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Introduction 

Let P(zl ,  z2) be a polynomial with positive coefficients. For positive x define 

Nl(X) = ~{m~N': P(m)~_x} 1. 

A classical diophantine problem is to describe the asymptotic behavior of  Nl(x) 
as x~oo. More generally, one can introduce a second polynomial with positive 
coefficients q~(zl, z2) and define 

N~, (x) = Z{,, ~ N': P(m)_~ ~) q~ (m). 

One can also ask about the asymptotic behavior of N~(x) as x-~ ~. This is an 
example of a "weighted" diophantine problem, each lattice point m weighted by 
q~(rn). 

The answer to such questions has been given by Sargos [14], as described in 
theorem A. The analytic method used to study N~,(x) is based upon the functional 
properties of the series 

~o(m) 
Dp(s, q~) = Zm~N' p(m)S �9 

One knows from [9, 13] that Dp(s, ~o) is analytic in a halfplane Re (s)>B(tp) 
and admits a meromorphic extension to C with rational poles (by [13, theorem 1.2], 
also cf. [10]) of order at most 2. Order the poles as 00(q~)>Qt (~o)> . . . .  For each], set 

( ~ } "4"A~~ Pols=Qj(~) ,Dp , ~). = ~=1 ($__ aj((p))i 
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to be the principal part at oj(q~). Define 

/ XOJ(~~ "~=1 Ai, j (~0) l~ x if 0j(q~) ~ 0 
Nj(x) 

2 i [,~i=x Ai.j(q))log x if Oi(r = 0. 

Let D=degree of P. Define the index k by the condition 00(q~)>Ox(~o)... >0k(q~)> 
O0 (<P) --1/D => ok + l (~o) > . . . .  Sargos has shown [14]. 

Theorem A. 

(0. I) N,(x) = ~'~=0 Nj (x) + O~(.V~~176 

Define the dominant term 2q,(x) of N,(x) to equal No(x). 

In this paper one will always assume, for simplicity, that 00(~p) is a simple 
pole of De(s, cp). The aim of this paper is to understand the residue A0,1(~P) in 
terms of the asymptotic behavior of periods over certain cycles in the fibers of P 
located in a neighborhood of infinity. This aim is accomplished by the theorem I, 
using a concrete geometric analysis, similar to that used in [II] to give formulae 
for certain "geometric" roots of a local b-function. One difference here however is 
that this analysis is carried out in a neighborhood at infinity in a suitable compactifica- 
tion of C 2. 

The main technical problem that is solved by theorem 1 has nothing to do, a 
priori, with the above diophantine problem. This is the following. Define 

(0.2) iv(s, 9) = f ,,, =>, (1/P),q~ dzl dzz. 

It is well-known from [1] that Iv(s, ~o) is analytic in a halfplane and admits an 
analytic continuation to C with poles contained in finitely many decreasing se- 
quences of rational numbers. Let 0(q~) denote the first pole of Iv(s, q~). Assume 
that 0(~o) is a simple pole. 

Problem. Over an intert'al [[1, ~ ) c C - { 0 } ,  construct a continuous family of 
1-cycles ~t and analytic family of 1-forms 09, satisfying these properties: 

(1) l e , l={e= t}  forall tE[fl, co); 
(2) o) t is a 1-form on {P=t}  for all tE[[l, ~);  
(3) One has the identity 

(0.3) Pols=o(,) Ip(s, q~) = eols=o( , ) f~  t -s f , ,  o,),. 

This is essentially a 1-variable problem, and can therefore be addressed using stan- 
dard residue calculus techniques, adapted to a global geometric setting involving a 
configuration of  normally crossing divisors on an algebraic surface. 
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To connect (0.3) to Dirichlet series, one first makes the following definition. 
For P, go two polynomials with positive coefficients one says 

Definition 1. The pair (P, go) is "good" if 
(1) go0(go)-- e(go); 
(2) Pols=0~)Dp(s, go)--Pols=Q~) Ip(s, go). 

Section 1 states a simple condition for P which insures that (P, go) is a good pair, 
cf. theorem B. Thus, the significance of theorem 1 for the diophantine problem 
discussed above is this. Whenever one knows that (P, go) is good and the first 
pole of I~,(s, go) is simple, one concludes that the coefficient of g~,(x) is deter- 
mined by the asymptotics of a certain family of periods. In this way, one explicitly 
connects g,p(x) to the behavior of a Nilsson function whose algebro-geometric 
significance is by now well understood [6]. In addition, it implies that ~-~(x) is a 
"cohomological invariant", in the (limited) sense of corollary 3. One should also 
note that earlier results of Cassou--Nogues, for certain special cases of P [3, 4], 
had suggested that a result like theorem 1 could be true for a much larger class of 
polynomials. 

A second application of theorem 1 is given in corollary 4. In [13, theorem 4.9], 
Sargos gave an "explicit" expression for A0,2(go), in the event ~0(go) is a double 
pole. His methods do not extend however to give an expression for A0,1(go) when 
~0(go) is simple. Using the geometric methods described herein, a similarly "explicit" 
expression for the residue is given when (P, go) is good, 00(go)CZ, and is a 
simple pole. 

Sections 2--4 give preliminary definitions and constructions needed in the proof 
of theorem 1. These involve ideas from toroidal geometry (section 2), the regulariza- 
tion of generalized powers h la Gelfand--Shapiro (section 3), and the construction 
of V-manifolds ala Steenbrink--Varcenko (section 4). The proof of theorem 1 is 
to be found in section 5. The most important ingredients for the proof of theorem 1 
are the precise overlap relations given in lemmas 4 (section 3) and 9 (section 4), 
as well as the integral representation for Pol~=o~,) Ip(s, go) in lemma 7 (section 3). 
The reader should keep in mind that the only assumptions needed in sections 3--5, 
unless explicitly noted otherwise, are that P and go have positive coefficients and 
Q(go) is a simple pole of Ip(s, go). On the other hand, it should be possible to 
weaken the first hypothesis. This is discussed at the end of section 5. 

Constructive remarks and suggestions by the referee have been greatly ap- 
preciated. In particular, corollary 2 was pointed out by the referee as an interesting 
analytic consequence of theorem 1. 
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1. Good pairs 

In [9, sec. 5] a large class of good pairs was determined. In the two variable 
case there is a very clear defining property for this class, denoted ~ below. This is 
now recalled. 

Let h(z~ ,z~)=~t  btz t be any polynomial. Set supp (h)={I: bi~0}. Define 
the monomial M(h)= (341, Ms) where for each j - -  1, 2 

(1.1) Mj = max {ij: ij is the jth entry of an index I for which bt ~ 0}. 

M(h) is called the maximal monomial for h. 
To h one also assigns the Newton polygons. 

Definition 2. The boundary of  the convex hull of Ui~.pp~h)(I-R~_) is called 
the Newton polygon of h at infinity. It is denoted F= (h). The boundary of the con- 
vex hull of Ut~s,pp<h)(I+R~_) is called the Newton polygon at the origin and 
denoted Fo(h). 

