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Higher order commutators
for a class of rough operators

Yong Ding and Shanzhen Lu(!)

Abstract. In this paper we study the (LP(uP), L(v?)) boundedness of the higher order
commutators Té"a p and MG, formed by the fractional integral operator Tq o, the fractional
maximal operator MQ s and a functlon b(z) in BMO(v), respectively.

Our results i improve and extend the corresponding results obtained by Segovia and Torrea in
1993 [9].

1. Introduction

Suppose that 0<a<n, Q(z) is homogeneous of degree zero on R™ and Q(z') €
L3(S™ 1) (s>1), where S ! denotes the unit sphere in R™. Then the fractional
integral operator Tq o is defined by

Toaf(o)= [ U 1) d

and the fractional maximal operator Mg , is defined by

MQ,af( ) =Ssup !

r>0 T

[

In 1971, Muckenhoupt and Wheeden [8] gave (LP,L?) boundedness with power
weight for the rough fractional integral operator T . This is an extension of
the Hardy—Littlewood-Sobolev theorem. For general A(p,q) weights, we gave the
weighted (LP, L7) boundedness of Tp, , and Mg« in [5]. In 1993, Chanillo, Watson
and Wheeden [1] proved that when s>n/(n—a), the operator Tq  is of weak type
(1,n/(n—c)). Recently, weak type inequalities with power weights for T , and
Mg . have been obtained by one of the authors [4].

(}) The project was supported by NNSF of China.



34 Yong Ding and Shanzhen Lu

Before stating our results, let us give some definitions. For v a nonnegative
locally integrable function on R™, a function b(z) is said to belong to BMO(v), if
there is a constant C'>0 such that for any cube @ in R™ with its sides parallel to

the coordinate axes
/ 1b(z)—bg|dx < C’/ v(z)dz,
Q Q

where bo=(1/|Q|) fQ b(z) dz.
Let © be homogeneous of degree zero on R™ and satisfy [¢. . Q(z") dz’=0.
Then the integral modulus of continuity of order s (s>1) of Q is defined by

w(t) = sup (/Sn_l Qo) -Q(a)[* dw’>1/s,

le|<t

where g is a rotation in R™ and |g|=|/o—I||.
A nonnegative locally integrable function u(z) on R™ is said to belong to A(p, ¢)
(1<p, g<o0), if there is a constant C'>0 such that

1/ 1/p’
ol o)y [ ) <

where p'=p/(p—1).

In this paper we shall follow the idea developed in [5] to consider the weighted
(LP, L?) boundedness for a class of higher order commutators formed by T o, Ma,qo
and BMO(v) function b{x) which are defined as

) TRafe- [ 2EY) ) b)) dy

Rn |T—y|"

and

(12)  ME, ,f(x)=sup —

r>0 ,rn—a

[ el bW

In 1993, Segovia and Torrea [9] gave the weighted boundedness of higher order
commutators for vector-valued integral operators with a pair of weights using the
Rubio de Francia extrapolation idea for weighted norm inequalities. As an applica-
tion of this result, they obtained (LP(u?), LY(v?)) boundedness of 7¢}",, , and M7, ¢,
where 2 satisfies some smoothness condition. 7
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Theorem A. ([9]) Suppose that 0<a<n, 1<s'<p<n/a, 1/q=1/p—a/n, 0
18 a homogeneous function of degree zero defined on R™, and fsn,l Q(z") dr’ =0.
For meZ,_, if the integral modulus of continuily of order s (s>1) of Q satisfies

(1.3) /0 log™(1/t)w(t) ? < 00,

then for b BMO(v), u(z)* ,v(z)* € A(p/s’,q/s') and u(z)v(z) ‘=™, there is a
constant C, independent of f, such that T(y, , satisfies

( /R (T8 (@)o()|? dw>1/q <c ( / o dxj“’_

Theorem B. ([9]) Suppose that 0<a<n, 1<p<n/a, 1/g=1/p—a/n. Then
for beBMO(v), u(z),v(z)€A(p,q) and u(x)v(z) t=v™, there is a constant C,
independent of f, such that M7, , satisfies

«

(/ M @@ dx)l/q <C ( / T dx>””,

In this paper we shall prove the following results.

Theorem 1. Suppose that 0<a<n, 1<s' <p<n/a, 1/g=1/p—a/n, Q is ho-
mogeneous of degree zero defined on R™ and Qe L*(S™~1), then for functions be
BMO(v), u(z)*,v(z)* €A(p/s',q/s') and u(z)v(x) L=v™, there is a constant C,
independent of f, such that T¢y, , satisfies

(/Rn TG b f ()v(2)|? dx)l/q < C(/ ) F@)u(@)? da:)l/p.

