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Higher order commutators 
for a class of rough operators 

Yong Ding and Shanzhen Lu(1) 

Abstract. In this paper we study the (LP(uP), Lq(vq)) boundedness of the higher order 
commutators T~:~, b and M~]~, b formed by the fractional integral operator T~,~, the fractional 
maximal operator M~,~, and a function b(x) in BMO(t,), respectively. 

Our results improve and extend the corresponding results obtained by Segovia and Torrea in 
1993 [9]. 

1. I n t r o d u c t i o n  

Suppose that 0 < a < n ,  f~(z) is homogeneous of degree zero on R n and ~(x ' )C 
Ls(sn i) (8>1), where S n 1 denotes the unit sphere in R ~. Then the fractional 

integral operator Ta,~ is defined by 

R a(x-y) 
T ~ , ~ f ( x )  = n I x - y p  ~ f ( y )  dy, 

and the fractional maximal operator Ma,~ is defined by 

Ma,~f(x)  sup r ~-~ IQ(x-Y)I If(Y)]dY. 
r>0 -yi<r 

In 1971, Muckenhoupt and Wheeden [8] gave (L v, L q) boundedness with power 

weight for the rough fractional integral operator T~,~. This is an extension of 

the Hard~Li t t lewood-Sobolev theorem. For general A(p, q) weights, we gave the 

weighted (Lp, L q) boundedness of Ta,~ and M Q,~ in [5]. In 1993, Chanillo, Watson 

and Wheeden [1] proved that when s>n/(n-c~) ,  the operator T~?,~ is of weak type 
(1, n/ (n  a)). Recently, weak type inequalities with power weights for Ta,~ and 

M~,~ have been obtained by one of the authors [4]. 

(1) The project was supported by NNSF of China. 
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Before stating our results, let us give some definitions. For u a nonnegative 
locally integrable function on R n, a function b(x) is said to belong to BMO(u), if 
there is a constant C > 0  such that  for any cube Q in R n with its sides parallel to 
the coordinate axes 

/Q[b(x) bQIdx<_C/ou(x)dx, 

where  bQ=(1/IQ D fQ b(x) dx. 
Let ~ be homogeneous of degree zero on R n and satisfy fs~- i  f~(x') dx'=O. 

Then the integral modulus of continuity of order s (s_> 1) of f~ is defined by 

f s  \ l /s  ~ ( t )  = sup  I f ~ ( o x ' ) - a ( x ' ) l  s dx'} , 
Iol<t ~-~ ./ 

where L) is a rotation in R '~ and 1 0 1 = l l 0 - Z l l .  

A nonnegative locally integrable function u(x) on R n is said to belong to A(p, q) 
( l<p ,  q<oo),  if there is a constant C > 0  such that  

1 /Q \ l /q /  1 f , "~]/P' 
supc2 ~Q~ u(x) q dx) ( ~ ]O u(x) p dx) _< C < oc, 

where p'=p/(p 1). 

In this paper we shall follow the idea developed in [5] to consider the weighted 
(L v, Lq) boundedness for a class of higher order commutators formed by Ta,~, Ma,~ 
and BMO(u) function b(x) which are defined as 

(1.1) 
R a ( ~ - y )  

T~,bf(x) = ,~ i ~ _ y l n  ~ [b(x) b(y)]'~f(y) dy 

and 

(1.2) M~,~,bf(x)=supr-g_~_~ If~( x Y)I Ib(x) b(Y)l'~lf(Y)ldY . 
r>0 yi<r 

In 1993, Segovia and Torrea [9] gave the weighted boundedness of higher order 
commutators for vector-valued integral operators with a pair of weights using the 
Rubio de Prancia extrapolation idea for weighted norm inequalities. As an applica- 
tion of this result, they obtained (LP(uV), Lq(vq)) boundedness of Ti~.~ b and M m , , 1 , c ~ , b ,  

where f~ satisfies some smoothness condition. 
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Theo rem A. ([9]) Suppose that 0 < a < n ,  l<s '<p<n/a ,  1 / q = l / p - a / n ,  
is a homogeneous function of degree zero defined on R ~, and fs,~ ~ f~(x') dx'=O. 
For mcZ+,  if the integral modulus of continuity of order s (s>l )  of f~ satisfies 

~o ~ dt (1.3) log'~(1/t)w(t) ~ < (x~, 

then for bcBMO(,),  u(x) J ,v(x)  ~' eA(p/s ' ,  q/s') and u(x)v(x) 1 =Urn, there is a 
constant C, independent of f ,  such that T~,a, b satisfies 

( /Rn ITf~'~,~,bf(x)v(x)lq dx) 1/q -<C( /R .  ' If(x)u(x)lP dx) 1/p. 

