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1. Introduction 

Let u(z) be a function subharmonic in the plane, let 

M(r,  u) = max u(z), 
Izt = r  

m (r, u) = inf u (z). 
Izl = r  

The order Q and lower order 2 of u(z) are defined by 

e = ~ .!0gM( r, u) 
2 r~---~ log r 

Heins [5] has proved the following theorem, which is the analogue for sub- 
harmonic functions of the Weierstrass representation formula for integral functions. 

Theorem A. Let u(z) be a function subharmonic in the plane, harmonic at z=O 
and o f  order less than one. Then there exists a unique non-negative Borel measure Ix 
which is such that 

(1.1) u(z) = l o g  1 - - ~  dlte~ 

for all z. 

The proof of Theorem A depends on a general representation theorem o f  
Riesz [8] for functions subharmonic in a domain. We will be concerned in this paper 
with the asymptotic behavior of u(z) as Izl tends to infinity and this behavior will 
remain unaffected if the values of u(z) in a small circle about the origin are replaced 
by the Poisson integral of the boundary values of u(z) on the circle. This modified 
function is then harmonic in the small circle (and so at the origin) and subharmonic 
in the plane and consequently allows the representation (1.1). It will be assumed 
hereafter that this modification has been carried out and that (1.1) holds. 



260 P.C. Fenton 

Anderson [1] has proved: 

Theorem B. Let u(z) be a function subharmonic in the plane and satisfying 

(1.2) m(r ,u)  < 0(1)  as r -~  co, 

(1.3) lim ~ < co. 
r ~ o o  r 

Suppose we are given ~5>0, k > l .  Then, for all r > 0 ,  there exists a continuous func- 
lion O(r) such that, i f  

(1.4) 

1hen 

(1.5) 

Moreover 

(1.6) 

p0(r) = # { k - l r  <- [z[ < kr, 6 <- largze-i~ < } 

/~0(r)= o(r 1/2) as r ~ o .  

0 ( r ) = o ( l o g r )  as r ~ o o .  

That  the conclusion (1.6) concerning the growth of  Off) may not be the best 
possible is suggested by a theorem of Kennedy [6] from a special case of  which 
it follows that, if  u(z) is bounded on a receding curve y and satisfies (1.3), then 

(1.7) lira arg z (loglz])l/~ - 0  as z -~oo  along ~. 

In Theorem 1 below it will be shown that, under more general hypotheses than 
(1.2) and (1.3), the conclusions (1.5) and (1.7) hold and in a related theorem, Theo- 
rem 2, an estimate for the Riesz mass of  u outside a narrowing angular neigh- 
bourhood of the curve argz=O(r)  will be given. 

2. Statement of results 

Given numbers k and 6, with k > l  and 0<-6_<-zc, let 

(2.1) S(r, k) : {z : k - l r  < [z I <= kr}, 

(2.2) S(( ,  k, 6) = {z : k - l r  < ] z] <- kr and [argzg-l[ => 6}. 

Let 0 be a positive number less than one and let u(z) be a function subharmonic 
in the plane and of  order 0 satisfying 
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(A) there is a finite constant K such that 

dr 
(2.3) f ~  {m (r, u) -- cos rooM(r, u)} r--d-g T <= K, 1 < r 1 < r2 < oo, 

and 
(B) there are numbers ~ and fl, with 0<~</~<oo,  such that for all large r 

(2.4) ctre _<-- ~{z : IzI < r} --<_/~r~. 

Condition (A) is implicit in the work of Kjellberg [7] and has been much exploited 
subsequently, notably by Anderson [2] and Ess6n [4], 

We will prove 

Theorem 1. Let u(z) be a function subharmonic in the plane and o f  order Q, 
where 0 < Q < I ,  which satisfies conditions (A) and (B) above and let 

Then there is a curve C: z=re  ~('), where ~o(r) is a continuous function satisfying 

( 2 . 6 )  [e(R~)-q,(Rt)I = o log as min(R1,R2)  ~ co, 

and a continuous function A( t )  satisfying ~=A(t)>=O, A(t)-*O as t ~  and 

(2.7) f~  ~ (t)~at < ~ ,  
t 

for which the following is true. I f  ~ is a point of  C, then 

(2.8) p[S(~,  k, .4 (1~1)1 = o{~[S(l~[, k)]}, 

where I~ is the Borel measure occurring in the representation (1.1). 