Theorem 2. Suppose that 0<a<n, 1<p<n/a, 1/q=1/p—a/n, s>q. If Q is
homogeneous of degree zero defined on R™ and Qe L*(S" 1), then for functions be
BMO(v), u(z) =, v(z)~* €A(¢ /s, p'/s'), and w(x)v(x) " =v™, there is a constant
C, independent of f, such that TE', . satisfies

@) <o [ ifou@rd)
JR R

On the higher order commutator Mg’ , of the fractional maximal operator
Mg, we have the following results.
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Theorem 3. Suppose that 0<a<n, 1<s'<p<n/a, 1/q=1/p—a/n, Q is ho-
mogeneous of degree zero defined on R™ and QeL*(S™ 1), then for functions be
BMO(v), u(z)*,v(z)* €A(p/s',q/s') and u(x)v(x) '=v™, there is a constant C,
independent of f, such that Mg', , satisfies

(/Rn MG o f (z)v(@)] dx>1/q < C(/ il dx>1/p_

Theorem 4. Suppose that 0<a<n, 1<p<n/a, 1/g=1/p—a/n, s>q. If Qis
homogeneous of degree zero defined on R™ and Q€ L*(S™™1), then for functions be
BMO(v), u(z)~* ,v(z) > € A(¢'/s',p' /"), and u(x)v(z)~t=v™, there is a constant
C, independent of f, such that Mg, , satisfies

</ H[Mg,a,bf(x)v(xﬂq dﬂ?)l/q SC'(/ ] |f(z)u(z)P d:z:)l/p.

Remark 1. By comparing the results in this paper with the results in [9], we see
that the cancellation condition and smoothness condition (1.3) of Q in Theorem A
have been removed in Theorem 1. Moreover, the theorems in this paper are also
extensions of Theorem A and B.

Remark 2. In [2] and [3], we gave the weighted boundedness of 7{)" , and
M3 s for one weight function, respectively. The theorems in this paper are also
extensions of results in [2] and [3].

2. Proof of the theorems

Let us recall the definitions of A, (1<p<oo) weights and some elementary
properties of A, weights and A(p,q) weights. A nonnegative locally integrable
function w(x) on R is said to belong to A, (1<p<oo), if there is a constant C'>0
such that for any cube Q,

(i i) o ez

Using the elementary properties of A, weights [6], we can prove that if 0<a<n,

l<p<n/a, 1/g=1/p—a/n, then we have

?

2.1) uw(z) € Alp,q) < uz)? e Avyp g = w@) €A gy
< u(x)q S Aq(n*a)/n.
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Lemma 1. Suppose that 0<a<n, s'>1, 1<p/s'<n/a, 1/(q/s')=1/(p/s’)—
a/n. Then for b€BMO(®v), u(x)® ,v(z)* € A(p/s',q/s") and w(z)v(z) '=v™, there
is a C, independent of f, such that the cominutator Nms, » satisfies

e ([ ) <e( [ reu@ra)

where N7 s, b 18 the commutator for the fractional mazimal operator of order s'
defined by

! 1 i < 1/Sl
N??f,bf(fr)=sup<rn4a/\ ‘ [b(2) —b()I™ | £ ()] dy) -
r—y|<r

r>0

Proof. Clearly, N™s, , f(x)=(M b U1 (@)Y, and we have

</H[Nms, b (z)v( qu> < M1 (= I oz dx>1/q
K (M (L1 (2))o ()] dﬁ?)qur/s,.

Since wv'=v™, we get (v* )(v* ) '=v™%. By Theorem B,
(s @i as) < [ s ) "

o( [ 1r@pur dle/”.
(/Rn [N(Tﬁf’bf(:c)v(x)]q dx)l/q < C(/Rn I () |Pu(z)? dx>1/p‘

This is (2.2).

Thus,

Let us first give the proof of Theorem 3. By the conditions of Theorem 3, we
know that for r>0,

([, w) <o

LS(S"‘l)‘
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Hence

1

M@ =5 i [ 0 ) bl W)y

r>0

1 1/s
Ssup ——o </ 1z —y)[° dy>
r>0T l—y|<r

X (./[xy|<‘r Ib(z) —by) ™| £ ()¢ dy)l/s,

1/s’
<Coup Ly ( [ ba@-sm s dy)
>0 T |lz—y|<r
1 , , 1/s’
:osup(m [ -t ) dy)
r>0\7T |lz—y|<r

=ONIY o /().

