the j-series or not. After a finite number of steps, at most n, we encounter 
a string of  poles which have already figured in the process. If  all n branches of  
A (x) have been accounted for, we are through. If  not, then pick a pole in one of 
the complementary sets and repeat the argument. 

The second set of radii, the R~, also gives important information. The only 
finite singularities of Q(z) are the zeros of  w(z) and R~ measures the distance from 
the pole zij to the nearest zero, say (~j. Moreover, arg (zij-(~j) is the same for 
all j and depends only on i, i.e. on the branch of  A(x). Thus a string of equidistant 
poles brings with it a string of  equidistant zeros. This suggests strongly that our 
solution w(z) is periodic, simply or doubly periodic, with the periods co i where 
of course at most two of  them can be linearly independent over the domain of the 
nteger s. 

4. More on Q (z) 

Suppose now that w(z) is a single-valued solution, not a constant or a rational 
function or an entire function, and consider the boundary set OU= {z; [w(z)[=2}. 
It consists of infinitely many ovals Vij and possibly one or more curves V which 
extend to infinity. Here i =  1, 2 . . . .  , n and for a fixed i all ovals Vii are congruent 
by the autonomous property of the DE. We may assume that each oval Vii contains 
one and only one pole zlj. I f  this is not  true at the outset, it may be achieved by 
a suitable affine transformation w=av, z=bs. This changes the coefficients in 
the various expansions and affects the bound M of the coefficients in the resulting 
differential equation. This is immaterial for our purpuses but what counts is that 
if a is sufficienly small the ovals are forced to separate so that each of  the new 
ovals contains one and only one pole. We assume that this has already been 
achieved. 

Fix the value of  i and consider an oval Vii. Here there are two possibilities: 
either Vi~ lies entirely within the circle [z--z~j[=R~ or partly outside the circle. 
For  a fixed value of i the same alternative holds for all values of j. In the first case 
IQ(z)[ is bounded inside and on V,j with the same bound for all values of  j. If  the 
second alternative holds we fall back on Lemma 9 and the Hadamard--Kolmo-  
gorov--Landau theory. 

For  a fixed i we can parametrize V,j in terms of  arclength, O<=t<=L. We con- 
sider the space of  functions t ~ f ( t )  which are continuous and periodic with 
period L and use the metric defined by the sup norm. Then w(z), z~ Vij belongs 
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to this space and so do its derivatives of all orders. The H - - K - - L  theory applies 
to this space and shows the existence of a number C such that 

(4.1) Ilw'll ~ <_- C IIwII ~-111w(k)ll = C2k-111w(k)[I. 
But on Vii Lemma 9 still holds so that 

(4.2) Ilw'll =< 4 [C(2M+ 1)] t/k 
and hence 

(4.3) I[al[ <-- [C(2M+ l ) ]  x /k  , 

and this is now the bound of IQ(z)l inside and on all ovals Vij for a fixed i. Here 
C depends upon i which affects the parametrization and the arelength. But there 
are at most n different values for C that can occur so the conclusion is that IQ(z)l 
is uniformly bounded inside and on all the ovals Vij. 

Next we have to prove that there can be no level curves V extending to infinity. 
To prove this we need Theorem 2. 

Proof o f  Theorem 2. By (3.20) we have 

(4.4) w(z) = Z o  bp(z-z~j)  , -x  

convergent for 0 <  lz-z~jl < R  1. The corresponding polar neighborhood is 

(4.5) Uij = {z, lz-z i j[  < 0}, 0 = minRl .  i 

These neighborhoods may be too large for our present purposes so we define 
reduced polar neighborhoods 

(4.6) U-*.,~ = {z, Iz-z i j l  < a}, a <= min R ~ . .  
t 

Then Q(z) is holomorphic and uniformly bounded in all the U;* 's, that is 

(4.7) w'(z) 
[w (z)]~ = Z ~  q~ ( z -  z,j)p 

is holomorphie and bounded in U~* uniformly in j.  Then by the inverse function 
theorem 

(4.8) z -  z~j = Z 7  am [w (z)]-m 

and this is valid for large values of Iw(z)l, that is in some neighborhood of z~j in- 
dependent of  j.  We may assume that the series (4.8) is absolutely convergent for 
Iw(z)l >3, safely inside the oval Vii, and that 

1 
(4.9) ~ 3-mldm] < -~ R~. 
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There is evidently a B such that 

(4.10) 

It follows that 

1%1 ~ B2P(R~) -p, Vp. 

w'(z) (4.11) [w(z)p -- Z ~  q v { Z 7  d,.[w(z)]-m} v = Z~=o qvZ2=pdpm w-m 

= qo + ql dll w -  1 + (qld12 + qz d2z)w- 2 +., .  