We will also prove the related theorem: 

Theorem 2. Let  u(z) be a function subharmonic in the plane and o f  order O, 
where 0 < Q < I ,  satisfying conditions (A) and (B) above. Let k be as given by (2.5) 
and let C be the curve, # the measure, of  Theorem 1. Then there is a function e(t) 
satisfying rc >= ~ (t) >-0 and ~ (t) ~ 0  as t ~ 0% and a function v:(t) satisfying 1 >- v (t) >= O, 
v (t)-~O as t ~  oo and 

(2.9) f =  ~(t_~ < oo 
t 

for  which the following is true. I f  ~ is any point on C, then 

(2.1o) t,[s(~, k, ~(l~l)] <- v(I~l)~[S(l~l, k)]. 
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The case Q = 1  of Theorem 1 has much in common with a particular case of a 
theorem appearing in [3]. In [3] David Drasin is concerned with the behaviour of 
the curves on which a function possesses asymptotic values and, in the case of an 

1 with a single asymptotic value, he shows that the curve entire function of order -~ 
is close (in a certain sense) to a curve: z=re ~~176 where O(r) is a continuous, piece- 
wise linear function of log r satisfying 

f = rO" (r)2 dr < oo . 

Such a curve is ot" precisely the same kind as that occuring in Theorem 1 and it 
follows from the asymptotic behaviour o f  the entire function that 

O ( r ) - 9 ( r ) = o ( 1  ) as r ~ .  

It seems not unlikely that the two curves are in fact interchangeable. 

3. Preliminaries to the proofs of Theorems 1 and 2 

Let u(z) be a subharmonic function satisfying the hypotheses of Theorems 1 
and 2. We assume that u(0)=0,  which may be done without loss of generality. 
We define 

(3.1) #*(t) = p[{z : Iz [ -< t)] 

and introduce a new function U(z) given by 

[Zld#*(t) . l+ 7 (3.2) V(z) = f 7 

U(z) is a well-known auxilliary function, the properties of  which are summarized 
on page 204 of [5]. Among these properties is the following relation: 

(3.3) re(r, u)+M(r, u) >- re(r, U)+ M(r, U). 

We will require the following lemmas, the first of which is a consequence of  
(2.4) and the properties of U, the second being an important result of Kjellberg [7]. 

Lemma 1. Let U(z) be the subharmonic function (3.2). Then 

(3.4) ~rc cosec zc 0 < li___m.m M(r, U) < 1-~ M(r, U) = = - -  <= fin cosec nO. 
r ~  r q  r ~ * o  r~  

Lemma 2 [7]. Let U(z) be the subharmonic function (3.2). Then there exist 
constants B1 and B2, depending only on O, such that 

dr M(rl, U_______)) M(r2, U) 
(3.5) {m (r, U) - cos rooM(r, U)} ~ ~ B 1 ~ B2 

for all 1"1, r2 satisfying 0 < r l < r 2 <  co. 
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4. A basic l emma 

A useful prel iminary result is: 

L e m m a  3. Let U(z) be the subharmonic funcion (3.2). Then 

U")i dr (4.1) f= {m (r, u) -- m (r, ~ < ~o. 

Let  a = m a x  ( 0 , - - c o s  nO) and  let 

P(r) = re(r, u ) -  cos ~z~M(r, u) - m(r, U) + cos rooM(r, U). 

Then,  f rom (2.3), (3.4) and (3.5), there is a finite constant  K 1 such tha t  

(4.2) J ;1 P(r) r--fig- f <: K 1 

for  all large values of  rl and  r2, with r2>=q. 
F r o m  (3.3) we see tha t  

(4.3) P(r) = m(r, u)--m(r,  U)+coszco{M(r, U)- -M(r ,  u)} 

>= m(r, u)--m(r,  U)- -a{M(r ,  U)- -M(r ,  u)} 

>= (1 -- a) (m (r, u) -- m (r, U)). 

