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1. Introduction

One approach to approximation theory is the following (see {15, Chapter 10]).
If (Q, ¢) is a metric space, 4 is a subset of Q, and £=0 one asks whether there exist
points z,, z,, ..., z, in @ such that A SU]_, S(z;, ¢). If N2 (4) is the smallest integer for
which the answer is positive the points 2y, z, ..., 2y approximate the set 4 in the
sense that knowing them we can reproduce the set A to within an accuracy ¢. The
quantity H?(A4)=log, N2(4) is called the e-entropy of 4 relative to 2, and one is
then interested in its asymptotic growth as ¢ tends to zero. This approach has been
the subject of much activity (see [13], [14] and [19)).

Since the covering of sets by spheres of equal radii can be quite inefficient, it is,
for some purposes, preferable to consider covers by spheres of varying radii. Suppose
that (r,) is a sequence of positive real numbers which are decreasing with limit zero.
We say that (r,) is majorizing for A in Q if there exists a sequence (z;) of points in
Q such that -

A< UJS(z,r) foreach n,
i=n

and we are interested in which sequences are majorizing for 4. Again the sequence
(z;) is regarded as approximating A4.

The following example illustrates some of the advantages of the second method
of approximation. Let @ be the real line with the usual metric and 4 the union of the
Cantor ternary set and the rationals in [1, 2]. If szé 37" one can show that N,(4)=
=2"4-3" and that 3" of the approximating points lie in [1, 2] whereas only 2" lie in
[0, 1] which contains most of the set A. One can also show that (r;) is majorizing for
Ain Qif and only if >, ¥ convergés when a=log2/log3. If we recall that log 2/log3
is the Hausdorff dimension of A4 we realise that this method of approximation is
more pertinent to the structure of A.

In [3] it was shown that if u*(Q)<< then (n~Y%) is majorizing for Q in Q.
On the other hand if (n~'/%) is majorizing for Q in Q and [ h(z)r~"*?d; is finite,
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> h(2n~Y) is finite so that p”(2)=0. It follows that the Hausdorff dimension of
Q is given by
dim Q = inf {&: (»=Y*) is majorizing for Q in Q}.

The reader familiar with Frostman’s work on potential theory [2] will realise that the
above statements remain true if we replace the phrase “(n~*%) is majorizing for
Q in Q7 by “Q has zero a-capacity”. One of the objects of this paper is to examine
the connexion between majorizing sequences and capacities, and to explain such
connexions by means of the concept of a random approximating sequence which
we introduce in section 4. Majorizing sequences were introduced by Hyllengren in [7].
In an unpublished note he (independently of us) noticed some similarities between
the theory of these sequences and potential theory, but all the results presented here
are new. We would like to thank Dr.J. M. Anderson for drawing our attention to
Hyllengren’s work.

The arrangement of the paper is as follows. In section 2 we consider basic
definitions. In section 3 we look at potential theory and establish a relationship
between capacities and Hausdorff measures which seems finer than those previously
known. The concept of a random approximating sequence is infroduced in section 4,
where we also consider the problem of covering a metric space by randomly placed
balls. The existence and non existence of approximating sequences is discussed
in section 5, whilst sections 6 and 7 are devoted to the discussion of examples and
counter examples. Finally in section 8 we discuss some examples of the application
of this circle of ideas in probability, complex variable theory and in the theory of
diophantine approximations.

2. Preliminaries

Let A be the class of all functions / of a non negative real variable such that (i)
A is right continuous monotone increasing and (ii) 4(z)=0 if and only if #=0.
On 5 we can define a partial ordering < by f<g if and only if g(t)=0(1) f(¢) as ¢
tends to zero. The members of H# are called measure functions.

If (Q, ) is a metric space the diameter of a subset C of Q is defined by d(C)=
=sup {o(x, »): x, y€C}. If =0, hc# and A is a subset of Q we define pli(4)=
=inf > hld(C;)] where the infimum is taken over all covers of 4 by sets C; of dia-
meter less than §. Then p*(4)=lim,_, u"(4) is called the Hausdorff h measure. When
h(t)=1t* we write u*(4) so that the Hausdorff dimension of A is given by dim 4=
=inf {a: u*(4)=0}.