= c 0 + Z :  c ~ [ w ( z ) ]  -m 

where the double series is absolutely convergent and the rearrangement is permitted 
by the double series theorem of  Weierstrass. This proves the validity of the ex- 
pansion (2.11) in suitable polar neighborhoods for each fixed i independent of j .  

We shall now prove that there can be no level curve V: Iw(z)l=2 which ex- 
tends to infinity. To this end we take the reciprocal of (4.11) and obtain a result 
of the form 

dz 
(4.12) dw = ~ j = o  eJ w - j - z  

convergent for large Iw[, say for Iw[~g. Integration gives 

(4.13) 
ej Z(W) ~-- ZO"~ Zo ~ {Wo J--l--w--J--1 I 

j-t- I 

also convergent for  Iw I =>R. This shows that the inverse image of  the circle Iw} = R  
cannot possibly be an unbounded curve of type V. Without restricting the general- 
ity we may assume R<-2. We have then finally 

Theorem 3. The set U={z, Iw(z)l>2} coincides with the union of the interiors 
of  the ovals Vii, one around each pole zij, and IQ(z)l is uniformly bounded in U, 

This was proved under the assumption that P,,(k+l)n~O. We can dispense 
with this assumption as long as the parameter q of (2.2) exceeds 1. The poles are 
now of an order ~>1  and q=(e+k)/c~. In this case 

(4.14) Q(z) = w'(z) [w(z)] -1-1/~. 

The formulas and the argument become rather messy so we shall not elaborate 
this point any further. 
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5. Determinateness 

After these lengthy preparations we can now prove 

Theorem 4. Let w(z) be a solution of  

(5.1) [w(k)] n + Z~'=l  e j (w)  [w(k)] n -  j = 0 

where the degrees of  the coefficients are fij<=(k+l)j. Analytic continuation of  
w(z) along a path of  finite length leads to a definite limit, finite or infinite. 

Proof. Let the solution w(z) be given b y i t s  initial values of  w, w', .... w (k-l) 
at Z=Zo and let the analytic continuation take place along a path C from z=zo 
to z=~.  Here C is supposed to be of  finite length and the analytic continuation 
has encountered no singularities except possibly at the endpoint z = ~ .  Let the 
image of  C in the w plane be F, F = w (C). I f  w (z) does not  have a definite limit 
as z - ~  then F cannot be of finite length. 

Suppose to start with that F is confined to the disk Iwl<R where R is so large 
that all the branch points of the algebraic function Y=A(x),  defined by (2.1), 
belong to the disk. The only singularities of  A (x) for lxl < R  are algebraic branch- 
points where all the determinations of  A (x) are finite. This means that there is 
a constant B=B(R) such that 

(5.2) IA(x)l <-- B for Ixl < R 

and this holds for all the determinations of  A (x). Translated in terms of  the DE 
(5.1), this means that i f  Iw(zo)l<R and F stays in the disk Iwl<=R, then every- 
where on C we have 
(5.3) [w(k)(z)[ <= B. 

Successive integrations show that Iw'(z)l is bounded by an expression of  the form 

(5.4) k [l(z)]i-1 where Bk = B, B1 >= lw(~)(zo)l ZJ=IBJ (j--l)! 

and where l(z) is the length of  the arc on C from zo to z and hence <=I(C). Since 
the length of  the arc F, 

(5.5) Iw'(s)l lasl, 

is evidently bounded, w(z) must tend to a finite definite limit as z - ~ .  
Hence for indetermination to be possible the image curve F must escape from 

the disk [w[<-R. It may cross the boundary [w]=R a finite number of  times or 
infinitely often. We start with the first case. There is then a last crossing after which 
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the curve stays outside the disk. Let z = z l  be the point on C where /" has the 
last crossing and let F 1 be the image of  C from z = z l  to z=~.  We apply reci- 
procation to Fx 

