Mathematical aspects of 't Hooft’s eigenvalue
problem in two-dimensional quantum
chromodynamics

Part II. Behavior of the eigenfunctions of BEP and HEP
at the singular boundary points

Stefan Hildebrandt*

The aim of this paper is to prove the following

Theorem 1. Each eigenfunction ®(x), 0<x<1, of ’t Hooft’s eigenvalue problem
(HEP) is Holder continuous on the closed interval 0=x=1, and

®0) =0, &(1)=0.

Moreover, ®(x) disappears at the singular end points x=0 and x=1 at least like
a positive power of x and 1—x, respectively. That is, there are positive numbers
Bo, P, o, €1 Such that
|[P(x)] = cy-xPo for 0=x=1
and
[P =c;-(1—x)r for 0=x=1.

This result is an immediate consequence of Theorem 2 which is stated and
proved at the end of our paper.

It is a great pleasure for me to thank Prof. H. Lewy for valuable suggestions.
Also, I have to thank Prof. J. C. C. Nitsche, Mr. V. Vi$nji¢, and Prof. K.-O.
Widman for several discussions.

The physical significance of HEP has been explained by ’t Hooft in [4]. Further
details and references have been stated in part 1 of our investigations (cf. [2]), to
which we in the following shall briefly refer as I.

For the convenience of the reader, we shall repeat the definition of HEP, and
state once more some of the results of I.
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Definition of HEP. Determine real numbers A, and real valued functions & (x)
on O<x<1 with

f | (x)[2dx = 1, ff ded <

and with a Hé&lder continuous first derivative on O<x-<1 such that

_n <15(€)
0 100 = {2+ ow-o [ 2 a 0=x<1,
and that
2 0)=0, #(1)=0 (.g s).
Here, o, and a, denote real parameters = —1, 1.g.s. stands for ‘in the generalized
sense”, that is, lim,, o+ [¢|@®)|2dx=0, lim,, = [1_,[P(x)[2dx=0, and

2 [; ... denotes the “regular cut-off” defined as

im [ —-[(«: x—ig) 2+ (E—x+ig) "2 @ (&) dE.

a+0

In the following, let #={(x, y)€R?: y=>0} be the upper half plane, and denote
by # the closure #={(x,y): y=0} of # minus the two end points x=0 and
x=1 of the interval O<x-<1 on the x-axis.

The main role in tackling HEP has been played by the eigenvalue problem BEP.

Definition of BEP. Determine real numbers A and real valued functions v(x, y)
with Holder continuous first derivatives on # which are harmonic in s and satisfy

[ loGx, 0)pdx = 1 Jf, \VoPdxdy <eo,

as well as the boundary conditions

3 v(x,00) =0 for x¢[0,1],

G)) v(x,0) =0 (l.g.s) for x=0 and x=1,

(5) — 1, (x, 0)+{%+ - f‘fx}u(x, 0) = Av(x,0) for 0=<x<1.

We have proved in I, 2.3, that HEP and BEP are equivalent problems in the follow-
ing sense:

If v(x, y) is an eigenfunction of BEP to the eigenvalue A, then ®(x)=v(x, 0),
0<x<1, is an eigenfunction of HEP corresponding to the eigenvalue 1. Conversely,
if ¢(x) is an eigenfunction of HEP, then

o) = Im— [P BE(E—x—)71dE, (5, )€,

is eigenfunction of BEP, where ¢ and v belong to the same eigenvalue.
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Moreover, we have verified in I, 4./—5 and 5.2, that there exists a sequence {1,}
of real numbers 4, such that

O<h<ly=dg=..= A=A =..., lim 4, =+oo,

and a sequence of eigenfunctions e,(x,)), e, (x, y), e;(x,¥), ..., which are real
analytic and harmonic in 5. Every e,(x, y) is an eigenfunction of BEP to the eigen-
value 4, while &,(x)=e,(x,0), 0<x=<1, is an eigenfunction of HEP to A,, and
{®,},=1,5,.. forms a complete orthonormal system in L,([0, 1]) whence the spectrum
is purely discrete and consists only of denumerably many eigenvalues of finite
multiplicity.

Each eigenfunction e,(x, y) is element of the Hilbert space H consisting of
all functions ¥ (x, y) which are of the Sobolev class Wzl’ (o) and satisfy

Y(x,0 =0 for x4[0,1]

loc

and

ff# VY [2dx dy <.