F r o m  (4.2) and  (4.3) it follows tha t  

U dr (1 -- a) a [~l"/m (r, u) -- m (r, )} ~ -<: K 1 

for  all large values of  rl and  r2 with r~>=rl . Since a <  1 and re(r, u)>=m(r, U), (4.1) 
follows. 

5. S o m e  definitions 

We begin by mak ing  the observat ion tha t  the set S on which m (r, U ) = -  co 
has zero measure.  This follows f r o m  L e m m a  2, Also, for  r outside S, re(r, u)>= 
>=re(r, U) > -  ~o. 

Let r be a positive number  outside S and  let 

E(r) = {z : l z  I = r and u(z) < m(r ,u )+l} .  

E(r) is a non-empty  open set, since u(z) is upper  semi-continuous.  Let  El(r ) . . . .  , E , ( r ) ,  
say, be the largest components  of  E(r) and let (l(r) . . . . .  ( ,(r) be their centres. We 
choose tha t  one of  the (~(r), i= 1, 2, ..., n, which is such that,  with " a r g "  denot ing 
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principal argument  with range ( - z  r, ~r] (notation with which we will continue), 

arg ~i (r) = m~x {arg ~j (r)}, 
j = l  

and write ~(r)=~i(r  ). ~(r) is thus uniquely chosen for  each r outside S and 

(5.1) u(~(r)) < m(r, u)+ 1. 

Let e be any positive number  less than one and let k be as given by  (2.5). We  
define 6 (r, e) to be the upper  bound  of  all positive numbers  t for which 

#IS(if(r) ,  k, t)] => e'l~[S(r, k)], 

(5.4) 

so that  

(5.5) 

l=>~(r,  ~)->0. 

6. The functions 6 (r, ~) and ~/(r, e) 

We have 

Lemma 4. Let 6(r, a), q(r, e) be as defined in the previous section. Then 

(6:1) d r  < /. 

and 

(6.2) ~l(r,e) dr < ~ .  
r 

Let r be a positive number  outside S and define two positive real valued func- 
tions p~(t), #~(t)  for k-lr<t<=kr by 

(6.3) #*(t) = ~[{z : k - l r  < lzl <= t and [argz((r)- l I  _-> 6(r, e)}], 

(6.4) #*(t) = # [ { z : k - ~ r  < Iz[ ~ t and [argz~(r)-~ l < 6(r, e)}]. 

(5.3) e" = a . 

In the case where there is no positive number  t for which (5.2) holds we define 6 (r, e) 
to be zero. 

Let z (r, e) be given by  

~[s(~(r) ,  k, a(r, ~))] = ~(r, ~)#[S(r, k)], 

1 -> z (r, e) -> ~' and let ~/(r, e) be given by 

p[S(r  k, -~e)" 1 : n(r, e)#[S(r ,  k)], 

(5.2) 
where 



The distribution of the Riesz mass of certain subharmonic functions 265: 

We have, writing ~=~(r) and recalling that I~(r)] = r ,  

u(~)=flzt<.logll--~ld#ez 

-->J0 mg  1 -  dl~*(t)+f~. 1 ,  

I r d * log re"("~' l +fffl log 1-  7- .~(t)+ fff_~, 1 ----7--- dll*(t) 

= rn(r ,U)+fk~ log 1 ~ --log 1-- dl~*(t). 

Hence 
r k r  lolt--rei~(r'O [ 

(6.5) u(~)--m(r, U) >= Jk-lr g t--r dial(t)" 
Now, 

(6.6) It-retO(r'~ 1 + ~  sin2 6(r' e ) -  2 --> l+k2tS(r'e)s'  

where ks = 4krr-2(k - 1) -s. Substituting (6.6) into (6.5) and setting ka=~ks(1 +k27r2)-x~ 
we obtain 

(6.7) u (0  - m (r, U) ~ ~ log (1 + ks ~ (r, e) s)/~ (kr) 

= k  cS(r e)21~*(kr) 3 

= ~ ( ~ ,  ~ )~ [ s (r  k, ~(~, 5))] 
e' ka6 (r, e)2 ~[S(r, k)] 

e'~k3,~(r, e)2rQ 

since, from (2.4) and (2.5), la[S(r, k)]>-_~(kr)a-fl(k-lr)~ Q. 
From (6.7) and the definition of ~ (r) we obtain, for large r outside S, 

re(r, u)-m(r, U) + 1 >- e' flk36(r, e)2r Q, 

and from this together with Lemma 3 we obtain (6.1). 
1 In a precisely similar way, but with ~e replacing 6(r, e) in (6.3) and (6.4), we  

deduce that 

(6.8) re(r, u)-- m(r, U) + 1 >-- -~ eSflkarl(r, e)r Q. 