If f€ # we define a sequence (r;) of positive real numbers by

r = foY(1)iy = inf {t: (1) = Vi) 2.1
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Thus we always have f(r;—)=1/i=f(r,). Whenever we speak of a sequence (r;) and
Jfin the same context we shall assume they are related by (2.1).
Let (4, ¢) be a metric space and (£, ¢) a metric extension of 4. We say that
(ry) is majorizing for A in Q if there exists a sequence (z;) of points in Q such that
A & limsup S(z;, r). (2.2)
(We let S(x, r) denote the open ball and S(x, r) the closed ball, with centre x and
radius r.) The sequence (z;) is called an approximating sequence of order f for A in Q.
It follows from the definition that, for each z in A4, there exists a subsequence (z,)
of (z;) such that ¢(z, z,)~0 and

fle(z, z,)) < 1/n; for each i.

Thus not only is A contained in the closure of (z;) but also we have an estimate of the
maximum rate at which subsequences can converge to any given point of 4.

If (r,) is strictly decreasing (in which case we may assume that fis continuous and
strictly monotone) it makes no difference whether we choose open or closed balls
in (2.2). The same is true for general () if Q is d-dimensional euclidean space. (A proof
of this fact is easily constructed using the fact that the boundaries of d+1 generally
placed spheres in R? can have common intersection consisting of at most one point).
For general spaces the choice does make a difference as we show by examples in
section 6. Our results indicate that the “correctness™ of the definition is related to the
convention that the members of J# are right continuous. If we had made them left
continuous we should have had to use closed balls in (2.2).

3. Potential theory

In this section we introduce for later reference some of the concepts of potential
theory. We also prove a new result relating the polarity. of a set to its Hausdorff
measure.

Let (2, ¢) be a metric space. If f€ # we let @:Qx Q-~R be the function defined by

B (x,y) = 1f(e(x, ). (3.1)

The function @ is called the kernel corresponding to f. A subset A4 of Q is said to be
@-polar relative to € if there is a probability measure m, supported by Q, such that
f P (x, y)dm(y)=-co whenever x€ A4, A set 4 is said to have zero ® capacity if
f & (x, y)dm(y) is unbounded for every measure m supported by 4, but otherwise it
is said to have positive @ capacity. In this case the & capacity of 4 is defined by

C?(4) = sup{m(A) :fdi(x, »dm(y) =1 for all x}.
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When f(£)=1* the corresponding capacity is denoted by C*(4). It is easily seen that
every @-polar set has zero @ capacity, but the converse is not always true.

Kametani [11] showed that if u’ (4)< oo then A is ®-polar. In [18] Taylor showed
that this result was best possible in the sense that if € is a euclidean space and f; <f
there exists a set A4 with u’(4)< o, but 4 is not @,-polar. Thus there is no uniform
improvement of Kametani’s result. However, for a fixed set 4, we can improve the
result as the following theorem shows.

Theorem 3.1. Let (Q, o) be a metric space, hé #, and A< Q be such that p* (A)< .
Then there exists fE€H such that f<h and A is D-polar where D is given by (3.1).

Proof. If 1*(4)=0 a result of Besicovitch ([1]) ensures that there exists f€#
such that f<A and uf(4)=0. In this case the result follows by applying Kametani’s
result.

If 0<p"(4)< o we first need the following lemma.

Lemma 3.1. If 0<u"(4d)<oo and §>0 there exist a subset A* of A and feH

such that
@ w4 =6

(i) f<h;

(i) 372, #' AN S(x, r))] = o whenever x€ ANA™.

Proof. Kametani shows that lim sup,_,¢"[4 " S(x, €))/A(2e)=1 for p" almost all
points of . Thus we can define a sequence (a;), decreasing with limit zero, such that

@) h(@0) = 2h(a),

(i) if 4;={x: u"[4 N S(x, a)]=Lh(2a) for some € (s 13, Gy 12]} then pt(4;)=
=t (4)— /2.

Next define f by flh=1i on [a,3, d5;,1] and f/h linear on [ag, 4, a5, and let
A*=An (N2, 4) so that p"(4*)=4. It remains to show that A* and f have the
required properties.

If x€A\A* we choose a=a(x)=a(x,i) such that a€(ay.s,as4s] and
WA S(x, a)l=2h(2a), and define

n(a) = max {j: f(a) = 1/j} = max{j:ik(a) = 1/j}.