Now write P ( z ) = ~ t  atz r, and define 

c6' = {(P, ~o): i) aM(p) = 0; 

it') Both Pand  q9 have positive coefficients.} 

Theorem 2 [9] showed 

Theorem B. I f  (P, ~o)EC~, then (P, ~o) is a good pair. 

Remark 1. 
(1) One can even give a description for ~(~o) in terms of Foo(P). Let A(da, d2) = 

{t-(d~, d2): t=0}. Let Z(dl, d2) denote the value to for which {to. (dx, d,,)}= 
r~(P)~A(d~,d2) .  Let 1=(1,  1). Write 

~o(z~, z~) = Z x ~ . ~ )  c~z ~" 
Set 

z(~p) = max {~(I): ICsupp (z~ zz- ~o)}, 

Lz(~o) = {I~supp(~o): r ( I +  i) = r(~o)}, 

and ~Or(Zx, z2) = ~1~e(~) cl z I. 

Let ba, bz, ..., bd be the integral and primitive covectors dual to the 1- 
dimensional faces of Foo (P). One has 

Proposition 1. I f  (P, ~o)E c~, then 

} 0(~o) -- 1/z(~o) = max M(-b~) : IC 2'(q~), i = 1 . . . . .  d , 

where M(bi)---max {J. bi: J~supp (P)}, i=  1 . . . . .  d. 
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Proof. This is a straightforward extension of  the arguments in [9, pgs. 109--112]. 
Details are left to the reader. [] 

(2) The analysis in [ibid] seems to break down if P has a maximal monomial. 
The description of  Pol~=o(~)Dl,(S, q~) can then involve a sum of  terms 
including, but not limited to, Pol~=~(~,)Ie(s, ~o). This is the only reason 
why the first condition in the definition of  cg is included. [] 

2. A Toroidal Compactification 

To give a useful analytical description of  Pols=e(~, ) Ie(s, <p), one needs to be 
able to write the integrand in as simple a form as possible. To do this one first chooses 
a compactification of C 2, ~: C 2 c~-Z, and then constructs a modification ~: X ~ Z  
for which the divisor defined by z*(P)  is locally normal crossing. 

It is convenient here to take Z = ( P a C )  2. The polygon F=(P) can now be used 
to construct a smooth toroidal variety X, defined over Q, and modification ~ : X-~Z 
which is both proper and locally monomial. ~ is obtained by dualizing certain 
cones derived from F=(P), F=(q>), as discussed in [5], and forming a partition ~ of  
simplicial cones in R 2. X is covered by a finite union of  affine charts {X(~r)}, where 
to each cone o-E 2~ one assigns the chart X(a). 

There is one chart in Z in which the analysis below is actually carried out. If  
C2(z) denotes the affme chart with the original coordinates (za, zz), let C2(x) denote 
the chart with coordinates (x~, x2) and with overlaps z~= 1/x~, i =  1, 2. One abuses 
notation by denoting X=rc-x(C2(x)), so that one writes in the following 
re: X~C2(x).  

To the polynomial tp(zl, zz) one associates a rational 2-form w~, on (PxC)2 
so that 

(2.1.1) 

and 

o>,~[c,(~ ) = ~o dzl dzz 

c%lc,(x) = [~o(1/x~, 1/xO/(xl x , )  21 dxl ax2 - 
I~J(X 1 , X2) 

dxx dx2, 
xT' x7 2 

where ~ is a polynomial not divisible by XlX~. 
In the notation of  (1.1), define the polynomial Q(xx, xz) 

formula 
by the following 

(2.1.2) R(x, ,  x~) : P(1/xa, l/xz) - Q(xl, x~) 
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Thus, one has as an identity between analytic functions of s with Re (s)>>l, 

Z,(s, 9) = ft0,1j, 
Evidently, one also has that 

(2.1.3) Pols=a(~,) [p(s, q~) = Pol,=0(~)fi0,1} z RSo~. 

If  the chart X(a) of X has coordinates (ul, u2) then one can write 

(2.2.1) Ron(ul ,  uz) = uax~)uAr Qo(O, O) # 0 

7z*o9~ = u~(a)u~(2)~(u)dulduz, q~a(O, O) # O. 

Set R , =  1/Q,. By [9, remark (5.4.3) pg. 1 10], 

(2.2.2) A (i) >= O, i = 1, 2. 

Notation. In the following, ~ denotes the strict transform of the divisor C2(x) 
defined by Q. [] 

An important point is to estimate the location of ~ with respect to the preimage 
of  the domain of  integration of  Ie. To formulate the result, cf. proposition 3, one 
first introduces the following. 

For positive c~ set 

F, = {z = x + i y :  x => 1 and lYl ~- e (x-1)} .  

Set F(a)=F~c~C2(z). Using the overlap relation for C2(z)c~C2(x), one considers 

Notation. Denote the "strict transform" of F (~) by 

F=(a) = closure in X of TC -1 [01_~0>0 _F(a)~ {llxll --> ~}]. 
One similarly denotes A ~ as the strict transform of the box [0, 1] 2 in CS(x). 

Sargos has shown [13, sec. 5] 

Proposition 2. There exist positive numbers ~, c, e, Q with oE(O, n/2) such that 

IP(zx, z2)[ >= c [zx . z21 ~ and IArg P(zl,  zz)l <= e 

for all (zl, z2)~F(~). 

One now sees by [9, pgs. 111)---112] 

Proposition 3. There exists ~ such that for each chart X(a) one has 

c~ X(a) n r~(~) = O. [] 

This result allows one, in the next section, to give an exceedingly simple de- 
scription of PoI,=Q~,) Iv(s, 9). 
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3. An integral expression for Pol~=Q(~) Ie(s, ~p) 

This section contains the most important of the technical preliminaries for 
theorem 1. It combines the toroidal construction of section 2 with the regulariza- 
tion method for generalized powers, due originally to Gelfand--Shapiro, to give 
an integral representation for Pol,=e(~) Ie(s, ~o). The final result is given in lemrna 7. 

Let ~ =  {Di}u{~} denote the divisors corresponding to n and Q. To each 
D E ~  there are two numbers of interest 

(3.1) A(D) = ordo(Ron), B(D) = ordDn*(r 

from which one forms the ratios, for e =  1, 2 . . . . .  

o (D, 0 = - (e + (D). 

Definition 3. One says that D ' E ~  contributes potentially to Pol~=e(~) Ie(s, q~) if  

Q(D', 1) --- maxq(D, 1) = Q(q~). 

One first observes the 

Lemma 1. I f  D # R  then Dr~Fn(~t)~O. 

Proof. This is a simple calculation that is based on the fact that rc is locally a 
monomial map, whence defined over Q (cf. [9, pg. 111, 112]). [] 

Remark 2. It suffices to use e = l  in Definition 3. To see this one uses the 
reasoning in the proof of theorem 2 [ibid] and the fact that O(q~) equals the largest 
pole of Ie(s, q~). [] 

Notation. Set ~ =  {D1 . . . . .  D,} to be the set of divisors contributing poten- 
tially to Pol~=e(~) Ip(s, q~). 