Moreover, each function y € H satisfies

./.1{%+L} ¥ (x, 0)]2dx+%f01f01 W (x, 0)—y (v, O)f2 dvdy

0 1—x |x—ypi?
= [f_{WL+10,1% dx dy.

For the sake of brevity, let us fix the following notation:
Let @(x) be an eigenfunction of HEP to the eigenvalue A, and set

(6)

FO 29 e s, <=t

7

@ u(x,y) = Re F(z), v(x,y) = Im F(2).
Then,

® O(x) =v(x,0), O0<x=<1,

and v(x, y) is an eigenfunction of BEP of the class H and satisfies

7 [ V-V dxdy+f:{%+lizx}u(x, 0)¢(x, 0) dx
© .
= Afo v(x,0){(x,0)dx forall (€H,
cf. I, (4.28).
Now we are going to prove Theorem 1.
Firstly, we note that there is a number k=1 such that the following can
be achieved:
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For each R=0, and for each z,=x,+iy,€C, there is a real-valued function
1(x, y) of the class C7"(Byg(z,)) such that

(10) n(x,y) =1 on Bx(z), 0=1n(x,y) =1 otherwise,
and
(11) iVa(x, )l = k/R on C.

Here, B,(z,) denotes the open disc in R%2= C of center z,, and of radius r.
Furthermore, by a well known reasoning (cf. [6], pp. 81—86) we can prove
the following ‘““Poincaré inequalities™:
There exist numbers K* and K**=0 such that, for all x,¢R, and all R=0,
the following holds:

(12) f f o Yrdxdy = K*R? f / oo IV |2dx dy

for all € W3 (Tyr(x,)) satisfying ¥ (x, 0)=0 on

Xo—2R <= x <xy3—R, oron x,+R<x<x,+2R,

and,
a3 f ::“R [ (x, O dx (or f;“_m W (x, O)dx) = K**R [ 5, ey VWP dy
for all Y€ W3(S,r(x,)) satisfying ¥ (x, 0)=0 on
Xo—2R < x < x, (oron x,<x < xq+2R, resp.).
Here, we have set
Sr(xe) = Br(x) N, Tor(xe) = Syr(%e) — Sr(Xo)-
Now we define the following numbers:
(14 ap = min{o;, 0}, o7 = min{o,, 0}, o = min{,«,, 0},

that is, —1l<ay, 0p, x=0.
Furthermore, we set

_ 1 (+4agn } _ {L (14+a)m }
R°‘m‘“{4’2(/1—2a;)1<** > R= g R

(15) :
+aj
ol =
O'j— 2.1°g2 s MJ=RJ J m, ]—0, 1.

Note that R, R;, 64, 0, are positive, and that

(16) ]in31 oo(2y) =0, lirr_l1 oy(a) = 0.
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Lemma 1. We obtain the following estimates:

Y [/, o|VoPdxdy = MyR¥ for 0<R= R,
and
(18) ffs © Vo|2dxdy = M,R** for 0<R=R,.

Proof. Fix some R with O<R=1/4, and let n(x, y) be a cut-off function belong-
ing to R and z,=0, and satisfying (10) and (11). Set Sz=Sz(0), Tg=Tx(0).
Ciearly, the function {=#%v is in H, hence it is an admissible test function for
(9). Thus,

%z
1—x

”ffx Vo .V (52v) dx dy +f01{—°‘xl+ }ln(x, 0)[2[v(x, 0)[2dx

— 1 2 2
=4[ In(x, OPo(x, 0)2dx.
Obviously, w=nv is also in H, and

Vu-(n?0) = [Vw[*—v? [Vy[2
Therefore,

11
nff” \VWFdxdy—i-alfo;. w(x, 0)2dx
1
= nkm—foTm vdxdy+(3—29) [ Iw(x, 0))2dx.
In virtue of (6),
11
(19) f0 ~ WG, 0)pdx = n-ff# IVw[2dx dy.
Thus we infer that
2R
(1+a3)nfjsm [Vw2dx dy = nsz—foTm v?dx dy+(,1—2a;)/R |w(x, 0)|2 dx.
Next, we apply (12) to y¥=v, and (13) to ¢y =w, and obtain that
[ +a)m—(A—22)K™R] [ fsm \Vw[2dxdy = nk*K* [ frm [Voltdxdy.