(6.2) follows from (6.8) and Lemma 3. 
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7.. Further definitions 

,(7.1) 

Let ro be a large positive number and define intervals 

In = [k"/4ro, k(n+l)/4ro], n = 0, 1, 2, . . . .  

Within each of these intervals we select a point s .=s.(e)  at which both 

(7.2) 

(7.3) 

9 6 (r, e) ~ dr, 
a(*"' ~)= < lo-b~ f 'o r 

9 tl (r, e) dr. 
< r 

Such a point must exist. For each of (7.2), (7.3) is false in a subset of I.  of logarithmic 
measure at most ~ log k and consequently the subset on which one or both of (7.2) 

log k, and (7.3) is false has logarithmic measure at most { log k, which is less than 
the logarithmic measure of I. .  

Let r let 0(s2.,e)=arg~n(e), n=0 ,  1,2 . . . . .  and let F(e) be the 
.curve defined by 

(7.4) F(e) : z = rei{~ )}, s~. <= r ~= $2n+2 , 

where k. is a constant given by 

k .  = (s~.+~- s~.) -1 arg ~.+i(e) 
~.(~) " 

'Then for r>-So we may represent F(~) by 

,(7,5) F(e) = re ~'(''"), 

where 7J(r, e) is continuous for r>-so . 
We define 

D(r, e) = 2{6(s2., e)+26(s2.+l, e)+6(s2.+~, e)+(s2.+2) -1} for s~. =< r <= s~.+~, 
(7.6) 

(7.7) E(r, e) {t/(s2.+2, e)+t/(s2., e)} for s~. --<_ r <-- s2.+2, 

for n=0 ,  1, 2 . . . . .  
The remainder of the proof proceeds as follows. We will show that 7J(r, e) 

satisfies the condition (2s also that D(r, e) tends to zero as r tends to infinity and 
that (2.7) holds for D(r,e) .  We will show that, for any point ff on F(~), 
#[S(~, k, D(f[ ,  e))]-<e/~[S(l(I, k)] and p[S(~, k, e)l=<E(t~[, e)/~[S(fl, k)], and that 
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E(r, 0 tends to zero as r tends to infinity and that (2.9) holds for E(r, O. Having 
done this the remainder of  the proof  is straightforward, though lengthy. It will 
be shown that the functions A (r), v(r) may be constructed form the functions 
D(r, l[n), E(r, l/n), n = l ,  2, 3 . . . . .  and also that the curve C may be obtained by 
piecing together segments of  the curves F(1/n), n = l ,  2, 3, . . . .  

8. Concerning F(0, D(r, O, E(r, e) 

(1) / ' ( 0  

Lemma 5. Let 4., ~.+1 be successive vertices o f  r (O.  Then 

1 (8.1) larg ~,~;+~1 ~- ~D(I~.I, O. 

Lemma 5 follows from (7.6) and two applications of  the following result: 

Lenuna 6. With s n as defined in section 7, 

(8.2) larg e'OC~.,O-~ I <= 6(s., e)+6(s .+~,  e), 

for n = O, 1, 2, 3 . . . . .  