If  D C ~  define 

: ( D )  = D n D "  0}, (3.2) 

and 
f ( D )  = {chartsX(tr): DnX(a )  ~ 0}. 

Now let D E ~ ,  and D '~J (D) .  Define 

(3.3) 2,(D, D') = A(D')Q(qO + B(D'). 

A slightly tricky point is the following 

1,emma 2. When e(q~) is a simple pole of Ip(s, q~), then 

2,(D, D') > - 1 i f  DE~, ,  D'EJ(D). 
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Proof. It is easy to check that it suffices to show the following assertion: 

I f  D E ~ ,  and D'EoC(D), then D ' r  

The reason for the implication is that the contribution to the coefficient of 
1/(s-Q(9)) 2 in Pol,=Q~,)Iv(s, q~) is supported (as a current) at the intersection 
points of  D', D, whenever both divisors are contained in ~ , .  It is now easy to see 
by [9, pg. 117] that the local contribution at a given intersection D ' n D  must be 
positive whenever P and ~0 have positive coefficients. Thus, since Q(~o) is assumed 
to be a simple pole, it follows that 2~,(D, D ' ) ~  - 1. Since Q(q~) is the largest pole, 
necessarily 2,(D, D ' )>  - 1. [] 

To the divisor D E ~ ,  there corresponds a unique covector b=(bl ,  b2) in 
the partition _r, used to construct X. One may assume that b#(0,  1), (1, 0). The 
reader will be able to modify the arguments below if this assumption does not hold. 
One can now find two integral covectors a=(a~, as), e--(cx, cz), which for sim- 
plicity can also both be assumed to have positive components, so that 

(ii) a ~ = ( b , e ) ,  a s = ( a , b )  belong to 27, 

and (iii) a, e are dual to vertices of Fo(Q) (cf. Definition 2). 

One set.  f ( D ) =  {x(ol), x ( .p} .  
Let (ul, u~) resp. (v 1, vs) be the coordinates on X(al) resp. X(a2). 

I.emma 3. 

i) In X(trl)n X(a2) one has 

u2 = 1 / vx ,  ua = v~lC2-Q*C~vz. 

ii) D n X(~l) = {ul = 0}, D n X(~)  = {v,~ = 0}. 

iii) Let D1 resp. Ds be the divisors of X such that 

D1 n X(al) = {u2 = 0} resp. D~ n X(~rz) = {v~ = 0}. 

Then ~r = {~, D1, D2}. 

iv) D n A" n X(al) = [0, o.) = D n A" n X(a2). 

Proof. These are simple arguments based on the construction of  n. Property (iv) 
follows from the locally monomial nature of n cf. [9, pg. 1 1 1] and the fact that no 
component of a, c equals zero. A simple modification of  (iv) is needed if this prop- 
erty does not hold. These are left to the reader. [] 
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Notation. Set 

6 = deg Q,I(0, us) = deg Q,,(vl, 0), 6" = deg ~o1(0, uz) = deg ~,,(vl,  0). [] 

The following global ("cocycle") property is useful in the global analysis over 
the divisors in ~ , .  

Lemma 4. In the above notation, 

2,(D, D0 = - 2~,(D, D~) - (2 + 5') + e(q03. 

Proof. For each covector ~C(R~.)* set (cf. (2.1)) 

m~(#) = min {y- ~: yEFo(#)} 

m,(Q) = min {y. ~: yEFo(Q)}. 
Set 

~ ( ~ )  = {yCro(,) :  y" { = me(#)}, 

~Fc(Q) = {y6Fo(Q): y .  ~ -- me(Q)}. 

These are the "first-meet loci" of the polygons in the direction {. 
One can always construct the partition Z used to determine X so that 

(i) K,(Q) u Kc(Q ) c Kb(Q), 

(ii) and Ka(~)uKc(~)cKb(~).  

Let Kc(Q)={it}, K,(Q)={i2}, K,(r  K,(#)={Yz}. One should note 
that K,(Q) and K~(Q) need not be distinct. Set i= (1 ,  1). Define 

~ =  det ( a ) .  

An easy calculation shows that ~ b - c = a .  By definition one has (using the nota- 
tion o f  (2.1)) 

a (91) = e .  ( M -  il), 

A (D2) = a .  ( M -  i2), 

A (D) = b .  ( M -  ik), 

B(D1) = e.  (.I 1 - m + i)  - 1, 

B(Dz) = a. ( J 2 - m +  T) - 1 

B(D) = b. (Jk -- m + i)  -- 1, k =  1,2. 

One then computes and finds 

2. (D,  D~) = -- 2 . (D,  Da) - -  (2 + Y) + 0(q~) [e. (/2 - /1) ]  

2a (O, Da) = -- 2~,(D, Dz) - (2 + 6") + 0 (~P) [a. (/1 -/2)]. 

It  is now easy to check that 6 = a .  ( i l - i ~ ) = e .  ( i2-i l) .  This proves the lemma. [] 
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A simple consequence of lemma 4 is 

Corollary 1. The covector b corresponding to D~ ~ ,  is dual to a line segment 

of  to(Q). 

Proof. If this does not hold, then one checks easily that 6=0. By lemma 4, 
2,(D, D1)+2~(D, D z ) = - 2 - 6 " .  This is not possible however when each 
2~(D, Di) > - 1. [] 

In practice it is useful to have a formula for 2.(D, Di). The following is easily 
obtained from the above expressions for A(Di), B(DI), A(D), B(D). 

Lemma 5. One has 

2~(D, D 0 = 
- d e t  ( 3 x - r e + i ;  M - i O  

A(o) 

det ( J z - m +  i ;  M - i 2 )  
2,(O, D2) = A (O) 1, 

where the indicated arguments of  det are column rectors. 

Notation. For D E ~ ,  Y'(D)= {X(al), X(a2)}, and J ( D ) =  {D1, Da, ~}, one 
sets D '=D-(DIuD2u:~) .  

The following property is easy to check. 

Lemma 6. Let ~ be any simply connected subset o f  D'. The two 1-forms 

�9 ~ 2~(D, DI) p (('1 
~ol = - 2  . . o i l y ,  uz)  ~ )  ~ , 1 ( 0 ,  uz) au21~ nx(,,) 

O.)'2 = - -  Vl 2"(D' D,) Rtr2 (/)1 , O) ~ ~ , ,  (v~, O) ev i l  ~ nxr 

patch on q/c~X(ax)oX(a2), to give a global section of  f2~. 

This section is denoted ~o' in the following, the open set q/being clear from the 
context. 

For D E g , ,  one now defines, using the above notation, 

(3.5) = f s  u2 "'ol ~ , U2) #,t(O, u2) du2 

= f ?  " 3.,(D, Dt)DQ(,) "x --., (vt, 0) ~o,(vx, 0) dv 1. 