1 w'(z) 
(5.6) v(z) = - -  v '(z)  = w(z)' [ w ( z ) ] ~  " 

Let ~ be the image of  I'1 under the reciprocation. The length of ~ is 

(5.7)  = Iv'(s)l Ids[. 
Z 1 

Here we again recall the importance of the behavior of  A (x) for large values 
of Ix I. I f  the exponent q = k + l ,  its maximal value, then v ' ( z ) = - Q ( z )  which is 
holomorphic and bounded in any domain bounded away from the zeros of the 
solution. This means that the integral in (3.7) has a finite value, v(z) tends to a 
finite limit which may be zero. Hence w(z) has a definite limit which may be 
infinity. 

Now the same conclusion is valid for any q with l < q < k + l  for by (4.14) 
already w'(z)[w(z)] -1-11" is bounded for large values of Iw(z)l and afor t ior i  this 
is true if the exponent is lowered from - 1 - 1 / ~  to - 2 .  

We don't  have to consider the case q =  1 for then the solution is an entire 
function and evidently tends to a finite limit for any path C of  finite length. 

Now if 0 < q < l  it is found that w(z) becomes infinite with z, 

(5.8) w(z) = O(z  k/~l-q~) 

so the existence of  a definite infinite limit is obvious. Similar estimates hold for 
q < 0  but now multi-valued solutions may appear. 

It should be noted that our estimates are tied up with the assumption 6~<_ - 
( k + l ) j .  I f  this is violated the situation may change. Thus the D E  

W(k) = W ~ k + l  

is satisfied by a constant multiple of  z -1/~. 
We have seen that under the assumptions made w(z) must have a definite 

finite or infinite limit if the image curve F crosses Izl = R  a finite number of  times. 
But if there are infinitely many crossings it is easy to show that the points of inter- 
section as well as the intermediary arcs tend to a definite limit located on [wl=R. 
This takes care of  all possibilities. �9 
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6. Entire solutions 

Suppose that the equation is 

(6.1) [w(k)] n + Z~. =1 PJ (w) [w(k)] " -  j = 0 

where 6j<-_j. Then there can be no poles and if  there exists a canonical solution 
it must be an entire function. Here we have 

Theorem 5. The Nevanlinna order o f  an entire solution o f  (6.1) is <=1. 

Proof. Let 

(6.2) U = {z, Iw(z)l > 2}. 

For  zE U we have 

(6.3) w(~)(z) = B(z, w)w(z), IB(z, w)[ -< 2 M + l  

where M----max [Po[ and Pij is the coefficient of  w ~ in Pj(w). To prove this just 
replace w" by w (k) in the proof  of  Lemma 3 of  [5]. 

The set U is not  necessarily connected and its components extend to infinity, 
There can be no finite "islands" since poles are excluded. The analogue of  (2.6) 

reads 

(6.4) w `k) ( z )  = w ( z )  {a  0 + 27=1 aj [w (z)l-J} 

where ~ is a root of  the characteristic equation 

(6.5) C(t) --- tn +Pl, ltn--l + p2,2tn--2 +.. .  + Pn, n : O. 

Let w(z) be a solution of  (6.1) with initial values 

W(0) = CO, wt(O)  = C 1 . . . . .  W(k--1)(0) ~--- ek_  1 (6.6) 
and set 

(6.7) [Cat = c j ,  f (r)  = Z o  -1 c j r  j, ( 2 M + l )  1/k = B, 

(6.8) -~--~j=xexp(coJu) = K(u), co = exp , 

unk -1  

(6.9) Z~=x ( n k -  1)----------~. -- Nk(u). 

Then 

(6,10) 
and 

(6.11) 

Nk(u) = K" (u) 

F(r) = f(r)  + B fro Nk [B(r-- s)]f(s) ds 

is a majorant of w (rei~ It is clearly an entire function of  r of  order 1. This implies 

that the order of  w(z) is at most 1. �9 
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We shall see that this limit is reached in various special cases. We start by 
proving the extension of  Lemma 6. 

Lemma 10. An entire solution of a BB equation of type (6.1) which has only 
a finite number of  zeros is necessarily a constant multiple of  exp (az) where C(ak)=0. 