Note that v(x, y)=w(x,y) on Sg. Then, for O0<R=R,, we obtain that

20 2 =K, 2
(20) fst [Vo|2dxdy = K, fszR |Vo|2dx dy
where we have set

2k2K*
K= Trar

Now we are ready to apply Widman’s hole filling technique (cf. [8]): Firstly, (20)
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yields that
el)) / fs,, Vo2dxdy = 6,- [ fsm Vol dx dy

where 6,=K,/(1+ Ky)=<]1.
By an iteration of (21), we derive that

JI, Weaxdy = (%]Z”". S, Woldxdy

_ log#,
2-log2”

(22
for 0<R=R,, and o,=

On account of (9), and of
f: jo(x, 0)*dx =1,
we have that

nff# Vo2 dx dy +f:{%1_+lizx} lo(x, 0)[2dx = A

whence

(©23) [ wodx dy én—(l%i)—.

Combining (22) and (23), we verify (17), and (18) is analogously proved.
Lemma 2. Set N;=2**%.M?.(1+k*K*), j=0,1. Then

(24) f: ')1? <lo(x, 0)[2dx = N§R* for 0 <R = Ry2,
and
(25) fll—R l—lx - [v(x, 0)2dx = NiR*t for 0<R=Ry2.

Proaf. On account of (19),

2R

S S s Ol O dx = [ Wem)Edxdy

whence, by (12) and (17},

R 1
fo —*loGx, O)2dx = 2ffsm IVol2dx dy+2k2R‘2fme v2dx dy
= % ¥ 2
= 2(1+k*K )ffsm |Vol2dx dy
= 21+200 M2(1 +k2K*) R for 0 < R = Ry/2,

and the lemma is proved.
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Lemma 3. There are numbers Hy and H, depending only on o, d,, A, and p such
that

[ulx, )—u(x’, 0)| = Hy|x—x'|* for 0=x,x" = %, and for each
26) 1
H= min {603 ?}s
and
ulx, 0)—u(x’, 0)| = Hylx—x"|* for 1—%— =x,x"=1, and for each
27

u=< min{a‘l,%}.

Proof. We infer from (24) that
S5 o, )2 dx = NzR:#2 for 0 <R = Ry2.

Then, for each t with O<t<g,,
f x~1= % p(x, O)2dx = 2 f

= Z’2<1+1)(1+2‘)R -1~ 2‘f “1o(x, 0) dx

X~1% |p(x, Q)2 dx

JlR

2(1 +1) (1+21:)R—1 21N22 —Jj(1+2a9) R1+2ao

A
DM

i
)

whence i

R 2l+200, N2 e _ R
(28) jo —re (0% O)Pdx = Em—l—kwo ) for 0<R==°
for each 7 satisfying O<7<g,.

On {0<x<1, y=0}, we know that

uy(x,0) = v,(x,0) = — [ 1 ] v(x, 0).

Therefore,

fu (x, 0)]2 = [kyx 2+ k] jo(x, 0)2 for O0<x= 1
where 2
kl - 2“2 _2 k2 = (0(2—2/1)22_1717—2.

Then we get for each 7 with O<7t<g, that
fol‘Z’]ux(x, 0)2dx
§k1f: S I, 0)12dx+kf v(x, 0)[2dx

= (ki R lo)- [ —r lo(x, O dx
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whence, by (28),

R 21+2uo

L X u (x, 0)2dx = {ky + ko) gy NGRI0~ %

o Q20-2r__
(29) R
for 0<R§—2—°, and 0 <1 <g,.
Next, we choose 7 such that O<t<min {o,, 1}, and p with l<p<2 and
p=<1/(1—1), ie.,

p
- 27—1) > —L.

Then, in virtue of Holder’s inequality, for 0<R’<R<R0/2

11)

ol O dx = {f - x = dx} [f x'=% | (x, ) dx]

= ¢(p, 1) R\ Pa-9 [fe X%, (x, 0)2 dx]?

L4
2

2-p

where c¢(p, )=[2—-p)/(2(1-p+ )] ® . By (29), the right hand side is bounded
independently of R. Letting R’ tend to zero, we arrive at
30) f: |ux(x, 0)}Pdx = NJCPR*-P( =29 for Q<R = %‘l
where

20(2 o _2/’{ 2 21+ 209 1/2

CO(CLI, sy Ty p) = {“;:'2‘1“‘}‘(227)‘} . c(p, 'E) 'N0° m]

In particunlar,

Ro/2
(31 { (e O dx}'? = CyN,.