Thus 1/[1+n(@]<ih(a) and 2/[1+n(a)]<2ik(a)=2ih(as+2) = ih(as;41) =f(@541)-
Thus a=f1(1/j)=ay,, if n(@)/2<j=n(a). Now

i[4S AN)] = 2, ag, 1= -1 ) Zag, o pAnS(x, fAMN)] =

o e n(a) h2a) e n(@-—2 1
=2i=1{”(")'7“1}7=2i=1 2 2{n@+ 1)
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As a—0, n(@)—~- and the summand is asymptotically 1/4i. Thus if x€cA\ 4%,
" [4 0 S0 S (1)) = <-. Since f<h the lemma is proved.

We now return to the proof of the theorem. Let (J,) be a sequence decreasing
with limit zero. Using Lemma 3.1 and induction we can find a sequence (4;) of
subsets of 4 and a sequence (f;) of members of 5 such that

(1) A;CA;pq;

(i) p"(ANA4) = 653

(iii) f; < 4;

(iv) 2o A0 S( ()] = o if x€4;;

W) fi+1(0) = £:(0)

(The last inequality is arranged by choosing appropriate subsequences of (a;) at each
stage of the argument.)

Next we choose g€ such that g<h and f;<g for each /. It follows that

S [AaS(x, g (1)) = (3.2)

for u* almost all x in A. Let A be the set of points in 4 where this fails to hold. As
already remarked at the start of the proof there exists /<% such that 4 is &-polar.
Let f(t)=min [f(¢), g()]. Then f<h and A is ®-polar. On the other hand (3.2)
implies that

[4 @) dut () = if x€ANA,

so that AN\ A4 is ®-polar. Since the union of two @-polar sets is again P-polar the
proof of the theorem is complete.

4. Random approximating sequences

Let (2, ¢) be a metric space, P a Borel probability measure on @, and (Z,)
a sequence of independent (Q valued) random variables, each distributed according
to the law P(Z<B)=P(B). We say that Q admits a random f-sequence for A if for
some P
P{xclimsup S(Z;,r)} =1
whenever x€ A. We say that Q admits a random uniform f-sequence for A if there is

a measure P such that

P{4 & limsup S(Z;, 1)} = 1.
Whilst the existence of a random f-sequence may (or may not) imply the existence of
a random uniform f-sequence, the same random sequence will not always work for
both cases, as the following example shows. Let Q=R, the real line, 4=1, the unit
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interval, and P be the uniform distribution on I. Then P {xclimsup, . S(Z;, r)}=1
for each x in I'if and only if 377, r; is infinite. On the other hand Shepp has shown
(17) that P{ISlimsup,. . S(Z;,r)}=1 if and only if 37, j *exp (23i_,r)
1is infinite.

In this section we obtain a necessary and sufficient condition for the existence
of a random f-sequence, and also a sufficient condition for the existence of a random
uniform f-sequence.

Theorem 4.1. Let Q, A and f be as above. Then Q admits a random f-sequence
for A if and only if A is D-polar for A in Q, when ®(x, y)=1/flo(x, ).

Proof. Let A(x, i) be the annulus {z: r,, ,=0(x, z)<r;}. Then

/.Q\{x) D(x,y)dP(y) = 2., fA(x, i) P(x, y)dP(y) +f{y:e(x,y)ér1} 2 (x, ) dP ().
‘Now since f(r,_y)=1/i=f(ry),

iP{A(x, 1)} = _/'A(x‘i) D(x, y)dP(y) = (i+ D) P{A(x, i)} “.n
"Thus

S @6 9) dP(y), I iP{ACs D} and 37, P{S(x, r\{}})
converge or diverge together, so that
[o®(x,»)dP(y) = = ifandonlyif 32, P{S(x,r)} = co. 4.2)

Now suppose that there is a probability measure P with f D(x, »)dP(y)=o
if xc A4, and let Z, be a sequence of independent (Q-valued) random variables each
distributed according to P. We will then have 3., P{0=0(x, Z)<r;} = when-
ever x€ 4, and so by the Borel-—Cantelli lemma P {0=¢(x, Z;)<r; infinitely often}=1
and P{xclimsup,_ . S(Z;;r)}=1 whenever x€A. Thus there exists a random
approximating sequence. To complete the proof of the theorem we just reverse the
argument.