T h e o r e m  B. ([9]) Suppose that 0 < a < n ,  l<p<n/a ,  1 / q = l / p - a / n .  Then 
for bEBMO(~,), u(x),v(x)EA(p,q) and u(x)v(x) 1=~,,~, there is a constant C, 
independent of f ,  such that M~,a, b satisfies 

f .~l/q ,~l/p 

In this paper we shall prove the following results. 

Theo rem 1. Suppose that 0 < a < n ,  l<s '<p<n/a ,  l / q = l / p - a / n ,  f~ is ho- 
mogeneous of degree zero defined on R ~ and ~cL~(Sn-1),  then for functions bE 
BMO(.), u(x) J,  v(xF'  eA(p/s ' ,  q/s') and u ( x ) v ( x ) - l = u ' b  there is a constant C, 
independent of f ,  such that T ~ ,  b satisfies 

( /Rn IT~ma,bf(x)v(x)lqdx) 1/q <-C(fR~ If(x)u(x)lPdx) I/p. 

T h e o r e m  2. Suppose that 0 < a < n ,  l<p<n/a ,  1 / q = l / p - a / n ,  s>q. If ~ is 
homogeneous of degree zero defined on R n and ftE L~( Sn-1), then for functions bE 
BMO(.), u(x) ~', v(z) - J  eA(q ' / s ' ,p ' / s ' ) ,  and u(x)v(x) -1 =~.'~, there is a constant 
C, independent of f ,  such that Ta~ ,b satisfies 

(,~ lT~n)~,bf(x)v(x)lq dx)l/q < C(/R~ .~l/p I f (x)u(x) l  p dx)  . 

On the higher order c o m m u t a t o r  M~,a,b of the fractional maximal operator 
Ma,~ we have the following results. 
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T h e o r e m  3. Suppose that 0<c~<n, l <_s'<p<n/c~, 1/q=l/p-c~/n,  ~ is ho- 
mogeneous of degree zero defined on R n and ftEL~(Sn-1), then for functions bE 
BMO(u), u(x) J, v(x) J �9  q/s') and u(x)v(x) 1=urn, there is a constant C, 
independent of f ,  such that JVi~,a, b satisfies 

( / R  [M~:~,bf(x)v(x)]q dx)X/q _ C( fm~ \ l /p < ]f(x)u(x)] pdx)  . 

T h e o r e m  4. Suppose that 0<c~<n, l <p<n/c~, 1 /q=l /p-(~/n ,  s>q. If f~ is 
homogeneous of degree zero defined on R n and f t cL~(Sn-1) ,  then.for functions be 
BMO(u), u(x) J, v(x) ~' �9  and u(x)v(x) - l=u "~, there is a constant 
C, independent of f ,  such that M~,~, b satisfies 

(/R,[M~,c~,bf(x)v(x)]qdx) 1/q - -<C( /R,  ~ ' f(x)u(z)[Pdx) 1/p. 

Remark 1. By comparing the results in this paper with the results in [9], we see 
that  the cancellation condition and smoothness condition (1.3) of ~ in Theorem A 
have been removed in Theorem 1. Moreover, the theorems in this paper are also 
extensions of Theorem A and B. 

Remark 2. In [2] and [3], we gave the weighted boundedness of T~,c~,b and 
M~,~, b for one weight function, respectively. The theorems in this paper are also 
extensions of results in [2] and [3]. 

2. P r o o f  o f  t h e  t h e o r e m s  

Let us recall the definitions of Ap (l_<p<oc) weights and some elementary 
properties of Ap weights and A(p, q) weights. A nonnegative locally integrable 
function w(x) on R n is said to belong to Ap ( l < p < o c ) ,  if there is a constant C > 0  
such that  for ally cube Q, 

(~Q[ /Qw(x) dx) (~Q~ /Qw(x) -1/(p 1) dx f - Z  < c < oc. 