Remark 3. Evidently, by lemmas 2, 6, and the fact that no pole of either R., 
lies on DnA", one concludes not only that R(D) is a finite number but also that 
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the second equality in (3.5) is valid. Indeed, one also has the equation 

(3.6) 

Define now 

One has the basic 

R(D) = lim f x l ~  ~.(I),OORQ(~) ~, , (0 ,  uz) duz 

= Jim f]" 1)1A'(]D'D|) ~#a(~ ) ~o.,(~1, 0) dv 1 . [] 

Lemma 7. 

PoI,= ~(,) le(s, ~p) = It 
s -  o ( q ~ )  " 

Proof. One argues as in [9, pg. 116--117]. A sketch is given here. The main 
point is this. One can cover A" by finitely many open sets q/;, in each of  which there 
are coordinates (u[ ~ u(2 ~ with the following property: 

Each q/~ is a subset of  one of  the charts X(a) (with coordinates (ul, u~)), used 
to construct the variety X defined in section 2. The coordinates (u~ ~ u~ ~ are then 
the restrictions to ~i  of  (ul, u2). One concludes that in each ~ 

(1) Equations (2.2.1) hold; 
(2) The strict transform defining ~ is positive on q/~c~Ra by Proposition 2; 
(3) The strict transform q i  is positive on ~ ~. 

Thus, by a partition of  unity subordinate to the cover q/~, one can now apply to 
I~,(s, q)) the regularization procedure, described in [7, pgs. 59ff], also ef. [15], carried 
out in the two variable normal crossing case. When one pieces together the expres- 
sion for Pols=~(~)Iv(s, cp), using (2.1.3) and lemmas 2,3,4, and 6, one obtains 
I~/(s-o.(cp)). Details are left to the reader. [] 

Remark 4. As discussed in section 5, a modification of  the 1-forms, defined in 
lemma 6, is needed if each 2,~(D, D,) -Q(q06  is an integer. This implies, by lemmas 
2, 4, that each 2~(D, D~) is a nonnegative integer. Let ag be a simply connected 
and open subset of  D'.  Set 

" = UX*(D'DORetr U~)'i~o~(O, uz)log(uz)dus on q/c~{u~ ~ O} 
and 

" o'xr162 O)logvldvi  on ~ n { v 1 ~ O  }. (.O~, -~- t/1 ~1 

These 1-forms patch whenever the principal value of the argument, assuming 
values in ( - n ,  n], is used for each co~. With this choice, one denotes the log by 
Log. The result is a single-valued holomorphic form over q/. This section of  f2~ is 
denoted co" in the following. [] 
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4. V-Manifolds 

Section 4 discusses the Steenbrink--Varcenko construction of  a "V-manifold". 
Varcenko was the first to emphasize the use of this construction for studying families 
of periods. Here, an adaptation is given for the case of a rational function which is 
needed for section 5. The construction is quite similar but it is necessary to be explicit 
for the proof of theorem 1. 

For a divisor D 6 ~ ,  ~r {D1, D2, ~) ,  A(D3 given by (3.1), define 

E(D) = l.c.m. {A(D), A(D1), A(D2)}. 

Let Too be the chart at infinity in PX C with coordinate too. By proposition 2, 
it suffices to work in a neighborhood of t~ =0. 

The graph of R(Xl, x2) in C2(x)• is defined as 

a = { Q ( x , ,  x2). t,. : 0}.  

With n: X~C~(x) the toroidal modification from section2, set n '=zc• 
id: X X T ~ - ~ C ~ ( x ) X T ~  and define 

if(D) = [strict transform of {(Q. t= -xUx,x~t,,)on" = O}]c~[X(aOwX(a~)]• 

One notes that (2.2) implies that the strict transform of (Q- t _ - x ~  ,x~,)on' is 
defined by 

�9 , , A ( D x ) , , A ( D )  ___ 0 ,  (4.1) in X(a0: R,(u, t~) = Qo,. t ~ - , . 1  -~ 

in X(a2): R~(v, to.) = Q~,. too -v~  ta) v~ ta') = 0. 

Let 0: fg(D)~T~, pr: f f (D)~X be projections. With T a copy of the affme 
line with coordinate w, set v: T-~T~ to be the map v: w-~wE~m=t_. Set 
O~: (~(D)• T~ff(D)  and z: (~(D)•  to be the projections from the 
fiber product. Define r/: ~f ' (D)~ff(D)Xr T to be the normalization morphism. 
Define 0 = O, oq, 0 = nopro O. Figure 1 summarizes these definitions. 

/r o 

O - ( D ) •  o ,  6 ( D )  '~', a , C 2 ( x )  

T , 
v 

Figure 1 
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The following proposition describes a local defining equation at any point of  
[fg(D) n ( D •  X r T .  The proof  is straightforward and left to the reader. 

Proposition 4. At  each point ~E[~(D)c~(DXT~)]Xr T there exist 
i) an open neighborhood V(r ~ (X(as) L) X(az)) X T~ ; 

ii) local coordinates (w~, w~, w) such that one o f  the following types o f  equa- 

tions defines V(r c~ [~(D) c~ (D • T~)] •  

Type (1): w E(m - wax tin. 

Type (2): w E(I)) ,,,a(D) ~,a(o~) 
- -  ~v I , - $  . 

Type (3):  W 1 W E ( D )  - -  W A ( D ) .  

Type (4) : w E(D) ,,,A(D~) , , ,A(D) 
- -  ~v I , v g  . 

~ [~ (D) c~ (D X T=)] XT. T is of  type (i) if the local defining One then says that 
equation at ~ is of  type (i), i--- 1, 2, 3, 4. 

Set 

a(2) = g.c.d. (A(D0, A(D)), a ( 1 )  = 1, 

and 

(4.2) 

a(3) = 1, a(4) --* g.c.d. (A(D), A(D2)), 

oq = E(D)/A (DI), ~2 = E(D)/A (D~, 

One now lifts these considerations to ~V'(D)sp (the non-singular part of  .,V(D)) as 
follows. For each ~E[~(D)c~(D• with corresponding neighborhood V(O 
as described in proposition 4, one has 

Proposition 5. For i= 1, 2, 3, 4, i f  ~ is o f  type (i), then there exist a(i) disjoint 
open neighborhoods over g(~)Xr  T, denoted ~r . . . . .  ~r with the following 
properties. 

a) For each p =  1, a(i), coordinates (,,(~) ,,(P) v (p)) are defined on each 

~ ( ~ ) n J V ( D ) s  ~ such that if." 

i = 1 then wlor 1 = (y~p))E(m/a(m, w~o~ 1 = y~p), wotl = e~ip/Em)vtp) 

i = 2 then w~orl = (y~))Em)/am), wzor/ = (y~p)),,, wor/ = e~'~p/~m)v ~p~ 

i = 3 then w~ot/ = (yl(t'))E(O), WgOr/ = (y2(P)) E(D)/A(D), wor/ = e2~aPlE(n)v (p) 

i = 4 then wlor/ = (yl(p))a% w2or I = (y(2t')) E(D)/A(D), wot 1 = e ~iME(D) v (p). 

b) I f  g (oc~  V(~') # 0  the overlap relations between Ms(i) and s~k(~') are derived 

from those for V(O,  V(~') and the formulae o f  part (a). 