Let Q, A, f and (r;) be as above and let P be a probability measure on Q such
that f@(x,y)dP(y):oo if x¢A. Define ¥(x, b)=fmin{<15(x, ), 1/f(B)}dP(y),
Y (B)=inf, 4 (x, b), and h(B)=exp [~y ()], s0 that he#.

Theorem 4.2. If p"(4)=0 we have P{ASlim sup, _ S(Z;, 2r)}=1.
Proof. Given b=0 we define n(b) by r,.,<b=r,. If
J=m

() = inf 37 P{S(x,r)} and h,(b) = exp[—n, )]
xcA

.an application of (4.1) shows that 4,,(b)=0(1)4(b) as b—0.
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Now suppose x€A4. Then

o n(b)
P{S(x, byE U Sz, 2rj)} = P{S(x, bE U Sz, 2rj)} =
j=m j=m
=P{Z;¢SCx, 1), j=m,...,n(B)} = [[[O[1—P{Z;€ S(x, r)}] =
= exp[- 375, PZ,€ S(x, r}] = b, (B),
where the equality follows by independence. When u"(4)=0 we can, given £>0,
cover 4 by spheres S;=S;(x;, ;) such that >, 2[d(S;)]<e. Hence
P{A s D S(Z;,2r;) } 2 P{S < U S(Z;, 2r; }_S. 2 ha[d(S)] = O(D)e.
j=m

Letting ¢ tend to zero we have P{4S£U7_, S(Z;,2r)}=0 for each m. Thus
P{4%lim sup,, ., S(Z;, 2r;)}=0 and the theorem is proved.

In [6] Hoffmann-Jergensen obtains results related to those presented above.
Although his objectives are different to ours his methods could be applied to our
situation.

5. Existence of approximating sequences

Our main result on the existence of approximating sequences is the following:

Theorem 5.1. Let (R, ¢) be a metric space, and AS Q be compact and P-polar.
Then (2r,) is majorizing for A in A.

Proof. Since A is ®-polar there exists a probability measure P such that
2oy PLS(x, 1)) = =, x€A4.

Since A 1s compact we can use the lower semicontinuity of the summand to define
an increasing sequence (M;) of integers such that M;=0 and

{x: M3 P[S(x, )] > 2} 2 4.

We will show that there exist points x;, j=M;+1, ..., M;,, such that x;€4 and
M; 4

(%) U Sx;,2r) 2 4.
M;+1

To this end it can be assumed that 4>0. We consider the typical case i=1. First
choose x;€ 4 so that the inequality

(% %) 2P[S(x;, r)l = PIS(x, 7))
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is valid for j=1 and every x€4. Define S,=S(x;, 2ry). If A\ S;#8 choose x, so
that (% %) is valid for j=2 and every x€ A\ S;. Set S,=S(x,, 2r;) and repeat the
process. The process stops if at some stage A (J]S;, p<M,. In this case (x)is
clear. On the other hand if AN\ S;0, p=1, ..., M;—1, then

S(xk’rk)ns(xfarj):gy 1§]<k§M2—1,

and (* %) is valid with x=:x,, . Hence
M,
2= 2P[L1) S(x;, r,-)] = M 2P[S(x;, ]l = SYPIS(xp,, 7))

which is a contradiction. This proves the result.

The theorem can be applied to give existence theorems when only the Hausdorff
measure properties of a set are known. We have

Corollary 5.1. Let (Q, 0) be a metric space, hc #, and AS Q be compact with
W (A)<o. Then there exists f¢H such that f<h and (2r,) is majorizing for A in A.

This follows by applying Theorem 3.1 to the above theorem. The need for
compactness can be avoided by modifying the proof. (See [3] for another proof of
this corollary.)

When 0<p"(4)<< and liminf,_, WA N S(x, e)l/h(2e)=0 we say that A has
positive lower h density. In this case we obtain a necessary and sufficient. condition
for (r,) to be majorizing.

Corollary 5.2. Let (2, 0) be a metric space, h¢ 5 with h(2t)=0(1)h(z) as 10,
and AS Q be compact and have positive lower h density. Then

Zne1 h@r,) = (5.1)

is a necessary and sufficient condition for (r,) to be majorizing.