Using the elementary properties of Ap weights [6], we can prove that  if 0<c~<n, 
l < p < n / a ,  1/q=l/p-c~/n,  then we have 

u(x) eA(p,q) ~ u(x) p'edl+p,/q ~=~ u(x) q�9 (zl) 
U(X) q �9 Aq(n-o~)/n. 
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L e m m a  1. Suppose that O<c~<n, s ' > l ,  l<p/s'<n/c~, 1/(q/s ' )=l/(p/s ' )-  
~/n. Then for bcBMO(.),  u(x) ~', v(x) J ~A(p/s', q/s') and ~(x)v(x) -1 = ~ m  there 77%J is a C, independent of f ,  such that the commutator N~,~,,D satisfies 

(2.2) ( /m[N~',S,bf(x)v(x)]qdxZ/q<c(/i~,f(x)u(x),PdxZ/p,  

where N~S,D is the commutator for the fractional maximal operator of order s' 
defined by 

, 1 f , \1/~' N:':y,bf(x ) = sup (~:~_~ JLx ]b(x)-b(y)l m~ If(y)l  J dy) . 
~->o \ r  -y l<r  

N "~' (M "~' [Irls'~(X))l/s', and we have Proof. Clearly . . . .  ,bf(x)=~ 1,~,b~lJI ) 

, \l/q 
(/Rn[N~'2l,bf(X)V(X)] qdx) (s l/q 

: [(/lrtn[M~,::b(,flS'(X))V(X)st]q/J dx)s'/q] I/st. 

Since u v - l = ,  "~, we get (uS')(vJ)-l=u mJ. By Theorem B, 

( s  )J/q ( s  ) slip 
[M~,~:v(IflJ(x))v(x)='] q/~' dx < C [If(x)l"u(x)J] ply' dx 

V'Ip 

Thus,  , \l/q "~l/p 

This is (2.2). 

Let  us first give the proof  of  Theorem 3. By the conditions of Theorem 3, we 

know tha t  for r > 0 ,  

(/~_yl< lft(x-y),~ dy) <_Cr~/~HftHr.~(s,,-~ ). 
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Hence 

M~'~'bf(x)=sup,->o ~ 1 / ~ _ y l < r  IQ(x--Y)l Ib(x) b(Y)l'~lf(Y)ldY 

\1/5 
<sup 1 ( f  ,~(x-~),'d d 
- ~ > o  r '~-~ k J l x  ~ l < , "  

(fix /"/r / s  

• Ib(x)-b(Y)l  "~ I/(Y)q dy| 
yl<'r 

(L ' ' ";" 1 rn/~ Ib(x)-b(y)l m~ If(Y)l s dy _< C sup r ~ 
v > O  --y]<r 

=c sup(,.>o w"--i.,o, s IV(x)-b(v)I ~" IS(y)/d~) '/" 
/ X ms =C ~,,,,,,bf(x). 

From l<s '<p<n/a  and 1 / q=l / p - a / n ,  we have 0 < a s ' < n ,  l<p/s '<n/as '  and 
1/(q /s ' )=l / (p /s ' ) -as ' /n .  Thus, by Lemma 1 we get 

( s  [m~,,a,bf(x)v(x)]q d2g)l/q C ( s  , .~l/q [N2";~,,~,,bf(x)v(x)] q dx) 

<_C(/R lf(x)lPu(x)P dx) alp. 

The result of Theorem 3 is proved. 

The proof of Theorem 1 is based on the following lemmas. Let us first give a 
pointwise relation between T~,~, b and M~,~,b. 

L e m m a  2. For any c > 0  with 0 < ~ - c < c ~ + E < n ,  we have 

TI r(~ (2.3) I ~,a,bf(x)l <--C[M~,a+e,bf(X)]l/2[2Vf~.a-e,bf(X)] 1/2, XC Rn, 

where C depends only on ~, e, n. 

Proof. The idea of the proof will be taken from [10]. However, it is worth 
pointing out that  the important  technique used here was suggested first by Hedberg 
in [7]. For x E R  '~ and e>O with O < c t - c < c ~ + c < n ,  we choose a 5>0  such that  

2~ m 7rt = M~,a+s,bf(X)/M~,a_<bf(X ). 
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f~ ~,bf(X ) = f Ft(x--y) T, TM al~-y <~ ix_yln_~ [b(x)-b(y)]mf(y) dy 

f~ a(x-y) + -yl~e Ix-Yl ~-~[b(x)-b(y)]~'~f(y) dy 

:=  I1+ I2. 

We have 

0o 

iill < ~ ~ I~( x Y)I b(x~_b(y~l~lf(y)l dy 
y=0 ~ - ~ < l x - y l < 2  J~ Ix-Y~-~ ~ ~ ~ " 

o~ 

< ~ ( 2  J-1(5) (~-~)3(~ I~(x-Y)l Ib(x)-b(Y)l'~lf(Y)ldY 
j=O yl<2 J5 

1 f x  la(x-y)] Ib(x)-b(y)l'~lf(y)l dy = 2n-~  Z ( 2 - Y S ) ~  (2 J5) "~-~+~ -vl<2 J5 
j=O 

< CSeM~':~ e,bf(x). 