Proof. This is a straightforward adaptation of  the arguments given in [16, 
pg. 488]. [] 
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In the following, the open sets ~r will be (imprecisely) called "charts". 
Now define the following subsets of if(D), 

E0 = {(u, to*): Ri = ut = 0} u {(/), t**): R~ =/)~ = 0}, 

E1 = {(u, t**): R~ = u2 = 0},  

Ez = {(v, t~): R~ = vl = 0}, 

Set 
E3 = {(u, to*): R~ = Qr = 0} u {(v, t~): R~ = Qo~ = 0}. 

(4.3) 

and 

b = ~-l(Eo-(Ell,.)g~l, dg3)), b i = ~ - l ( E i )  , i = 1 ,2 ,  

/_emma 8. 
(1) For any j, ~ one can locally describe b '  c ~ ( ~ )  as follows. 

a) I f  e (~ (~) )cX( t r l )  then f)" c~(~)c={v~J)=y~J)=O} and y~J) is a local 
coordinate o f  1)" c~ ~ (~). 

b) I f  e(~Cj(~))cX(a2) then f)'c~fj(r and y~J) isa  local 
coordinate o f  D" c ~ ( ~ ) .  

(2) In any open set o f  .A/'(D) disjoint from fiB, the map OoQ is nonsingular and 
holomorphic. 

Proof. This is clear from the definitions and construction of  Jff(D). [] 

Let o/ /=f~(D)-Ea.  The analysis in the next section will be done over q/, by 
means of the restriction map 0: (an open subset of f)')-~~ This is defined as fol- 
lows. Set Oi: X ( t r i ) • 2 1 5  T**, i =  1, 2 to be the transformations defined by 

1 IlIA(D), 
01: Wl = Ul Qot(ul, uz) w2 = uz, to. : t~ 

, , [ 1 ] I~A~D' ' 
02: Wl ~--- Vl' W2 : /)2 Qalt(/)l' v~) to. = to*. 

Then 01 resp. 0z is well-defined and non-singular on an open neighborhood ~ of 
[(Dc~X(tr0)• resp. ~ of  [(DmX(a2))• Moreover, it is clear that 

a//c~ ~/~1 = {t**--'.ta(a)',v2A(~ = 0},  

~ , c ~  = { t . . -  (u~)AtD.) (w~),,a) = 0}. 
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One then lifts fr resp. ~ to an open neighborhood fr resp. fr of  
(DraX(a~)))<r T resp. (DcaX(a~))• T so that 

(v//Xr. T) c~ "/~' : {w~< 1>) - we fI>) we ~1) : 0} 

( q / X r  T) c~ f/~' = {w gfa) - (w~)a(~ (w~) a<m = 0}. 

Set ;~=gcd(A(DO, A(D)), 2~=gcd(A(DO, A(D)). Exactly as in proposition 5, 
there exist disjoint open sets ~ )  . . . . .  ~r resp. ~r . . . . .  ~r in ~f'(D) which 
map onto (q/)<r| resp. (q/Xr T)c~/~'.  In each ~r ~) resp. Sgk ~z) there 
are defined coordinates on ~ff(D)s~, denoted "" (i) (y~ , y~0, ~:ti)) resp. (y,(k), y~(k), V,(k)), 
so that the transformation equations of  the type given by cases i=2, 4 in part (a) 
of  proposition 5 hold. 

Select one chart each from {~i~ {~r Denote these by ,~l=~(y~,  y~, v), 
~,z=~C~(y~, y~, v'). Then define (cf. figure 1) 

by which the sections co', co" (cf. lemma 6, remark 4) can be lifted to an open subset 
of  I)'. One sets 

nl~,ln~5,(0, y~, 0) = (0, ~1,  0) = (u,,  u~, w) 

nl~2a~,(y~, 0, 0) = ((yD% 0, 0) = (Ol, o~, w). 

Thus, one can give a unique meaning to r/*(ro'), ~/*(to") as single-valued 1-forms 
on any simply connected subset of  f) '  disjoint from ~ .  It is useful to have an explicit 
expression for these forms. To obtain this, define for i :  1, 2 

(4.4) 6(D,) = Ae(D' D,) + I 
A(D,) = Q(~p)--Q(D,, I). 

Lemma 9. As multi-valued l-forms on D" one has: 

i) ~/*(co')l~,n~, = ctlYz rf~ ~)]~(*)~1(0,  y~a 1) dy2. 

ii) ~/*(co')]d2nfy = -- cq(y~) rO~)~~ -1 [Ro2((y~)~s, 0)]r ((Y~)~2, 0) dye. 

iii) ~/* (co")ldln5, = cq yrfD)~oO-x [Ro~(0, ~t)]~t,) ~ ( 0 ,  y~t) Log (~t)dye.  

iv) t/*(to")l ~,n fi, = cq (y~)~fD)6(a2)-1 [R,,((y~)~2, 0)]Q(,)~,((y~)~,, 0) • 

X Log ((y~)~') dye. 

Proof. This is a straightforward calculation that is left to the reader to check. [] 
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5. Proof of  theorem 1 

The basic idea of the proof is to express each summand R(D) of p (cf. lemma 7) 
in terms of the Mellin transform of a family of periods in the fibers of P over an 
interval in (0, oo). This is accomplished by lifting the expression for R(D) to the 
divisor D', defined in (4.3), and then arguing as Varcenko does in [16]. 

Before stating the theorem, it is helpful to recall certain well-known ideas. 
(1) As shown by Verdier [17], the map P: C2-~C is a locally trivial fibration 

over C minus a discrete set ~ of bifurcation points. Set C* = C - ~ ,  and define 
P*=Ple-,(c*)- For  tEC* set Xt=P-l( t) .  Let H 1 denote the fiat vector bundle 
on C* with fiber at t equal to the finite dimensional vector space HI(Xt, C). Let 
~vgl=Hl|162 be the sheaf of germs of  analytic sections of  H x. Any rational dif- 
ferential 2-form w, regular on an open set U, determines an analytic section of  
,~llp(U), defined as 

o~,: t ~ [o~ldPlx, nv] 

where o~/dP[x, n u = Res (T~7-t)lx, n v- 
Similarly, the locally trivial fibration P* determines a 1-homology bundle Hx 

whose fiber at tEC* equals Ha(X t, C). If  to is any point of  C* and voEHt(Xto , C), 
one can construct a continuous (multi-valued) section of  H1 by using parallel trans- 
port in the fibres of P*. I f u  is a real analytic path from t o to oo (that is, to~ =0) with 
no self-intersections, then there exists a unique continuous section of  Ht over x 
which equals ~'0 at t o . 

(2) It is well-known [6, pg. 113] that if ~o(t) is an analytic section of g ~  and 
Vt continuous section of  Ha over a ray g for which V0 is a bounded cycle [12, pgs. 
82--83], then the function I(t)=f~, o~(t) is a solution of  a differential equation 
with regular singular point at infinity. Now define the Mellin transform of I(t) as 
the line integral 

J(s)  = f ,  t-~I(t)dt.  

