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Every positive integer is the Frobenius 
number of an irreducible numerical 

semigroup with at most four generators 

Pedro A. Garcfa-Ss and Jos~ C. Rosales(~) 

Abstract .  Let g be a positive integer. We prove that there are positive integers nl, n2, 
na and n4 such that the semigroup S=(nl ,n2,  n3,n4} is an irreducible (symmetric or pseudo- 
symmetric) numerical semigroup with g(S)--g. 

I n t r o d u c t i o n  

Let n l ,  ..., np be positive integers with gcd{nl ,  ..., r ip}=1 (where as usual gcd 

s tands for greatest  common  divisor). Then  it is not  hard to show tha t  there are 

finitely many  elements n tha t  cannot  be expressed as n = a l n l + . . . + a p n p  for some 
nonnegat ive integers a l ,  ..., ap. Transla ted to numerical  semigroups, this is equiva- 

lent to say tha t  if we consider the numerical  semigroup S generated by {h i , . . . ,  rip}, 

tha t  is, S -  (hi ,  ..., np} = {al rtl +... + avn p l a l , . . . ,  ap C N},  then the set N \ S is finite 
(where N denotes the set of nonnegat ive integers). The  max inmm of this set is 

usually known as the Frobenius number of S and it is here denoted by g(S).  The 

problem of detemfining a general formula for g(S) in terms of h i ,  ..., np is known 

as the Frobenius problem, which goes back to [11], where an explicit formula for 

p = 2  is given (g((nl ,  ' n ~ } ) = n l n 2 - n l - n 2 ) .  It  can be shown (see [3]) tha t  no general 
formula of a certain type  can be found even tbr the case p = 3 .  A nice survey on the 

state of the ar t  of the Frobenius problem can be found in [5]. 

For a given positive integer g, the semigroup S = { g + l , g + 2 , . . . , 2 g - 1 ) =  

{0, g + l , - + }  (here the symbol  --+ is used to indicate tha t  every h E N  with n > g + l  
belongs to the set) fulfills the trivial condit ion g(S) =9 .  Denote  the set of numerical  

semigroups with Frobenius number  9 by $(g) .  In a recent paper  [9] the authors  

have shown tha t  for every positive integer g, there always exist n l ,  n2 and n3 such 
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that  (nl,  n2, n3)~$(9)  (or in other words, g((nl ,  n2, na} ) -g ) .  Among the elements 
in $(9),  there are some numerical semigroups that  have some relevance in ring the- 
ory, since their associated semigroup rings are Gorenstein and Kunz. These are 
the so called symmetric and pseudo-symmetric mtmerical semigroups, respectively, 
and have been characterized in many ways (see for instance [2] and [4]). One of 

these characterizations states that  they are precisely those numerical semigroups in 
$(g) tha t  are maximal  with respect to set inclusion. Both concepts (symmetric and 
pseudo-symmetric) can be unified into the single concept of irreducible numerical 
semigroups (see for instance [7] and [8]). A numerical semigroup is irreducible if 

it cannot be expressed as the intersection of two numerical semigroups properly 
containing it. If  S is a numerical semigroup with g(S) odd (respectively even), 
then S is symmetric (respectively pseudo-symmetric) if and only if S is irreducible. 

In this paper  we give an easy procedure to find, for any fixed positive integer 9, 
an irreducible numerical semigroup with at most four generators and having g as 
Frobenius number. Moreover, four is the least number of generators needed for the 
general case, even though in some cases an irreducible numerical semigroup with 
three (or two if g is odd) generators can be found. 

Acknowledgement. The authors would like to thank the referee for her/his  com- 
ments and suggestions. 

1. P r e l i m i n a r i e s  

Let S be a numerical semigroup. We say that  {nl, ... , n p } C S  is a system of 
generators of S if S = ( n l ,  ... ,rip}. For n E S \ { 0 }  we define the Ap~ry set of n in S 
(see [1]) as tile set 

A p ( S , n ) -  { s E S  I s -n •S} .  