Similarly, 

1121<-~-~.1J2-= ~- ~<1~_ yl<2~5 ~ 
o ~  

<_ c ~(2j~)__ ~ 1 j~ la(~-y)l Ib(~)-b(y)L~lf(y)l dy 
Y =1 (2j(5)n c ~ - - c  --yJ<2J6 

" 5  ~ M, . . . . .  

Thus,  by the  above selection of 5 we get 

m e M m - z m x IT~,~,bf(x)l<-C[ 5 ~ . . . .  bf(x)+ 5 M~,~+~,DI( )] 

= C[M~,,~+~,bf(x)] 1/2 [M~,,~_~,bf(x) ] 1/2 

and the proof  of L e m m a  2 is complete.  

39 

The  following two l emmas  character ize  an i m p o r t a n t  p rope r ty  of A(p, q) weights 
and they  are also the  key for proving T h e o r e m  1. 
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L e m m a  3. Suppose that 0 < a < n ,  l <p<n/c~, 1 / q = l / p - a / n  and u(x), v(x)E 
A(p, q). Then there is an e > 0  such that 

(i) s < a < a + e  < n, 

(ii) 1/p> (a+e)/n, 1/q< ( n - a ) / n ,  

u(x), v(x) cA(p, q~) and u(x), v(x) cA(p, q~), where 1/q~ = 1/p-  (a+c)/n and 1/(lc = 
lip ( -41n. 

Proof. For a > 0 ,  1 /q< l ,we  can take 6 i>0  such that 61<a  and 1/q+6i/n<l. 
Let 1/q6~=l/p-(a-hi) /n=l/q+61/n,  then q > q ~ > l  and l+p'/q<l+p'/q~.  By 
(2.1) and the inclusion relation between Ap weight classes, we have u-P',v P'E 
Al+p,/q CAl+p, /qa~ , which is equivalent to 

(2.4) u(x), v(x) E A(p, q~), 

by (2.1). 

On the other hand, there is an ~7 with 0<~/< 1/q, such that  u -p' E A l + p , ( 1 / q _ v )  , 

by the reverse H61der's inequality or Ap weights. Hence we can choose 62>0 small 
enough such that  52<min{a,  n a}, 1/p>(a+62)/n and 62/n<~ hold at the same 
time. Now let 1/q52 =l/p-(a+62)/n,  then since 1/p>(a+62)/n and 62/n<~ we get 
0< 1/q5~ < 1 and 1/q5~ = 1/q-62/n> 1/q-~1. From this we have u -p' EAi+p,(1/q ,) C 
Ai+p,/q~2. By (2.1), this is equivalent to u(x)EA(p,q&). Obviously, given the 
same discussion for v(x), we can also get a a2>0  (corresponding to v(x)), which 
possesses the conditions satisfied by 62 (corresponding to u(x)). Hence we have also 
v(x)EA(p, q~,~). Let el=rain{62, a2}, then we have 

(2.5) u(4, A(p, 

Finally, let a=min{Si ,e l}  and 1/qE=l/p (a+e)/n, 1/qe 1 /p - (a - s ) / n ,  
then by (2.4) and (2.5) we get u(x), v(x)EA(p, q~) and u(x), v(x)EA(p, ~). 

L e m m a  4. Suppose that 0 < a < n ,  l<s '<p<n/a,  1/q=l/p a/n and that 
u(x) ~', v(x) J eA(p/s', q/s'). Then there is an e > 0  such that 

(iii) e < a < a + e  < n, 

(iv) 1/p> ( a + a ) / n ,  1/q< (n-c)/n,  

and u(x) ~',v(x) ~' ed(p/s' ,  q~/s'), u(x) s', v(x) ~' cA(p/g,  q~/s') hold at the same 
t me, where 1/q  

Proof. As 1/(q/s')=l/(p/s') as'/n, by Lemma 3 there is an 71>0 such that  7 <  
a s ' < a s ' + ~ / < n ,  1/(p/s')>(as'+~)/n, 1/(q/s ' )<(n-~)/n and that  u(x) g, v ( x ) J E  
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A(p/s', qv), u(x) J , v(x) ~' �9 (t~) hold at the same time, where 1/q,l=l/(p/s' ) - 
(~s'+~)l~, llq~ = l / ( p / ~ ' ) -  ( ~ s ' - ~ ) / ~ .  

Now let e=~l/s ~, qe=s~qv and ~e=s~ l ,  then it is easy to see that  s satisfies 
(iii), (iv) and u(x) J, v(x) J eA(p/s', qe/s'), u(x) J , v(x) J �9 A(p/s', (~s/s') hold at the 

same time, where 1/q~=l/p-(a+s)ln,  1/(~=l/p-(c~-e)/n.  This completes the 
proof of Lemma 4. 