Proof. If >~  h(2r,)<-oe, (r,) is not majorizing since otherwise we would have
WH{(A)=0.If 3  h(Q2r)=c0, > h(r,)=c and A4 has positive lower /(¢/2) density.
In the present situation Taylor’s result ([18]) implies that 4 is &(2¢)-polar and,
by Theorem 5.1, (r,) is majorizing for A4 in A.

Note. The corollary remains true without the assumption that 4 be compact.
This can be seen by modifying the proof of Theorem 5.1.

Under the hypotheses of the corollary, (5.1) is a necessary and sufficient condition
for 4 to be ®-polar. Thus in this situation majorizing and polarity are equivalent
concepts. It seems. that where the space admits a simple test for polarity this equi-
valence always holds (see § 6 for further examples). Unfortunately it does not hold
in all cases (see § 7).
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6. Ohtsuka’s theorem in Cantor spaces

In this section we consider a class of Cantor like spaces, and by establishing an
Ohtsuka type test for polarity show that the concepts of majorizing, polarity and
capacity zero coincide in these spaces. We also show that it is vital to take open
spheres in the definition of majorizing.

Let (), j=1,2, ... be a sequence of integers such that n;=2 for each j. The
Cantor space corresponding to (n;) is the metric space (X, ¢) defined by taking
sequences i=(z'j),> Jj=1,2,... of integers and letting X={i: 0=i;<n;}. Define
ilk=(y, i, s iy, 0,...) and let g(i, j)=2"" where n=max {k:ilk=jlk}. It is easy
to check that (X, @) is a compact metric space.

The space (X, ¢) can be described by X=(\7_, F; where F; consists of nyn,...7;
closed spheres of radius 27/~! (these spheres also have diameter 27/~%), whose
mutual distances are greater than or equal to 277. Each of these closed spheres
contains n;,, closed spheres of radius 27/~ whose mutual distances are 27777,
It follows that the ordinary Cantor type sets, when suitably metrized, are Cantor
spaces. In what follows m is the probability measure on X induced by the set func-
tion m(S)=(nyn,...n;)”* when S is a closed sphere in Fj.

Theorem 6.1. Let (X, ¢) be as above. Then the following are equivalent:
() X has zero @ capacity;

(ii) X is ®-polar;

(ifi) (r;) is majorizing for X;

. o 1 l 1
(iv) 251 ity T {f(2“j+1)_ f(z—j)} = oo

Proof. We define. M;= 4 {n: 277" <r,=277} and N;=mn,...n; so that N;
is the number of spheres in F;. We shall show that (i)—(iv) are all equivalent to

= MN, = . (6.1)

We may suppose, without loss of generality, that r1<—;- so that for xcX
e mAS G 1)y =2"" M;/N;. It follows from (4.2) that (i) and (ii) are equi-
valent to (6.1).

To show that (iv) is equivalent to (6.1) we have to estimate M;. Clearly
M;=4%{n:r,=277 "~ % {n: r,>277}. Now r,>277 implies that f(r,—)=f(27)
which implies that n=1/(277). On the other hand n<1/f(2~7) implies that f(2~7)<
<1/n=f(r,) and that 277/ <r,. Thus we have

#{nir, = 277} = 1/f2-H+0().

It follows that (iv) is also equivalent to (6.1).
It remains to show that (iii) is equivalent to (6.1). First suppose that



206 R. J. Gardner and J. Hawkes

21 M;/N;<< and choose J such that >77 ;M AN < . Then we let (z;) be any
sequence of points in X and estimate m{Ur<2 JS(z,, )} If 2~ (”+”<r =277
and zC€X, m{S(z;, r)}=1/N, and so m{U, _,-, S(z;, r)}=27_; M;/N; <43. Since
m(X)=1 we can never have X={J, _,-s S(z;, r) with the result that (r) is not
majorizing, and (iii) implies (6.1).

Now suppose that >" M;/N;= oo, that r =3, and that J is the least integer
such that Z —1M JN,;=1. We first cover M; of the spheres of F; by open spheres
with radii in ( , ] Then N,—N,N;* M, of the spheres of F, will be uncovered. Next
we cover M, of these by open spheres with radii in (8, 2l Then N,—N,N;7*M,—
— N, N; M, of the spheres of F; will be uncovered. Proceed in this way until after
the J— 1th choice when N, {1 —Z’JJ.: M N;} of the spheres of F, will be uncovered.
This integer is at most M, so we can cover these by open spheres whose radii belong
to the interval (27771, 27']. Now let J, be the least integer such that
2, L;41M;N;7 =1 and repeat the above process. In this way we obtain a sequence
of spheres S(z r;) such that X=Ilimsup, _ S(z;,r) which completes the proof.