From 1<s’<p<n/a and 1/q=1/p—a/n, we have 0<as'<n, 1<p/s'<n/as’ and
1/(q/sY=1/(p/s')—as’/n. Thus, by Lemma 1 we get

(/R Moo oyl dx)l/q =¢ ( /R NS @ @) dm)l/q
=¢ </ @ ruy dx)l/p.

The result of Theorem 3 is proved.
The proof of Theorem 1 is based on the following lemmas. Let us first give a

o . m m
pointwise relation between TQ@’b and Mﬂya’b.

Lemma 2. For any e>0 with 0<a—es<a+e<n, we have

(2.3) TG pf (@) S CIME oy nF (@) P ME o F(2)]2, xR,

;X—E,
where C' depends only on «, ¢, n.

Proof. The idea of the proof will be taken from [10]. However, it is worth
pointing out that the important technique used here was suggested first by Hedberg
in [7]. For zeR" and >0 with 0<a—e<a+e<n, we choose a §>0 such that

626 = Mgﬁa%—s,bf(w)/MS’Za—e,bf(z)‘
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Write
Taa @)= [ ) b))
UZ=Y) oy b
e b ) dy
2111+Ig.
We have
s Qe
i<y Lo e bWy

<ot e [ 0 )b ) dy

J
[ors}

e G [, e e -] dy

SCEMG . pf ().

Similarly,

By | Eziﬂ%\b(@—b@)l’”if@ﬂ@
j=1"2

i—18< |z —y| <296 lz—y

O = M LE R IR

< CéiEMST{fa—FE,bf(l‘)'

Thus, by the above selection of § we get

T80 s/ (@) SCIEMG o f(2)+6 MG o o b f (2)]
- C[M$a+e,bf(x)]1/2[Mgfa—s,bf(m)]l/27
and the proof of Lemma 2 is complete.

The following two lemmas characterize an important property of A(p, q) weights
and they are also the key for proving Theorem 1.
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Lemma 3. Suppose that O<a<n, 1<p<n/a, 1/qg=1/p—a/n and u(z),v(z)€
A(p,q). Then there is an £>0 such that

(1) e<a<ate<n,
(ii) 1/p>(a+e)/n, 1/q<(n—e)/n,

u(z),v(z) € Ap, ¢-) and u(z),v(z)€A(p, Gc), where1/q.=1/p—(a+¢€)/n and 1/g.=
1/p—(a—¢)/n.

Proof. For >0, 1/g<1,we can take §;>0 such that §; <« and 1/¢g+81/n<1.
Let 1/qs,=1/p—(—61)/n=1/q+61/n, then g>gs >1 and 1+p'/qg<1+p /q,51 By
(2.1) and the inclusion relation between A, weight classes, we have u Py e
Atyp/qC A1ty /g, , Which is equivalent to

(2.4) u(z),v(z) € A(p, gs, ),

by (2.1).

On the other hand, there is an n with 0<n<1/q, such that uw P €A1 p(1/q—m)
by the reverse Holder’s inequality or A, weights. Ience we can choose 63 >0 small
enough such that §; <min{a,n—a}, 1/p>(a+682)/n and bz/n<n hold at the same
time. Now let 1/gs,=1/p—(a+62)/n, then since 1/p>(a+82)/n and 82 /n<n we get
0<1/gs, <1 and 1/gs,=1/q—685/n>1/q~n. From this we have v €Aiip/e-nC
Aty /gs,- By (2.1), this is equivalent to u(x)C€A(p,gs,). Obviously, given the
same discussion for v(x), we can also get a 63>0 (corresponding to v(z)), which
possesses the conditions satisfied by 8 (corresponding to u(xz)). Hence we have also
v(z)€A(P, ¢o,)- Let £1=min{é2, 02}, then we have

(2.5) u(z), v(x) € A(p, ¢z, )-

Finally, let e=min{é:,e1} and 1/¢.=1/p—(a+e)/n, 1/¢.=1/p—(a—:¢)/n,
then by (2.4) and (2.5) we get u(z),v(z)€A(p, ¢.) and u(z),v(z)€ A(p, 3c)-

Lemma 4. Suppose that 0<a<n, 1<s' <p<n/a, 1/q=1/p—a/n and that
u(x)® ,v(z)* €A(p/s',q/s'). Then there is an >0 such that

(iil) e<a<ate<n,

(iv) 1/p>(a+e)/n, 1/qg<(n—e)/n,

and u(:c)sl,v(z)slEA(p/s',qg/s’), u(m)s/,v(x)S/GA(p/s’,(je/s') hold at the same
time, where 1/q.=1/p—(a+e)/n, 1/g.=1/p—(a—¢)/n.