The above remarks imply that J ( s )  is analytic in some halfplane Re (s )>B and 
is meromorphic in C. There is moreover a connection between the poles of  J ( s )  
and the exponents in the Nilsson function expansion for I(t) in a neighborhood of 
infinity. This is described in detail in [8, ch. 1]. 

Notation. From (4.2), set ~ l=e  ~/~,, ~ = e  2~I/~', ~ = e  -~i/~'. For a, b positive 
numbers and 7EC*, v[a, b] denotes the oriented line segment from ~a to 7b. For  
0 < e <  1, set a(e, i)=e ~1",, b(e, i )=-~/ ' , ,  i =  1, 2. [] 

Theorem 1. Assume that P, ~p have positive coefficients and 0 (q~) is a simple 
pole of Ie(s, cp). Then for each divisor DE ~ , ,  there exist 
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i) An open subset (or "wedge" c f  (5.7)) 12 of C*, and an analytic section 
~o D (~o) of  aft ~, defined in g2; 

ii) An interval [fl, r and a continuous section ~(D, t )  of I-I~ over 
[8, oo); 

iii) An explicit constant 7(D) (cf. (5.8), (5.11)) such that 

R(I)) = 7(D) [coefficient of  (s-o(q~)) -I in the Laurent expansion for 

f;t-'(fr 
Remark 5. An immediate analytic corollary of  Theorem 1 is the following. De- 

fine the function 

d 
J ( t )  = - ~ - f ( ,  ~ tx, =),: P(:)~_q tp dzx dz~. 

One knows there exists 8' > 0  such that 

l (s, = t - ,  y ( t )  dt. 

By Mellin inversion one now concludes 

Corollary 2. Over the inter~al [fl', ~o)c O, defined in remark 5, there exist 
i) A continuous section 7, of  H1, 

ii) An analytic section w, of  o~f 1, 
iii) A positive number O, 

such that 

y ( t ) - f ,  w , = o ( t  as t~oo.  [] 
t 

Proof of  theorem 1. The argument divides into two cases. In the notation used 
in lemma 4 these are 

Case 1 : At least one 2~,(D, Di)-  0((p)6~Z. 

Case 2: Each 2~,(D,D~)-Q(~0)~iCZ. 

Proof in Case 1. By reindexing if necessary, one may assume that 2~(D, D 0 -  
0(r Define the oriented 1-cycle ku(e)=~'~= x 7~(e) with support in the ~r 
chart as follows. 

(5.1) 
i) 7ix(e) is the sector of  the circle with radius e 1/~1 from ~la(e, 1) to a(e, 1). 

Parametrize it by y,=aa/~,e i(2"/~,-~ 0E[0, 2n/~]. 
ii) (P2(e) is the segment [a(e, 1),b(e, 1)]. Parametrize it by .v,=x 1/',, 

�9 X'E [~:, ~ - 1 ] .  
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iii) ~g3(e) is the sector of the circle with radius (l/e) lr~ from b(e, 1) to (ib(e, 1). 
Parametrize it by y2=e-ll~e i~ 0E[0, 2~/~1]. 

iv) ~gp(e) is the segment (x.[a(e, 1),b(e, 1)]. Parametrize it by Y2= 
~ l ( -X+S+~- l )  ~/~', xE[~, e-l]. 

This is sketched below. 
An analogous 1-cycle is constructed in the ~r chart. Denote this by T'(e). 

Of use below is the parametrization of the 1-cycle in the ~r chart to which T(e) 
is identified under the overlap relation y~,= 1/(y~) ~,. This is important because 
one is dealing with multivalued forms and one needs to keep track of the arguments 
of the integrands over the cycle in both charts. Define the following 1-cycle .~ (e)= 
~ = x  ,E(e), with support in the ~r chart where 

Figure 2 
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i) ~l(e) is the sector of the circle of radius e 1/~, from a(e, 2) to (~a(e, 2). 
Parametrize it by y'~=el/~ei(~i/~ -e), 0E[0, 2z/cq]. 

ii) ~2(e) is the segment ('~[a(e, 2), b(e, 2)] with parametrization y~=~x a/~, 
x~ [~, 8-1]. 

iii) ~z(e) is the sector of the circle of radius e -1/~ from ~b(e, 2) to b(e, 2). 
Parametrize it by y~=~-ll~,ei~ 0q[-2n/~z, 0]. 

iv) ~4(e) is the segment [a(e, 2), b(e, 2)]. Parametrize it by y~ = ( - x + e + e - 1 )  1/'~, 
x~[e, e- l] .  

It is clear that the compact cycle ~(e), resp. ~'(e) has support disjoint from 
when e is sufficiently small. Each is evidently the lift of a "Hankel contour" in 

D' to ~r resp. ~r When the 1-form r/*(of) has poles or branch points other than 
0, oo then ~(e), resp. ~/"(e) is non-homologous to 0 in f l l ( ' ~ D  t for e sufficiently 
small. On the other hand, since each of the coetficients of Q is positive, ~/*(09') is 
defined at each point of I~e(e)l u l~'(e)l  for small e. 

By an abuse of notation, denote by q*(og')(yz) resp. q*(of)(y~) the func- 
tion of Y2, resp. y~ which determines the factor of dye, resp. dy~ in q*(og") and is 
defined in lemma 9 part i) resp. part ii). 

One now has the following, which is easily checked using lemma 4 and the 
Argument Principle. 

L e m m a  10. Let 

Arg b(~, 1) = Arg a(e, 2) = Arg Re(~)oJbte RQ(~)o-rare ,, 'IL ~ , l ) ) - - A r g  ,~ ,Ik ~ , 2 ) ) = 0 .  

Then the branch of t/*(of)(y2) , obtained by analytic continuation along T(e) and 
starting at b(e, 1), agrees with the branch of r/*(~o')(yl), obtained by analytic con- 
tinuation along ~(e) and starting at a(e, 2). 

In this sense, one says that the 1-forms r/*(~o')l~,~f r and r/*(~o')Lq~fy patch 

along the paths T(e), Z(e) via the overlap relation y~,=(y~)~,. 
In the ~r resp. ~r chart one may speak of the oriented region t2~(e) resp. g2z(e) 

enclosed by ~(e) resp. ~,(e). Thus, 0t2~(e)=T(e), tgf2~(e)=~(e). If el<e~<<l 
define the regions ~i,  ~ by 

Here, one has (cf. figure 3) 

(5.2)  ~ 1  = ~/1(~1) + ~r'/~(~l) - ~/1(~2) ~- ~/4(~1), 

aa~  = e~'(sO + e~(~l) + e~ ' (e~)-  ~'~(~), 

ase~ = ~;(~0 +-~(~1) +-~(~x) - ~ ( ~ ) ,  

- ,  (~1) + - 1(~1) + ~.~ (~1) - -- ~(~). 
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"~" (~- :) ~:~;z:) ~:(a : )  

S~ - ~ : ~ )  

~ . . j  

Figure 3 

To be precise, one should specify the branches of  q*(co')(ys), t/*(og')(y~) over 
the ~ ,  ~ .  In order to insure that the branches patch in the above sense, it suffices 
to choose the branches of  these functions by lemma 10 and restrict them to the 
paths comprising the loops ~ ,  ~ as defined in (5.2). 