From the definition of  s., s.+~<=kll~s.. Also, if (8.2) is false we have, for all 
small positive numbers t, 

(8.3) 
~[{z :~s. _= lzl > k-~s.+d] 

~_ !aES(s.e'~ k, 6(s., e)+  t)] + gES(s.+~e'~ k, 6(s.+1, e)+  t)] 

~" {fl (ks.)e - ~ (k-  t s.) ~} + 8' {fl (ks.+1) ~ - ~ (k-  l sn+ l) Q} 

~_ ~" s~. {~k ~Q/~ + BkO- ek -~/~- ek-o} 

1 < -f13g, 

from (2.5), (5.3) and the fact that e <  1. 
However 

(8.4) #[{z : k s  n ~ [z] > k - l S n + l } ]  ~ (~(ksn) ~ ~  Q 

>= s~.(~k~-~k-o/~) 

= ~s~., 

from (2.5), which contradicts (8.3). Lemma 6 is thus proved. 
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We will prove 

Lemma 7. Let D(r, ~) be as given by (7.6). Then 

O) i f  ~ is a point on I'(e) then for large I~I 

/t [S(~, k, D([~ l, e))] --< e#[S(l( 1, k)]; 

D (r, e) ~ dr < co; 
(ii) f =  r 

(iii) D(r, ~) tends to zero as r tends to infinity. 

Let ( be a point on F(e) and le t  q be the integer for which 

where the points ~, are the vertices of F(e), n--0,  1, 2, . . . .  
Now from Lemma 5 and the fact that D(I~ [, ~) is constant for S2q=[ff I S~q+z 

we have, w i t h  t=(S2q+2) -1, 

Iz[S((, k, O(l~'t, e))] <= t~ES(r k, ~O(l([, e)) u S(r l, k, { D(lr e))] 

--< t*[s(r k, ~ (Ir ~) + t) u S(r k, ~ (lCa+ll, 8) + t)] 

<= ~' (~ ( k s ~ .  + 2)' - ~ ( k -  ~ s~. + ~) + p (ks~,)~ - ~ (~ , ~ s~.)'} 

< 2 d ~  + (ilk Q- ~ k - 0  ~-- q 2 

~__ S~q 

"~ ~flS~q , 

-<-~[s( l~/ ,  k)], 

from (5.3) and (8.4), which proves (i). 
Turning to the proof of (ii) we have, from (7.2) and (7.6), 

f =  D (r, e)2 dr ./so r 

Finally, to prove (iii) 
tends to infinity, and this 

< 4 3 2 ~ o f i  " 3(r '~ )2dr+2f~or -adr<oo  ~ 

r 

it is sufficient to show that 6(s,, ~) tends to zero as n 
follows from (6.1) and (7.2). 



The distribution of the Riesz mass of certain subharmonic functions 269 

(3) E(r, 5) 

The analogue of  Lemma 7 for E(r,  8) is 

Lemma 8. Le t  E(r,  8 )be  as given by (7.7). Then 
(i) /f ~ is a point on F (e), then 

~[s(ff, k, 8)] -< E(I~[, ~)p[S(lr k)]; 

(ii) Z(r, 5) & < oo; 
r 

(iii) E(r, 8) tends to zero as r tends to infinity. 

The proofs of  parts (ii) and (iii) follow as do those of  parts (ii) and (iii) of  
Lemma 7. 

Turning to the proof  of  (i), let ~ be a point on F(8) with ]~] large so that 
D(]~[, e )<e  and E(]~[, 5)<8, and let q b e  the integer such that 

From Lemma 5 and the fact that D(]~], 8)<8, 

1 1 (8.5) ~[s(~, lc, 5)] <- t , [ s (~ ,  k, ~8)uS(~+1,  k, ~)]  

<= ~ (s~q +3, 5) {~ (ks~ ,  2)~- ~ ( k - l s ~  + ~)~} 

~ (s~. 8) {~(ks,,)~- ~(k-ls,q)o} 

o0  f / '1'. 

= ~(lfl. ~)/~g, 
from (7.7). (8.4) and (8.5) together prove (i). 

9. Concerning T(r, e) 

The third result required before constructing the functions of  Theorems 1 anti 
2 has to do with the slow angular variation of  F(D. 

Lemma 9. Le t  F (e) be the curve (7.5), 

F (e) : z = re i~'(', ~). 
Then 

]~(R~, 8 ) -  T(R1, 8)[ = o log-~,  ~ 
1 

as rain (R1, R~) tends to infinity. 