Now define M;= 4 {n: 277 *=r,<277}, f(t)=sup{f(s):s<t} and B(x, p)=
=1/f[e(x, »)]. The methods of the above theorem also yield the following:

Theorem 6.2. If (X, g) is as above, the following statements are equivalent:
(i) X has zero & capacity;
(ii) X is @-polar;
(iil) there exists a sequence (z;) of points of X such that X=limsup;_.. S(z;, r;);
(iv) Z’;‘;IJVIJ.N]TI = oo,

Remark 1. The last two results enable us to construct a class of examples for
which covering by closed spheres is possible, but covering by open spheres is not
possible. All one has to do is to arrange that

DA MN = but I, MN7'<
To do this we let n;=2/ and r;=2-¢*+Y when
SN, <i= 3N,
In this way M;=N,; and M;=N;_;=N,;2/.

Remark 2. The methods of these theorems apply to generalized Cantor sets in
euclidean spaces but the conclusions must sometimes be modified.

Remark 3. If we know that liminf, , f(27)/f(z)>1 then each of the statements
of Theorem 6.1 is equivalent to

2N QT = e
This provides a generalization of Ohtsuka’s result ([16]).
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7. A counterexample

In this section we -construct a random subset A4 of [1,2] such that A has
positive @ capacity for &(x, y)=|x—y|~* (i.e. has positive a-capacity) with prob-
ability one, whilst (7~ is always majorizing for 4 in A. Thus the converse to
Theorem 5.1 does not hold.

The proof relies on the potential theory of the stable subordinator (see {4] for
full details).

Suppose O<a<1, let 7,(w) be a stable subordinator of index 1—« and R(w)
be its range. Then if B[1, 2], P{R(w) n B=0}=0 if and only if B has zero a-capacity
(Theorem 3 of [4]). Let

Ny(@) = #{j: R@)n[j277, (j+ D277 = 6, 2° = j < 2°*+1}.
Then we prove the following:

Lemma 7.1. Let
k(x)=x"%Tr'(l—a) if x>0

= 0 lf‘ X = 0.
Then for a certain positive constant ¢
EN, ~ c2r0= [k (x) dx (7.1)
and
ENE ~ 22209 [* [k (x)k (y—x) dx dy. (7.2)

Proof. For some positive constant d the capacity of an interval of length I
is dI*. Since
EN, = 375 PAR(@) 0277, (j+1)277] # 0},

(7.1) follows from the formula for the hitting probability for an interval ([4, Lemma
1]). A similar idea gives (7.2).

We now describe the construction of the set. Let k;=[2%:*] where (p;) is an
increasing sequence of integers such that k,+k,+...+k,~k,. At the ith stage
we choose independently and at random k; integers J(k;i), l=k=k; in such a
way that P{J(k;i)=1}=2"7: for 2Pi=]<2P*' and let I(k;i)={x:J(k;i)27Pi<
<x=<[J(k; i)+1]1277}.

Define A4;=\J;-,I(k;i) and A=limsup, .4, We show that with prob-
ability one 4 has positive a-capacity. First we let R be the range of a stable sub-
ordinator of index 1—a, which is independent of the above construction. Then we
define M;= 4 {k: RnI(k;i)0}. Now

EM, = 3% S pRAS(, p) = O (k; i) = [y P{IGk; i) = I},

1=2Pi
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(Here S(,p) ={x:127?<x < (I+1)277}.) Now by the independence of R and
the {J}
P{RAS(p) = 0J(k; i) =1} = P[RnS{U,p) = 0}
so that
EM; = k277 3% 0 PR S, py) # 0}
and
EM; ~ 2D EN, .

Similarly EM ~ 2*?4*"DEN? ‘and so by Lemma 7.1 there is a positive constant C such
that (EM)Y EM?~C as i~eo. Now if 0<A<1, P{X=AE(X)}=(1 —AR[E(X)P/EX?,
see [10, p. 6]. Thus for some positive constant ¢, independent of i, P {M;>AEM,}=
=c¢=0, P{M;=1 infinitely often}=c>0, and P{RN ;" 4, =0}=c>0 for all i.