Proof. As1/{g/s')=1/(p/s’)—as’/n, by Lemma 3 there is an >0 such that n<
as'<as'+n<n, 1/(p/s')>(as'+n)/n, 1/(q/s')<(n—n)/n and that u(z)*,v(z)* €
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A(p/s', qy), u(x)® ,v(z)* €Alp/s, G,) hold at the same time, where 1/¢,=1/(p/s") —

(as’+n)/n, 1/a,=1/(p/s")—(as’—n) /n.

Now let e=n/s’, g.=s"q, and §.=s'g,, then it is easy to see that ¢ satisfies
(iii), (iv) and u(z)*, v(x)* € A(p/s’, qc/s"), u(z)® ,v(z)* €A(p/s’, G./s') hold at the
same time, where 1/q.=1/p—(a+e)/n, 1/G:=1/p—(a—e)/n. This completes the
proof of Lemma 4.

The proof of Theorem 1. Under the conditions of Theorem 1, by Lemma 4,
there is an £>0 such that (iii) and (iv) hold, and

w(z)® , v(z)® € A(p/s’,q./s') and wu(z)®,v(z)* €A(p/s',qc/s')
hold at the same time, where 1/¢.=1/p~(a+¢)/n, 1/G.=1/p—(a—¢)/n. Let 1=

2¢:/q, la=2q. /q, then 1/l;+1/I3=1. For the above given €>0, using Lemma 2 and
Holder’s inequality, we have

1/ql1
s tt@)
1/qls
(Moo @)ola)/de
1/2qc
M5y (@)l
~ 1/24.
X (/ [Mgln,‘ozﬁa,bf(x)v(mﬂqe dl‘) -
R’IL
From Lemma 4 and Theorem 3, it follows that

1/2‘]5
([ st @@l ae)  <Clrie,

and 7
(5t dw)mqs <l

Thus, we get
1T a6 lgwe S ClFllpur-

This is the conclusion of Theorem 1.
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Remark 3. If we define the commutator 7, , by

Tgfa,bf(iﬂ):/ Qz—y)

o o—gpa @) bW f () dy,

then from the proof of Lemma 2, we know that (2.3) still holds if one has Tgﬁa,b
instead of T}, ;. Thus, under the conditions of Theorem 1 we have also

1T s Fllgvs < Cllfllpyur-
The proof of Theorem 2. From the definition we know that the commuta-
tor 1¢', ,, is a linear operator. Then we have (T3, ,)* =13 , ,, where Q*(z)=
(—~1)™Q(—x). Clearly, Q* satisfies the same conditions as (2. We have

| Tasf@g(o) ds]
R~

“T{{,La,bf”q,vq =sup
g

where the supremum is taken over all g with |g||,, ,- <1. Since (Tg",,)* is the
adjoint operator of T¢y", ;,

| TR f @@y do= [ 1) T80 o) o
R» R~

Thus,

/ T o/ (@)g(z) do
Rn

1T a6 lg.00 =sup SN llpur 9P (T80 ,0) "9l s
g g

From the conditions in Theorem 2, we see that 1/p'=1/¢'~a/n and s'<¢'<n/a.
Since (u—1)*, (v 1" €A(q'/s',p'/s'), and noticing that (v HuwH l=uw =™,
using the conclusion of Theorem 1, we get

(T8 06) 9l vt < Cligllgr oo

Therefore,
1T 05 f llgwe < fllpur sup 1T 1) 9l wvr < Cllfllp,ue-
g

This is the conclusion of Theorem 2.

Remark 4. From the proof of Theorem 2 and Remark 3, we know that under
the conditions of Theorem 2,

Hfén,ya,bf“q,vq < C“f“pmp.

The proof of Theorem 4. The conclusion of Theorem 4 is a direct consequence
of the following lemma and Remark 4.
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Lemma 5. Let 0<a<n, QeL'(S"~1). Then we have

Mgln,a,bf(x) < irg\,a,bﬂfl)(m)a zeR".
In fact, fix r>0, we have

T, |Q(:1:—y)| m
T l@2 [ b b5l dy
2 s [0l b W)l dy

Taking the supremum for >0 on both sides of the inequality above, we get

T/ 280 o [ (00 —3)| o))"V o

This is just our desired conclusion.
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