It  is not difficult to prove that  this set has exactly n elements, which are w0= 
0, w,, ..., w~ j, where wi is the least element in S congruent with i modulo n. From 
the definition of Ap(S, n) it also follows that  if x=y+zCAp(S, n) with y, zES, then 

both y and z are again in Ap(S, n). This idea is implicitly used several times in 
the rest of the paper. Besides, it is not hard to show that  g ( S ) + n  is the greatest 
element in Ap(S, n). 

The cardinality of the set 

T(S)  = {x E Z \ S l x + s  ~ S for all 8 E S\{0}}  

is known as the type of S (see for instance [2] and [4]; as usual Z denotes the set 
of integers). Symmetric  numerical semigroups are those numerical semigroups of 
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type 1 (this forces T ( S ) - { g ( S ) } ,  since by the definition of the Frobenius number 
of S, for every h E N \ { 0 } ,  the element g+n belongs to S). Pseudo-symmetric 
numerical semigroups are characterized by T(S) {�89 (see [2] and [4]). 

For a given numerical semigroup one can define the order relation _<s as follows: 
for cc,~IES, x<_sy holds if y - z ~ S .  In [6] it is shown that for every nCS\{0} ,  we 
have that T ( S ) = { x - n l x ~ m a x <  s Ap(S, n)} (max<~ stands for maximal elements 
with respect to <_s). Hence from [4], we deduce that, with n E S \ { 0 }  fixed, S is 
irreducible if and only if 

{ {g(S)+n},  if g(S) is odd, 
max_< s A p ( S , n ) =  {�89 g(S)+n},  if g (S ) i s  even. 

2. M a i n  resul t  

L e m m a  1. Let g be a positive integer. If  2{g, then 

S -  (2, g + 2) 

is an irreducible numerical sernigroup with g(S)=g.  

The proof is trivial. 

L e m m a  2. Let g be a positive integer. If  2]g and 3~ then 

S =  (3, 1g+3,  g+3} 

is an irreducible numerical sernigroup with g(S)=g .  

Proof. First note that gcd{3, � 8 9  whence S is a numerical semi- 
group. Also, Ap(S, 3)={O, 19+3,g+3} and thus max<_sAp(S, 3)={�89 g+3 }. 
This implies that g ( S ) - g + 3  3 g and that S is irreducible. [] 

L e m m a  3. Let g be a positive integer. If 21g and 4~9, then 

S=(4,�89 

is an irreducible numerical semigronp with g(S)=g .  

lg Proof. Since 21g and 4~.q, we have gcd{4, ~ }=1. Hence 

gcd{4, �89 �89 = 1 

and S is a numerical semigroup. We prove that 

(1) Ap(S, 4) = {0, �89 �89 9+4} .  



304 P e d r o  A. Garcfa-SAnchez  a n d  Jos~ C. Rosa les  

But this can easily be deduced from the following two facts: 
(a) �89 and �89 are minimal in S with odd remainder modulo 4, and a r e  

clearly in different classes; 
(b) g + 4  is minimal in S with even (and nonzero) remainder modulo 4. 

Since (1) holds, we conclude that g (S )=9  and T ( S ) = { } 9 , 9 } .  [] 

L e m m a  4. Let g be a positive integer. Assume that 21g, 3lg and 41g. Let (~ 
and q be such that g=3~q, with (3, q ) - 1  (and thus 4[@. Then 

s :  <3 ~ 1 �89 3, 3 ~ ~ +  ~ +  3, 3 ~ �89 �89 

is an irreducible numerical semigroup with g(S) g. 