From Lemma 5 and the definition of  T, if ~ is a point on F(8) with 
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then, from (7.4), 

D(Ir ~) . < :  D(Ir e) 
(9.1) [~"([q' e)l ~- 2(s~+2-s2~) - 21r -1~') ' 
s o  

f~ t~'(t,e)~dt= l (1-k-1/')-z f~ D(t,")2dt < ~ o o  

t 

Consequently, for any large numbers R1 and R2, with Rz>-R1, 

17'(R2, e) - W(R1, e)l ~ FR~ l~/"(t, e)[ art 
- -  d R  i 

<- {f~:t~e'(t, t)~at} *'= { f~: _~}1/2 
w, IX/2 

= o l o g - ~  

as min (R1, R~) tends to infinity. 

10. The functions A (r), v (r), e (r) and ~o (r) 

In this section the functions A, v, e and q~ occuring in Theorems 1 and 2 are 
defined inductively. Let 

(10.1) Dl (R, n) = max { f l,.~ g D (r' n--~ J~ dr' f kl;2 g D (r' n-~ )'~ dr} r 

o0.3) F-,l(R,,,)=max{f,,l:~ e["~--~Jgr, fs , 

E~. (R, n) = max E R, , E  R , ~  , 

00.2) 

(10.4) 

(10.5) I 
Let R 1 be the smallest number for which Lemmas 7 and 8 hold for all [r 

z with e : z .  Let R2 be the smallest number greater than or equal to kR1 which is 
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such that Lemmas 7 and 8 hold for all [([=>R~. with e=-~ and such that 5 '  

DI(R2, 4) <= 2 -4, EI(R~, 4)<= 2- ' ,  

1 1 
D~(R, 4 ) < = ~  for all r=>R~, E z(R,4)<=~- for all R_->R~, 

1 , t~ llZ 
7'x(tl, tz, 4) <= ~ l o g ~  for all tl, tz ->- Rz, 

_ 1 1. t~ llz 
7tl(tl, ta, 5) ~ ~ [ l o g ~  for all tl, t~ _~ R2. 

For R2---> r > kl/2R1, define 

1 

For kl/*R, >= r > R~., define 

and define q~ (r) for kll2R, ~_ r > R, by 

1 
R, (k 1/2- 1) 

where c~ is the integer for which 

We proceed to define A(r), v(r), 8(r) and q~(r) by induction. Assuming that 
R~ . . . .  , R. and c1 . . . . .  c . - t  have been defined, let R.+~ be the smallest number no 
less than kR. such that Lemmas 7 and 8 hold for ]~I=>R.+I, with e = l / ( n + 4 ) ,  and 
such that 

D~(R.+I.n+ 3) <- 2 -"-8, EI(R.+~,n+ 3) <= 2 -"-3, 

1 1 
Dz(R,n+3)<--n+ 4 for R>-R.+I, E2(R.n+3)<=n+ 4 for R~-R.+I, 

~l(tl, t~,n+ 3) <= n--~l log~ l'2 for tl, t~>-- Rn+l, 

Tl(tx, t2, n+4) ~ n--~[log~ ll*for tl, t , ~  R.+l. 
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For  R,+I ~ r > kllg"Rn, define 

r l_]--2e.  1 ~, • ( r ) =  1 
n+3) - n+3" 

For kl/~R.+l>- r >R.+I, define 

1 1 

and define ~o(r) for kX/2R.+l~-r>R.+~ by 

~o(r) = Tt{r, n ~ l -  2e.-lrc 

v(r) = E r, 

4 
= 

-b Rn+l(kl/2r-R"+~ 1) {~ {r, ~+ 4} -- ~g /r, ~+  3) +2zc(c._x--G)}, 

where c. is the integer for which 

This completes the definitions of .4, v, ~ and ~o. The proof of Theorems 1 and 2 
will be completed in the following three sections, in which each of the functions is 
considered in turn 

11; Concerning A (r) 

It is evident from the definition of A that A (r) tendsto zero as r tends to infinity. 
Also, 

A (r) 2 dr <- 4 Z1 dr 
1/2RI r !12 Rn r 

pkl/ZRn+l {D {r, 1 ^1 +D Jr, ~+4}} 2 dr 
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5 ] }  a r + 8 ~ 7 2 - . - 1  s f;,,,,1 {D{'' {'' 1 ' r 

~ O o  

which establishes (2.7), 
Let ( be any point on C, with R~+~>=f(l>k~/2R~. Then, from Lemma 7 part (i), 

1 
~[S(~, k, A (l~l))] ~ ~ - 5  ~[S(tffl' k)]. 