Now define the oriented closed paths ?i=t/(0.~i)c(the Us chart), ? ~ = t / ( 0 ~ ) c  
(the Vl chart) for i =  1, 2. Evidently, one concludes that 7, patches with ?; for i =  1, 2 
via the overlap u2= 1//,'1. One now shows 

Lemma 11. For i= 1, 2 

L '  L c~ r - -  �9 2 : 0 -  
i 1 

Proof. The basic point is to observe that if c is any rational exponent then 
f,1 ugdu,=f,; v~dv~=O. This follows from a straightforward calculation that is 

left to the reader. Next, over the regions enclosed by 71, resp. 7~ one can expand 
into a uniformly convergent series in u 2 resp. v~ the functions R a~').., @~,(0, u2) resp. 
R~( ~)- @,,(v~, 0). This is possible when e~, e~ are sufficiently small so that no zero 
of  Q,,(0, us) resp. Qa2(Vx, 0) lies inside or on 71 resp. 7-,. Thus, by interchanging 
integration over each 7~, 7~ with summation, one concludes that f~, co2=f,; co~=0. 

By using the patching of  the two branches from lemma 10, one concludes that 

f,, o~;= fr; o~'=o, and f~, ~o[ = f,~ oZ=o. [] 
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Lemma 11 now implies that for ~1<~2<<1 one has 

(5.3) = (o9")" 

Let St resp. S~ denote the circles of  radius e oriented clockwise and centered at 
the points (cL lemma3) D n D 1  resp. D n D 2 .  An elementary calculation now 
shows that 

(5.4) f (s(o9') = e-Zni~'~. (o'O1) (1 -- ~9"~i(~ ,(D'/)D-ata')'~)) X 

x ,(1' ' ' ' ,  R ~ '  (0, uz). 4),,~(0, u2) du2 + o9; + o9"  

By assumption, each ~,(D, D 3 >  - 1. Thus, one concludes that lim~_~ fso o9~= 
lim~_.~ fs'~ o9~=0. By (5.3) the left side of  (5.4) is independent of  5. Let ku denote 

the typical cycle ku(~). Then, fixing ~ on the left side of  (5.4), while on the right side 
letting e-~0, one finds, by 0.6),  that 

(5.5.1) r/*(og") = e-2ni)*.(D, Dt) (1 --e2~i(a.(V'o,)--Q(~')~)) R(D). 

An obvious modification of  the above arguments uses the typical cycle rE,= ~u'(e) 
in ar 2 if 2~,(D, D2)-O(~o)5r so that 

(5.5.2) f ,n, (o9') = e-2~ia,(n, o,) (1 - e2~i(a, (n, o,)-~(,)~)) R(D). 

Because ~ is disjoint from ~u/3~u/3~  (cf. (4.3)), there exists an open tubular 
neighborhood ~ of ~ in ~V'(D) which remains disjoint from ~u /3~u /3z .  By 
[16, pg. 489], one sees that this implies that the 2-form (~o~/) a+q(*)n(m O*n*og, extends 
to a well-defined 2-form on if'. A straightforward calculation (following that in [ibid]) 
using proposition 4, 5, shows that 

E(D) * * d o 

Now, since zor/ is defined at each point of  ~-, reasoning as in [ibid] allows 
one to assert the existence of  a continuous family of  1-cycles ~(D ,  w) satisfying 
these properties. 

(5.6) ( a ) I - ~ ( D , w ) l c ( ~ o , 7 ) - l ( w )  for all wEzot / (5) .  

(lo) ~(D,  O) = ku. 

E ( D ) .  , , 
(c) A- - -~J~  r/ (o9) = limw_o wl+*(*)~(t))fo -m,,o-~176 
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Thus, the wedge alluled to in the statement of  theorem I is the set 

(5.7) I2 = wzor/(~--), 

or viewed in the range of  P, it equals the image of  this set under the reciprocal map- 
ping t ~ t =  1/t.~. From the construction and proposition 2, it is clear that the 
wedge contains a line segment whose pointset equals an interval of  the form [0, ~] c 
T.~, for some ~>0.  

The map n'o e (cf. figure 1) induces the family of  cycles 

~(D, L.) = rdo0(E(D, w)) 

in the fibers R=t~.  Note that the support of  each cycle is contained in O(J ' ) ,  
where co, is regular. Arguing exactly as in [ibid] one concludes that for each w # 0  

w co,/dR. f.---(n,w) O* n* c%/d(zo~l) = E(D) ~(v)-x fr wn(v)) 

Define 

(5.8) 
~A (D) e2~,< D, o0 (1 - eZ~ir Oa, o0-a(,)*))-x if 2 ,  (D, DO - 0 (q~) c~ ~ Z 

r(D) = tA (D) e2"i~,r v,D')(l --ezni(a~,(D, Ot)-P(q')'D) - 1  if 2 , (D,  D 2 ) -  O(~P) r Z. 

One concludes the proof  of  case (1) by the following sequence of  identities, 
each of  which is easy and left to the reader to verify. Set ]/= 1/ct. 

R ( D )  = ~ (D) l im w (I+Q(<p))E(D) f . . . .  (_om/dR 
w~0 j ~(D. w ~ ) )  T 

= y ( D )  l im tL+Q'~f c%/dR 

= T (D) (coefficient of  t7. el+Q(*)) in the asymptotic 

expansion as t| of  f~n.t.) c%/dR) 

= ~, (D) (coefficient of  ( s - 0 ( q 0 )  -1 in the Laurent 

expans ion  of f~ :. (L(D,t.)(.,Or 

-- ~ (D) (coefficient of  (s-O(cp))-* in the Laurent 

expansion of  , - "  

Proof in case (2). 
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The arguments of  case (1) faiI to identify R(D) via f~, ~/*(o9") because the 
factors 1-e~"i(~* (~176 equal zero for i=  1, 2. In order to avoid this problem, 
the 1-form co" (cf. remark 4) replaces co'. On the other hand, one can continue to 
use the 1-cycles ~(~). As in case 1 one must specify the branches of the functions 
(using the same abuse of notation as above) q*(og")(Y2), q*(af')(y~) along the 
cycles ~(e), ~(e) so as to be able to patch and prove the independence from e of 
f~e(~) r/*(og") for e sufficiently small. 