Proof. For the first and second order cases see Lemma 1 of  [5]. The same type 
of argument applies for k > 2 .  A solution of the desired property will be of the 
form 

(6.12) w(z) = Q(z)F(z)  with F(z) = e "z 

and where Q(z) is a polynomial in z of  degree m=>0. The constant a is to be 
determined. Then 

(6.13) w(k)(z) = j=0 aJQ(k-J)(z) F(z). 

This is substituted in the DE giving a result of  the form 

(6.14) .~'=0 Sj(z) F(jz)  = 0 

where the Sj(z) are polynomials in z each of  which must vanish identically if w(z) 
is a solution. The terms of highest degree in S, come from 

(6.15) C(a k) [Q (z)]" 

and will vanish identically iff a ~ is a root of  the characteristic equation (6.5). This 
determines the admissible values of a. Terms of next highest order in S, come from 

(6.16) KC" (a k) [Q (z)]"-I Q, (z). 

Here there are two possibilities: either Q'(z ) -O or a k is a multiple root  of  (6.5). 
In the first ease Q(z) is a constant and we have only to determine what conditions 
are imposed on the coefficients p~ if Ce ~" is a solution. By assumption p ~ = 0  for 
i >j.  The terms Pu along the main diagonal determine the values of a k. The coeffici- 
ents above the main diagonal are not  arbitrary. In fact we must have 

(6.17) Z Pl, i+r, a("-i)k = O, m = 1, 2 . . . . .  n. 

Any set of  numbers p~,j that satisfies these conditions will do. The constant C is 
arbitrary. 

If, however, it is the first factor C ' (a  k) which is zero, we notice that in S,(z) 
the terms of  highest order now come from 

(6.18) Q,-1Q,, and Q,-2(Q,)2 

which are of  the same degree ran-2  if  m > l .  Suppose that 

Q(z) = bozm + bl zm-l + ... .  
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Then 
nQ"-IQ " = n m ( m -  1)bg zm"-~ + n(m - 1 ) ( m- 2 )  b~-l bx zm"-3 + ... 

n ( n -  1)Q"-2(Q') 2 = n ( n -  1)m2bgzm'-~ + n(n - 1)[(n-2)m2 + 2m]b~-a bl zm"-3 + .. . .  

These two expressions have to be multiplied by polynomials in a and added. Ac- 
tually the multipliers are simply ~ k ( k - 1 ) a  "k-2 and k2a "k-2 so unless a = 0  the 
two terms in (6.18) cannot be made to vanish. It follows that we must have 
Q ' ( z ) - 0  which brings us back to the first case and the same conclusion. [ ]  

Lemma 11. An exponential polynomial in e ~: and/or e -~= will satisfy a BB- 
equation of  the kth order and sufficiently high degree. 

Proof. For k =  1 and 2 see Lemma 2 of [5]. The same argument applies for 
k>2 .  Let $1 be a finite set of distinct integers and set m=maxjr  lJ]. Let Sp 
be the pth  sum-set, i.e. the set of all integers of the form 

(6.19) Jx +J2 + . . .  +Jp 

where each jE S1 and are not necessarily distinct. Then the number of  distinct ele- 
ment of Sp is at most mp+ 1. Suppose that 

(6.12) w(z) = . ~  jEs~ ci eja~ 

is the given exponential sum. Then 

[w ~k) (z)]" = ~ j  E s, Cj (a) e ja" 

and the same exponentials figure in pv(w)[w(k)]"-L On the other hand, (6.1) in- 
volves ~ ( k +  1)n(n+ 1) coefficients Pij. We substitute (6.20) in (6.1), expand, collect 
terms and equate the coefficients of e jaz to zero. This gives at most mn+ 1 linear 
equations for the determination of  the p~/s. I f  ~ ( k + l ) n ( n + l ) > m ( n + l ) ,  i.e. 
( k + l ) n > 2 m  there are certainly more unknowns then equations. The corre- 
sponding matrices may be assumed to have positive ranks. We can then determine 
a certain number of the piss in terms of the ci 's and the remaining arbitrarily 
chosen pij's. This gives one or more DE's of the desired type satisfied by the given 
exponential sum. [ ]  

7. Final remarks. Does Lemma 8 hold for k~-2? The available evidence 
favors such an hypothesis. 

The author wishes to thank a referee who caught several errors in the original 
manuscript. 
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