, 1 1 Proof Let ~a=3 ~+1 ~2=�89 ~3=3~1q+�89 and ~4=3~q+~q+3.  As 
(3, q )= l ,  we have gcd{n~,n2,n3,n4} 1. The reader can check that the following 
equalities hold: 

(i) 2n4=~qnl+n2+n3; 
(ii) 2n3--n2+n4; 
(iii) n 3 @ n  4 1 = ~qnl +2n2; 
(iv) (ln~ + 1),~2 =,~1 +'~4; 

(vi) (ln~ 1)n~+~ (�88 
Every element in Ap(S, n~) is of the form an2 +bna +cn4. By (repeatedly) using (i), 
(ii) and (iii) we can assuine that one of the following three cases holds: 

(a) b=c=0 ;  
(b) b=0 and c=1; 
(e) b = l  and e=0. 

1 9c~ In the case (b), it ibllows from (v) It follows from (iv) that a is always < 5r~1 =o  . 
that a<~nl,  and in the case (c), a must be less than �89 in view of (vi). Since 
# Ap(S, n l ) = n l ,  one can easily deduce that 

Ap(S, nl)={O,r~2,2n2, 1 1 �9 . . ,  5rt17~2, n 3 ,  r t 3 - o n 2 ,  . . - ,  ~z3+  ( S r t l  --  2 )  ~t2, 

'/~4, 7/~4 ~ - n 2 ,  ... , n4-~- ( l n l  - -  1) 7~2 }.  

1 Now we prove that max<sAp(S,  n l ) = { l n l n 2 , ( s n l - 1 ) n 2 + r ~ 4 } .  From the shape 
of Ap(S, nl) it is clear that 

1 max<sAp(S,  n l ) C  { ~ r t l n 2 , T L 3 + ( ~ T L 1 - - 2 ) r t 2 , n 4 - } - ( l n l  1)n2}. 

After some simplifications one gets that 

( } n l - 1 ) n 2 + n 4  (r~3+(~n~ 2 ) r t 2 ) = n 4 - ~ 3 + n ~ ,  
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which in view of (ii) is equal to ha, which trivially belongs to S. This implies that  
1 na + ( 5 n l -  2) ~max_< s Ap(S, 7~1). Since lnsn2  c A p ( &  hi) ,  we have that  

~Tt17t2 -~ t l  a 1 = 3  ~ q ~ S .  

Thus ~'~4@(1,t1--1)~%2-- 17~ 7% __0c~1~4 5 1 2 o ~ S .  Hence 

max<_s. Ap(S,  n z ) = { ~ n z r t 2 , ( l n l  1)n2+n4}.  

This in particular implies that  g(S) (lanl 1)r~2+nn-nl=3~q and that  T ( S ) =  
{�89 Therefore S is irreducible. [] 

T h e o r e m  5. Let g be a positive integer. Then there exist nl,n2,r~a,r~4EN 
such that S =  <nl , n2, na, nn} is an irreducible numerical semigroup with g ( S ) = g .  

Proof. If g is not a multiple of 2, then by Lemma 1 we can choose n1=2 and 
rt2=rt3 =r~4=g+2.  If on the contrary g is a multiple of 2, then we distinguish two 
cases. 

(1) I f g  is not divisible by 3, then in view of Leinma 2, for n1=3,  n 2 = � 8 9  and 
~ t a = f t 4 = g + 3  , the semigroup S=<nl, T~2, Tt3, n4} is an irreducible numerical semi- 
group with g (S )=g .  

(2) If g is divisible by 3, then 
(a) either g is not divisible by 4, and thus we can apply Lemma 3 and take 

nz 4, n 2 = � 8 9  n4 �89 
(b) or g is divisible by 4, and in this case we get the desired semigroup by 

using Lemma 4. [] 

If one computes the set of irreducible numerical semigroups with Frobenius 
number 12 as explained in [10], one gets that  this set contains only two elements: 
<5, 8, 9, 11} and <7, 8, 9, 10, 11, la>. This implies tha t  the bound of four generators 
obtained in Theorem 5 cannot be improved. 
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