Hence, for all x,x” satisfying O<x,x'=R,/2, and all 1<g,, we obtain that
e, 0)—u(x, O = [ f us(&, 0] dé
, Ry/2 ’
o= { [ e (€, 0P AP = NoColx—x'I*

A

where p=1—1/p<min {r, 1/2}. Then we can extend u(x,0) continuously to
0=x=Ry/2, and u(x, 0) will satisfy (26). Similarly, one proceeds at the singular
point x=1. Thus, the lemma is proved.

Now we shall state the main result of the present paper which has Theorem 1
as an immediate consequence.

Theorem 2. Every eigenfunction v(x, y) of BEP to the eigenvalue A is Hoélder
continuous on the closed upper half plane #. The Hélder exponent on #  Bx(0),
O<R<1, can be each positive B, less than min {o,/2, 1/4}, and on H# n Bg(1),
O0<R<1, the Hilder exponent can be each B,>0 less than min {c,/2, 1/4}.
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Moreover,

(32) v(0,0) =0, and »(1,0)=0,

and there are numbers c, and ¢, depending on oy, oy, and L such that
33) [p(x, Y)| = corf* for O0=r=1, r=Vx*1)7,

and all B,<min {0,/2, 1/4}, and

(34) oG, W =erft for 0=r=1, r=YI—xP+}

and all §;<min{c,/2, 1/4}.

Remark. By (15), o,=0,(2;) depends on o; but not on «, and 1, while
6,=0,(2,) depends on o, but not on «; and A, and oy, 6, tend to zero as o, a,
tend to —1, cf. (16). This is, probably, not due to some weakness of our technique
but inherent to the problem as the numerical computations by Vi¥njié seem to
confirm (cf. [3], Fig. 3—5).

Proof of Theorem 2. Let us consider the function
F(2) = ulx, y)+iv(x, y), z=x+iy,

which is holomorphic on s, and has a vanishing imaginary part on R—[0, 1}.
Thus, we can extend F(2) to a holomorphic function on the slit domain S=C—[0, 1],
by setting

ulx,y) =ulx, —y), v(x,y)=—v(x, —y) for y<0.

Let us denote by £+ and E~ the upper and the lower “edges” of the slit [0, 1]. The
real part u(x, y) of F(z) passes continuously through the slit, that is,

Re F(z) = Re F(z%)

on opposite points z=r and z+=re®™, 0=r=1, of the slit. Let B={(€C: [(|<1}.
C=0B, and C*=Cn{Im{=0}, C~=Cn{Im{=0}. Consider a conformal
mapping t=1({) of B onto J mapping C+ onto E+, and C~ onto E~, and, in
particular, t(—1)=0, 1(1)=1. Such a map can explicitly written down (cf. [5],
pp- 357—359). Set

GO = F[z(Q], leB.

Then Re G({) is continuous on B, and there is a positive number g such that Re G({)
is Holder continuous for every exponent g less than min {s,, 1/2} or min {0y, 1/2}
on the arc Cn B,(—1) or Cn B,(1), respectively.

(Note that 7({) behaves close to each of the branch points {=—1 or 1 similar
as the mapping z={? behaves at {=0, and {=1"'(z) behaves similar at z=0
or 1as {=Jz.)
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By an easily proved ‘““local version” of the Korn—Priwalow-theorem. (cf. [1],
pp. 380, 401—403), also G({) is Holder continuous on B B,(—1), or on B B, (1),
for every exponent u~<min {0y, 1/2}, respectively.

Reversing the transformation z=7({), we see that F(z) is Holder continuous
on {FUE+tUE~}nBg(0) with each exponent less than min {5,/2, 1/4}, and on
{# U E+ U E~}nBg(1) with each exponent less than min {5,/2, 1/4}, for each R<1,
if we take into account that F(z) is analytic on the interior parts of the edges E+
and E~. Then we can infer (32) from (4), and the estimates (33) and (34) follow
directly from the Holder estimates. Thus, Theorem 2 is proved.

Added in proof. H. Lewy has proved that F(z)=u(x, y)+iv(x,y) can be
expanded in a convergent series of fractional powers of a certain holomorphic
fuoction of z=x+ iy provided that v is a bounded solution of BEP. Combining his
results with those of our paper, one obtains the complete description of the beha-
vior of v at the two singular points. (Cf. Hans Lewy, manuscripta mathematica 26
(1979), 411—421.)
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