Let ( be any point on C with klI2R,+I>--_I(]>R~+ ~. From the definition of 
q~ (r), C lies between F(l/(n + 3)) and F (l](n +4)). Also, taking into account Lemma 7 
part (i), we have 

argexp i {Tt [r, ~ + 3 ) - - ~  {r, ~ + 4 / } 1 _  ~ D[r, ~+3J  + D (r, ~ + 4 / ,  

for kl/2R.+l>= r > R.+I .  Hence 

+ it [S(l~[e~'(t~l,1/(n+4)), k, D ([~[, n--~)J] 

2 
< 3 ~[s([~[ k)] n +  ' " 

Hence, since n tends to i infinity as lift tends to infinity, 

Es(~, k, A (Ir = o {~[s(lr k)l} 

as ](l tends to infinity. That part of Theorem 1 concerning A (r) is thus proved. 
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12. Concerning v (r) and e (r) 

From the definition of v (r) it is apparent that v (r) tends to zero as r tends to 
infinity. Moreover, 

f f  fk,,~.+l ~(,) dr e o  v (r) dr ~- Z ~  

zrf{  { { r ~ + 3  ) { __~1 ]~dr <-- E , + E  r, n+4JJ  r 
1 / I  R n 

f:= {[ %1 E r, + E  r, ~ + Z ~ ' 2 " " - *  
x/2 R1 r - - -  

which establishes (2.9). 
Let ~ be any point on C, with R.+x>=[~[>kal2R,,. Then, from Lemma 8 part (i), 

/t [S(~, k, e([~]))] = p [S{~, k, ~ +  3/] <--v(,~,)/t[S([~], k)]. 

Let ~ be a point on C, with klI2R.+a~-I~I>Rn+x. From the definition of q~(r), 
C lies between r(1/(n+3)) and F(1/(n+4)), and 

(12.1) largexpi{~(r, n-~)-T[r, n-~}}I <-- D{r, n~}+DQ, n~) 

Hence 

2 
n+4"  

[{ 4}] t,[sg, k, e(IO)] = 1' S ~, k, 

<- t, [S (lffle'~'('r162 k, n-~}] + 

+ . [s[,qe'~'t~"l/"+% k, ~ } ]  

Since ~ (r) obviously tends to zero as r tends to infinity, Theorem 2 is proved. 
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13. The function ~o(r) 

The proof of Theorem 1 will be complete when (2.6) has been proved, 

For R,+~_~ r > kll~Rn, 
(13.1) 

O(r l 
-- 2r(l_k-1/4). 

Also, for kXlZR,+l~ r > R,+I, 
(13.2) f l /  1 I ~ lr, n~} - -  Tt lr, n--~} + 2n(c,,-a--c,,) l 

r--~n+ 1 
r  7~' Jr, ~ + 3 )  �9 

From the definition of the numbers ci, and from (12.1) and the definition of A (r), 

~_D r,-~---~ +1)1. n+3) 

1 = 7A(,'). 

Hence, taking account of (9.1), we obtain 

(13.3) ko'(r)l <- A1 h (r____)) 
r 

for some constant A1 depending only on k. Hence, combining (13.1) and (13.3), 
we see that there is a constant A2 depending only on k such that 

(13.4) I~o'(r)l ~ A2 h (r____~) 
r 

for all r~=kl/2R1 . 
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I f  Tx a n d  T,  a re  two numbers  sat isfying T~>=TI>=kl/2R~, 

u 

~ f r ~  A (1") 2 | l /z f ,i. 11/2 

f "I" 1x/2 
- -  

:as T x = m i n  (T1, T~) tends  to  infinity, since 

AT)2dr ~ 0 o  

T h e o r e m s  1 a n d  2 are  thus  comple te ly  proved.  

This work forms part of thesis submitted for the degree of Ph.D. at the University 
o f  London. The author wishes to express his gratitude to Professor IV. K. Hayman 
,of Imperial College, London, for his generous advice and encouragement. 
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