[7 estimates for strongly singular convolution
operators in R”

Per Sj6lin

Let the operator Ty be defined by Ty f=Kxf, f€C;(R"), where K is a dis-
tribution with compact support in R" locally integrable outside the origin and
satisfying the conditions

A(@) (@] = B +]E)~", CeR",
and
B(©) Jistmapn-o K@ —=3)—K()|dx = B, [y <b.

Here K is the Fourier transform of K, B and b denote positive constants and 0=q=
=0<1,

The conditions A(0) and B(0) are satisfied by the well-known Calderén—
Zygmund kernels and in the case a=0==0 it is known that Tk can be extended to a
bounded linear operator on LP(R") for 1 <p< oo,

In the case 2=0 an example of a kernel satisfying the above conditions can be
obtained in the following way. Let L be defined by setting

L) = Y (©)elmig|=m,  LeRy,

where a=(no(1—0)+260)/(n(1—6)+2) and ¥ is a C= function which vanishes near
the origin and is equal to one for || large. Then L=K+ M, where K satisfies the
above conditions and M is an I function with M(&)=0(|¢|™"), |¢]- o, for all N.
In fact it was proved by S. Wainger [7] that K(x) is essentially equal to ¢, [x]| " *efesl*!¥
close to the origin, where A=n(a—«)/2(l —a) and 1/a+1/a’=1. Hence |grad K(x)|=
=Clx|[7""*7*%, from which it follows that B(0) is satisfied. The LP theory for
operators obtained by convolution with kernels of this type has been studied by
I. 1. Hirschmann 4] and Wainger [7].
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C. Fefferman [2] proved that if 0<a=60<1 and X satisfies the above conditions
then Tk is bounded on L?(R") for 1=<p< . Recently Fefferman and E. M. Stein
[3] bave obtained the following results.

Theorem A. If 0<a=0<1 and K satisfies the above assumptions, then K is a
Fourier multiplier for H'(R").

Theorem B. Suppose m is a Fourier multiplier for H'(R"). Let 6 be a positive
number and assume \m(E)|=C|E|~°. Then |E]"m(§) is a Fourier multiplier for L? (R")
if l<p<eo, {1/p—1/2|=1/2—7/26 and y=0.

Theorems A and B can be applied to the multipliers L defined above.

J.-E. Bjork [1] has determined the values of p for which Tk is bounded on
I7(R™ in the case when K is a distribution with compact support, which satisfies
only condition A4(a). Bjork has also asked if it is possible to obtain sharp results
on the L? boundedness of 7 in the case o< 6. We shall here use Theorems A and B
to prove that the answer to this question is affirmative.

Theorem 1. If 0<oa<0<1 and K satisfies the above assumptions, then Ty can be
extended to a bounded linear operator on L*(R") if

IL/p—1/2] = (no(1—0)+20)/(2n0 (1 —8) +40).

It follows from the counterexamples of Wainger [7] for the kernel L defined
above that the condition on p in Theorem 1 cannot be relaxed.

Proof of Theorem 1. Choose ¢@¢cCy (R") such that / o (X)dx=1, supp o
c{x; [x|<1} and @(x)=0, xeR" Set ¢,(x)=c " p(x/s), e=0.

We shall first prove that K« ¢,, 0<e=l, satisfies conditions 4(x) and B(6)
with constants B and & independent of ¢ (cf. the argument in [2], pp. 23—24). A(x)
is obviously satisfied. To prove that B(0) is satisfied, first assume e~<|y|*~%. Then

flxl>2ly!1‘° K% @ (x—y) — Kx @ (x)| dx =
= ./(pe(t) (flxl>2ly11—0 |K(x —~y—1)—K(x—1)| dx] dt =
= [ 0u0)([ 1o oo KG—1) ~ K()l ) dt = C,
if {y] is sufficiently small, where the last inequality follows from writing

K(x—y)—K(x) = > (K(x—iv/m)— K(x— (i~ Dy/my)), 1)

using the triangle inequality and applying the condition B(f) for K,
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If ¢ =|y'? then
fix[>3g IK* q)a(x‘"y) — K% (PS(X)I dx =
= f #a() [f"”>3’°' [K(x =y =1)—K(x—1)] dx) dt = .[le>2a |K(x—y)—K(x)|dx =C

and
[imns Kx @ (e =1) = Kx0,(0) dx = 2 [ _,. [Kx g, (0){dx =
= Ce&'?|Kx@,ls = Ce|o,l. = C.

In proving the theorem we may therefore assume that K¢ L'(R”), as long as
our estimates depend only on the constants in 4(«) and B(0).

We set a=(na(l —6)+28)/2 and B=n(f—a)/l, where A=n(1—0)+2, so that

B = na/2—na/2. )

Also let G, denote the Bessel kernel defined by G,(&)=(1+¢|»~#* Then

there exist finite measures p and v on R” so that

R(©) = (LHEPPRG* K) (&) = G20 (G x K) () + (D (G K) (D)
(see [6], p. 133). We shall prove that convolution with Gy K defines a bounded
operator on H'(R"). It then follows from Theorem B that T is bounded on L?(R")
if |1/p—1/2|=1/2— f/na, which gives our theorem.

First choose @€Cy(R") so that =0, suppec{x; 1/2<|x]<2} and
S, e@x)=1, 0<|x|<1. Also set ¢ (x)=¢(2*x) and Y (x)=>,_, o (x). We
shall use the decomposition

Gpx K = (UGp) x K+ (1~ ¥)Gy) ¥ K. ©

(1—¥) Gy is smooth and rapidly decreasing at infinity and hence the last term
in (3) is an L' function. It follows from A () and (2) that (G,)* K satisfies 4(a)
and to use Theorem A it suffices to prove that (Gy) * K satisfies B(a). We set Gp 4=
=@, Gy so that (JGg)x K= 2", Gg  * K.