Letting i tend to infinity we have P {R n A#0}=c>0 and hence, by the property
of the stable subordinator we have already quoted, P {4 has positive a-capacity}=0.
Now by a zero one law P{4 has positive a-capacity}=1.

It remains to show that 4 admits an a-sequence. Let r;=2~@*1 if 2’ Yk,<
<]<Z'n= k,. Then, by construction, (r;) is majorizing for A. Since 2r)f]_1/°‘ for
all 7, (=% is majorizing for 4 in A. Thus with probability one 4 has the property
asserted.

8. Examples

In this section we consider a number of examples related to the circle of ideas
we have been discussing.

First we observe that if (x;) is any sequence of points in a metric space Q and
if we define

A = limsup S(x;, r;)

then (r;) is majorizing for 4 in Q. Kaufman ([12]) considers the problem of making
A as large as possible by making a suitable random choice of (x;). In our notation
his result reads as follows.

Theorem 8.1. Let (r;) be a sequence of positive real numbers, decreasing with
limit zero, such that " | r;<co. Suppose that h€ # is concave with 2,  h(2r,)=.
Then, by choosing a suitable sequence of independent identically distributed real random
variables (x;), we can obtain a random set A such that

(i) (r,) is majorizing for A;

(ii) A is ®-polar;

(iii) p*(4) =0,
each statement holding with probability one.
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Remark. Part (ii) is not stated in [12] but it is implicit in the proof. It is inserted
here to give a further example of the connexion with potential theory.

Let f be a meromorphic function, a be a complex number, and A(a, f) be the
Valiron deficiency (see [8]) of f at a. Hyllengren shows [8] that for a function of
finite order and any set U we have

Ucla:4(a,f) > 0} for some f

if and only if, for some ¢=0, r,=exp {—exp (cn)} is majorizing for U. The following
(an unpublished result of Hyllengren) is an immediate consequence of this result
and the above theorem.

Theorem 8.2. Let hc # be concave. Then there exists a plane set U and a mero-
morphic function f of finite order such that

prU) >0 and UZ {a:4(a,f)=> 0}
if and only if
f1 h(t)dt -
otlog 1/t
Proof. The last equation is equivalent to

2’:°=1 h[2 €Xp (~—exp Cn)] = oo
for some ¢=0.

It is interesting to note that, whilst Hyllengren’s solution of this problem for
functions of finite order involves majorizing sequences, for functions of infinite
order the solution involves logarithmic capacity. Recently Hayman has shown ([5])
that for any F_-set U

US {a:4(a,f) = 0}

for some f of infinite order if and only if U has zero logarithmic capacity.

Our final example involves some problems in diophantine approximation. We
give the simplest case. If x is a real number and ¢ a positive integer |jgx| denotes the
fractional part of gx. Let w(¢) be a positive function of ¢ which decreases to zero
as ¢ tends to infinity. Define

A = {x€][0, 1] : lgx|| < gw(q) infinitely often}.

In [9] Jarnik shows that (provided w and % satisfy certain natural conditions of
monotonicity) A4 has zero or non o-finite s measure depending on whether or not
[7 thlo(1)]dt<e>. We now show how this result can be reinterpreted in terms of
approximating sequences.

Let (x,) be an enumeration of the rationals in [0, 1) (with possible repetitions)
which is such that the vulgar fraction p/q always occurs in unreduced form and
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that rationals with smaller denominators always precede those with larger denomina-
tors. Now choose any f€# and ask what is the size of the set for which the rationals
with this enumeration form an approximating sequence of order £, that is what is the
size of the set B=limsup,_ ., (x,—7,, X,+r,)? Jarnik’s result allows us to answer
this question for sufficiently regular f. Let

oy (k) = FrGo—1)25 wy(k) = Fre+1)/2
and
; = {x€[0, 1) : flgx| < gw;(g) infinitely often}.

Then A,C BC 4, and if f and 4 are smooth enough [’ th[w, (£)]dt and {7 thlw,(2)]dt
converge or diverge together. In these circumstances the convergence of either integral
is equivalent to the convergence of >~  /(2r,). Thus we see that B has zero or

=23

non o-finite 4" measure depending on whether or not 3% 4(2r,) converges.

These observations give us an alternative method of constructing sets of positive
u" measure which admit approximating sequences of order f.
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