One observes that case 2 and lemmas 2, 4 imply that each 2,(D, Di)ENw {0}. 
Now, the branches of the logarithm factors are defined as in remark 4. Thus, after 
traversal of ~3(e)Log (y~) changes by 2hi. After traversal of ~(e) ,  Log ((y~)~) 
changes by -2rti. By the identification ofy~ with 1/(y')~, one concludes that the 
analytic continuations of r/*(og")(y2) along ~(e) and q*(og")(y~) along if(e) patch 
via the overlap relation between ~r and ~r Using the notation from 
lemma 11, one now concludes 

I.emma 12. For i= 1, 2 

L" O91 = Oga = O. 
i 

Proof. By the above remark, it suffices to show that ft, o9~' = f r; co~' = O. Using 
the same idea as in lemma II one reduces to showing that for any nonnegative 
integer n fr, ug Log (u2)dus=fr, v~ Log (v~)dv~=O. With the above discussion, this 

is a straightforward calculation by an integration by parts that is left to the 
reader. [] 

A standard calculation also shows that for any e>0  

f~'(O tl*(o9") = 2zci f [  ~ -I"'~*(D'D~)vQ(*) ( 0 , , , , x  U2)~o~(0, u2)du2 +Js,e 09"1+is to"2. 

The nonnegativity of each 2,(D, Di) implies 

l i m f  ~ '  = q m  r ,, ~-o ~ s~ L o  .Is: o9~ = O. 

Thus, one concludes, as in (5.5) and with the same notation, 

(5.9) f~, ~/* (co") = 2niR(D). 

It is clear that the topological situation is the same as case 1. In particular, 
the neighborhood 3" and family of 1-cycles ~(D, w) can be constructed exactly as 
in case 1. 
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The one difference concerns the section of  ,gl .  One needs to interpret q* (co") 
as follows. Define 

(5.10) ~ =  O (9-) c C 2(x). 

It is evident that ~i r contains the origin. Let ~ 0  denote the interior of  ~ .  
By construction Log (Y2), Log (y~) are analytic and multi-valued on J" which 

patch on the overlap ~r162 (By choosing ~Y" sufficiently small this is pos- 
sible.) Thus Log(u2),Log(vx) patch on pro0(3").  By using the inverse of  
n'[x(,,)x T, i=1 ,  2, which is given by a monomial transformation, one can view 
Log (u2), Log (vl) as the composition of  the logarithm on C2(x) and certain mono- 
mials in xl,  xz which are defined over ~ 0  and possess well-defined limits at all 
points in ~/~'. Observe too that these functions patch on the overlap 

[.Ix,.,, 
by construction. So one has constructed in this way a (multi-valued) section (~r of  

Set co,(~/r (~r. This is a 2-form which is holomorphic and single-valued 
over ~/-o. One can then repeat the argument in case 1 word for word, replacing co, 
by co.(~r). 

In particular, as in case 1 one has the identity 

E(D) 
A(D) r/* (co")l~-mS, = (~~176 n* co, (~)ld(~or/)l~-nS.- 

As such one finds that 

(5.11) y(D) = A (D)/2ni. 

This completes the proof  of  theorem 1. [] 

Remark 6. From lemmas 4, 5 it is clear that for fixed i l ,  i2, ~ ,  the set of  pos- 
sible vectors J1, J~ for which 2, (D, D 0 -  ~ ((p) 6, 2~, (D, D 2 ) -  0 ((P) 6 E Z corresponds 
to a subset of  the positive integral solutions (xl, Y0, (x2, y~) to the pair of  con- 
gruence equations 

det{ x l - m l + l '  ) ~ - i l }  -- O(A(D)) 
~'Yl -- ms + l ,  

d (xz--mx+l,  
et [ m 1 "~ -- ]2) =- 0 (A (D)).  

Y~-- 3+ , 

In this sense one may call a polynomial q~ "generic" if case 1 of  theorem 1 applies. [] 

Two corollaries of  interest to the diophantine probIem discussed in the in- 
troduction follow from theorem 1. 
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Corollary 3. Assume the following hypotheses are satisfied. 

(1) ~o 1, (P2, P satisfy the conditions in theorem 1 ; 
(2) (01, q~2 are generic polynomials in the sense o f  remark 6: 
(3) Q (q)x) = e (~02). 

Then one eoncludes the following. I f  (r, =tr,, for  all tEC*, then for  all x>O ~ , , ( x ) =  
~,  (x). 

Thus, the dominant term for N, (x )  is a type of  cohomological invariant. It 
would be interesting to understand the implications and extent of this observation. 

In general, it is clear from the expression (3.6) that each R(D) is the value of 
some generalized hypergeometric function. As such, it is not yet possible to detect 
an "algebraic part" within each R(D), which is presumably a highly transcendental 
number. On the other hand, if ~(q~)E Z then one is in case (2) of theorem 1. Assume 
further that both P, ~o are defined over a number field K. Here the situation is dif- 
ferent. For now one can evaluate f~. q*(to") directly via standard residue calculus. 
Let fl~(D) . . . . .  fiR(D) denote the poles of  

u2. (Ro~)0(~)re* (o~")lD. 

These are algebraic numbers. One concludes 

Corollary 4. 

27ri Ress=Q(~) Dp(s, qO R - -  -- Z D ~ ,  Z , = I  ~.(D) Log (ft,(D)), 
S 

where each 0tu(D ) is an algebraic number that depends explicitly upon the polyno- 
mials P, (p. 

Remark 7. The cycles ~(D, t**), constructed in theorem 1 have support in 
C2(x)c~CZ(z), when too~0, as is easy to check. Thus, each ~(D, t.,) is a 1-cycle 
in X l t t =  {y~C2(z): P ( y ) =  1/t=} which is non-homologous to zero. 

Broughton [2] has studied the homology of the fibers X,. Because n=2 ,  P 
is "tame" [ibid] if it is not the square of  another polynomial. Thus one has [ibid, 
thm. 1.2] 

Theorem C. There exists a nonnegative integer p such that for all but at most 
finitely many xEC one has 

(5.I2) /'/l(Xt, Z) ~ Z/z. 

One says z is "generic" i f  (5.12) holds. 
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Fo r  T generic, let {~(z)}~'=l be a basis o f  Hi(X, ,  Z). By Verdier 's fibration 

theorem [17], one can move the basis to any other  generic fiber Xt, t ~ z ,  by parallel 

t ransport .  

In the nota t ion o f  the p r o o f  o f  theorem 1, Broughton ' s  result implies as an 
immediate  consequence 

Corollary 5. There exist integers nl . . . . .  nu such that for  each tE[fl, oo) one has 

[~(D, l/t)] = z ~ = l  ni~i(1/t)" 

In  this sense one can say that  the coefficient o f  g~,(x) is "determined by the 

global topo logy"  o f  the fibers o f  P. []  

Concluding remarks. Theorem 1 should be extendable to the case in which P, 

~p are both  non-degenerate with respect to their polygons at infinity, and positive 
on [1, 00)3. On the other  hand,  under these conditions,  it is not  yet known if N,,(x) 

admits  the description given in theorem A. One only knows a priori  that  N~,(x)~ 
~ , ( x )  (actually one knows slightly more  by Freud ' s  tauberian theorem). So, an 

extension o f  theorem 1 to the non-degenerate case would  still have something to 
say about  the diophant ine problem o f  interest in this paper.  However ,  the case 

o f  positive coefficients was emphasized here because one has the strongest result on  
N~,(x). 
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