We also fix v, |y|<min (b, 1/2), and set

L= [, _op-alGpuk K(x—3) — Gp % K(x)| dx.
We shall estimate each I, separately and consider three cases.

Case 1. 2% < |y/2.
A change of the order of integration yields

L= [Gpr® ([ imapp-a KGx—y— )~ K(x—1)| dx) dt =
= [Gpi@at [ o [KGx—1)—K(X)| dx =
=Cc2 3, |

K(x—iy/m)— K(x—(i— 1) y/m)| dx.

Jx) >yt -2
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POy =1y] we

Choosing m as the least positive integer such that 2|y/m|'~’<|y

see that each term in the above sum is majorized by

flxl>2[ylml1—9 [K(x—y/m) — K(X)l dx

and hence I, =C2*m. From the choice of m it follows that m=C|y['~ -9/~
which yields Z,=C27* |y['~¢=9/1=9. Hence
Dla-kayypde = ClyfH1-C-a/0=0,

From the choice of @ and B it follows that f+1—(1 —a)/(1—6)=0 and the above
sum is majorized by a constant.

Case 2. |y|j2 = 27% < |y|@-0/@-=), @

Setting ‘
5k — 5’yl2(1——0)/).2——kn(1—a)(1—0)//1

we obtain the inequalities

5k = 5. 2—k (5)
and

& < 5|y[-° (6)

as a consequence of (4). We split the integral defining I, in two parts J; and J,,
the first obtained by integrating over the set {x; [x|=4,} and the second by integrating
over {x; |x]=0,}. Arguing as above we then have

o= [Gpu@dt [ s s Kx—1)— K@) dx = C2-%m,
where m is now defined to be the least positive integer such that
2/yfm=0 = 6~ 27442,

It follows that m=C|y|6;/*"® and hence, using the definition of d, we con-
clude that
L =C| yl"(l—e)llzkn(l-ﬂ)/).. %)

To estimate J, we first use the Schwarz inequality and get
=2 [ 20 G xx K| dx = C&H2Gy x5 Klly = CHPIGp iRl (8)

We have §,(&) = 2% ¢(2-*¢) and it follows that

10D = C277, f =2,

16O = C2-M[E =N, [¢] = 2,
where N denotes a large positive integer. For [¢]=2% we have
106%Go @) = |frnmone E=D GO |+ | [1o e 9~ DG @ | =
=C27 [ wera e dt+C [, _pers ]~V &t 20 -m = €274,

and
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Using the condition 4 (x) we get
(fiqze 1Gox@RQOP )P = C274( [ g IR ) =
= C27( [ o 87 dE) B = 2R malzonlz) - Cp-kna-L)2,
We also have

(f e G @O ROPAEY™ = €Ot ([, Gy O )=

= Cz—k(ua/2+{5-n/2) — Cz—;m(a—l)/z_

It follows that L
[Gy,x Ky = C27kna=D12,

and inserting this estimate in (8) we obtain
J = C'yfn(l—ﬂ)/lzkn(lve)/;.. (9)

From the estimates (7) and (9) it follows that [, =C, where the summation
is taken over all k satisfying (4).

Case 3. |y|@-9/0-0) < 3~k (10)
In this case we choose &, = 4.2-%1-# and split I, in two parts J; and J, as
above. We have §,/2 == 2|y[*~? and it foilows that

Jo= [Gpa®at [\, _girs|[K(x—y)—~K()| dx =
=C27¥ | a2 K= —K(ldx = C27.
Arguing as above we also have
Jy = C oy 2-tn@-nl2,

and using the definitions of a and §, we get J;=C27%_ Hence I,=C2 " and J I, =C,
where the summation is taken over all k satisfying (10).

We have proved that (yGy)* K satisfies B(a) and this completes the proof of
the theorsm.

We finally remark that the method in [5], pp. 162—163, can be used to prove
that the above theorem has the following consequence.

Corollary. If O<a<0<1 then Ty can be extended to a bounded linear operator
Sfrom LP(R™) to L(R™) for all K satisfying the above assumptions if and only if p=q and

o/2 = 1/p—1/g+amax (1/2—1/p, 1/g—1/2, 0),
where a=(na (1 —0)+20)/(n(1—6)+2).



64 Per Sj6lin: L? estimates for strongly singular convolution operators in R*

References

1. BIORK, J.-E., L? estimates for convolution operators defined by compactly supported distribu-~
tions in R". Math. Scand. 34 (1974), 129—136.

2. FerreERMAN, C., Inequalities for strongly singular convolution operators. Acta Math. 124 (1970),
9—36.

. FerperMAN, C., & STEIN, E. M., H” spaces of several variables. Acta Math. 129 (1972), 137—193,

. HiRscHMANN, I. 1., On multiplier transformations. Duke Math. J. 26 (1959), 221—242.

5. HORMANDER, L., Pseudo-differential operators and hypoelliptic equations. Proc. Symposia Pure

Math. 10 (1967), 138—183.
6. SteiN, E. M., Singular integrals and differentiability properties of functions. Princeton 1970,
7. WAINGER, S., Special trigonometric series in k dimensions. Mem. Amer. Math. Soc. 59 (1965).

AW

Received February 10, 1975 Per Sjolin
Department of Mathematics
University of Stockholm
Box 6701
S-113 85 Stockholm
Sweden