The proof of Theorem 1. Under the conditions of Theorem 1, by Lemma 4, 
there is an e > 0  such that  (iii) and (iv) hold, and 

u(x) J, v(x) s' e A(p/s', q~/s') and u(x) J, v(x) "s' �9 A(p/s', q~/s') 

hold at the same time, where 1/q~=l/p-(c~+s)/n, 1 /q~=l /p- (a-s ) /n .  Let 11= 
2qs/q, 12=2qe/q, then 1/I~+1/I2=1. For the above given e>0,  using Lemma 2 and 
Hhlder's inequality, we have 

IIT~rr~a,bfllq,vq ~ _ C(/R [M~+e,bf(x)v(x)]q/2[M~,~ e,bf(X)V(X)l q/2 dx) 1/q 

< C(3fR [M~a+e,bf(X)V(X)]qll/2 dx) 1/qll 

F 

x ( ~ ,  [M~:~_~,bf(x)v(x)]~ dx) . 

From Lemma 4 and Theorem 3, it follows that  

and 

(/R, [M~,,c~+s,bf (X)V(X)]q e d~c) 1/2qe 1/2 <_cllfllp,~, 

( / R  [M~ _~,bf(X)V(X)IO~ dxl 1/2~ ~/2 <-Cllfllp .... 

Thus, we get 

IIrJi~,~,bfhq,~q <- CII/IIp . . . .  

This is the conclusion of Theorem 1. 
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Remark 3. If we define the commutator T~I~,v by 

ix_vln_ dy, 

then from the proof of Lemma 2, we know that  (2.3) still holds if one has T~:~, b 
instead of T~:~, b. Thus, under the conditions of Theorem 1 we have also 

]lT~:a,bfllq,vq <_ cIIfllp,~. 

The proof of Theorem 2. From the definition we know that  the commuta- 

tor T~:~, b is a linear operator. Then we have (T~,~,b)*=T~2~,b , where a * ( x ) =  

( - 1 ) ' ~ f ~ ( x ) .  Clearly, f~* satisfies the same conditions as f~. We have 

IIr~n)c~,bfl lq,vq =sup [ T ( ~ : a , b f ( x ) g ( x )  d x ,  
g J R ~ 

where the supremum is taken over all g with llgllq,,~ ~,<1. Since (T~,~,6) * is the 

adjoint operator of T~,~,b, 

/a~ T~'~'bf(x)g(x) dx= /R~ f(x)(T~:~'b)*g(x) dx. 

Thus, 

m [ dx _ T, m * IlT~,~,bf]lq,~q = s u p  _ T~,~,bf(x)g(x ) < Ilfllp,~ sup II( a,~,b) gllp,,~ p I . 

g J R ~  g 

From the conditions in Theorem 2, we see that 1 / p ' = l / q ' - ~ / n  and s~<q'<n/c~. 
Since (u ~)'~', (v ~)~'ed(q' /s ' ,p ' /s ' ) ,  and noticing that ( v - 1 ) ( u - 1 ) - l - u v - ~ = u  m, 
using the conclusion of Theorem 1, we get 

II(T~,~,b)*gllp,,~ ~' <- CIIgllq, ~-e- 

Therefore, 

]]T~,~,bfllq,~ <~ IIfllp,up sup II(T~c~,b)*gllp,,u_p, ~ Cllfllp . . . .  
g 

This is the conclusion of Theorem 2. 

Remark 4. From the proof of Theorem 2 and Remark 3, we know that under 
the conditions of Theorem 2, 

IIT~,~,bfl[q,~ <_ cIIfllp . . . .  

The proof of Theorem 4. The conclusion of Theorem 4 is a direct consequence 
of the following lemma and Remark 4. 
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L e m m a  5. Let O<a<n,  FtELI(Sn-1) .  Then we have 

M~:a,bf(x) <- ~r~],a,b(ifl)(x), x c  R n. 

In  fact, fix r > 0 ,  we have 

- "  /ix l a ( x - Y ) l  Tk~l,~,b(lfl)(x) > _ -y[<~ ix_yln_~ Ib(x)-b(y) i" l f (y)]  dy 

>_ r ~-~1 flx-~l<r I f i (x -y) l  ]b(x)-b(y) l" l f (y)]  dy. 

Taking the supremum for r > 0  on bo th  sides of the inequali ty above, we get 

T~r~l,~,b(Jf])(x ) > s u p  1 f ~  Igt(x--y)I Ib(x)-b(y)l '~i f(y)ldy.  
- -  r ~ O  T n  ce - - y l < r  

This is just  our desired conclusion. 
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