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Total curvature and rearrangements
Bjorn E. J. Dahlberg(!)

This posthumous paper was prepared for publication
by Vilhelm Adolfsson and Peter Kumlin.

Abstract. We study to what extent rearrangements preserve the integrability properties of
higher order derivatives. It is well known that the second order derivatives of the rearrangement
of a smooth function are not necessarily in L!. We obtain a substitute for this fact. This is done
by showing that the total curvature for the graph of the rearrangement of a function is bounded
by the total curvature for the graph of the function itself.

1. Introduction

The purpose of this note is to study the regularity properties of the decreasing
rearrangement of a function. Let f be a real-valued, bounded and measurable
function on an interval I=[a,b]. Its decreasing rearrangement f* is characterised
by the following properties:

(a) f* is bounded and decreasing on I;

(b) f* is right continuous on {a,b) and left continuous at b;

(c) f* and f are equimeasurable, i.e.,

Hzel:f*(x)>A}=|{zel:f(x)>A}
for all A€R.

Here |F| denotes the Lebesgue measure of the measurable set E. We refer to
Hardy, Littlewood and Pélya 2] for the classical theory. The monograph by Pélya
and Szeg6 [4] contains a wealth of applications of rearrangements to symmetrization
and isoperimetric inequalities.

We recall that

1) [etryao= [e(pas

I
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for all continuous functions ¢. The basic regularity result for rearrangements is
that if 1<p<oo and if the derivative of f belongs to LP(I), then f* has the same
property. More precisely,

df*
dr

daf

dzr

@ ‘

P 14

where || f]lp=({; |7 dz)'/>.

We shall in this paper study how rearrangements preserve the integrability
properties of higher order derivatives. We remark that it is easy to give examples of
smooth functions f such that d? f*/dz? does not belong to L'. For example, letting

f(z)=2x%~9z%+12z, 0<z<3,
g(z) = (82° — 3622 +302+153)/32

then (see Talenti [5])

f*(z):{f(3—x), z€[0,3]U[3,3],

1
' 2
g9(z), ze (3 3]

Notice however, that in this case df*/dz is of bounded variation.
For a bounded function f on I'={a, b let

3) |lf||c=sup{‘ /, fo de

1o e C8(a,b) and ||¢]leo < 1}.

Here Cg°(a,b) denotes the class of infinitely many times continuously differentiable
functions supported in (a,b). We remark that if f is smooth, then

Ifle= /, £ de.

We shall establish the following analogue of (2).

Theorem 1.1. Suppose f is real-valued, bounded and measurable on [a,b).
Then

(4) 1 lle <lfllc.

We shall derive (4) by analysing the total curvature of the graphs of f and f~,
respectively.
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Let (), a<t<b, be a simple curve in the plane and let X={&,...,&xm} be a
partition of [a,b], i.e., a=& <& <...<Epr=b and let

&) =v(&)

;= , 0<i<M-1.
) @) OSE

Set

[

-1
B(v,X)= &,

i=1

i

where §; is the length of the shortest arc on S'={pe R2:|p|:1} joining e;_; and e;.
Finally, the total curvature of ~ is

(5) B(~) =sup B(v, X),
X

where the supremum is taken over all partitions X of [a,b]. We refer to Milnor [3]
for the basic properties of the total curvature of arcs. We remark that if v is a
smooth curve with curvature &, then it can be shown (Milnor [3]) that

(6) B(y)= / k] ds,

where the integration is taken with respect to the arc length of . For f:[a,b]—>R
continuous let T'(f) denote the total curvature of the graph of f.

Theorem 1.2. Suppose f:{a,b]—R is continuous. Then

(7 T(f)<T(f)
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2. Preliminary results

We shall from now on let I=[a.b] be an interval. Let C(I) be the class of con-
tinuous and real-valued functions on I. If f€C(I). then f* denotes the decreasing
rearrangement. Notice that f*€C([I) also. For x€! let S(x)=a+b—z. Notice that
S maps I onto itself. If g(x)=f(S(z)), then

(8) g =f
If h(z)=—f(z), then
(9) h*(z) = —f*(S(x)).

Let X={&,...,&n} be a partition of I and let ~: I—-R? be a simple polygon with
nodes at &;, i.e., v: I>R? is continuous. one-to-one and its restriction to the in-
tervals [&;,&;11] is linear for 0<i<N—1. Then it is well known (see Milnor [2])
that

(10) B(v) =B(v, X).

In particular, if f is piecewise linear with nodes at &;, 0<i<N, we have
N-1

(11) T(f)= lpeni—ail-
i=1

where @; € (—3m, 37) is defined by

(12) tan @; = M@;{l

éi _fi—l

For ECR? we let Int(E) and JE denote the interior and the boundary of the set E.
Let

D={zeR:0<z<ir}
and define v: D2 D by

coty(x,y) =cot x+coty. if (x.y) € Int(D?),
y(z.y) =min{z,y}. if (z.y) €D

Then 7 is continuous on D?.
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Proposition 2.1. The function v has the following properties:
(1) v(z,9)=9(y,2) for (z,y)eD%

(i) y(z, 37)=z for z€D;

(iii) 0<y(z,y)<min{z,y}<z for (z.y)eD?:

(iv) 0<0v(x,y)/0z<1 for (z,y)EInt(D?):

(v) 0v(z,y)/0x<0v(z, 2)/0z if z€Int(D) and O<y<z<im.

Proof. The first three properties are obvious from the definition of . The last
two follow from the identity

oy(x,y) cot’z+1

= . (z,y) €Int(D?),
Or cot?y41’ (z.y) € Int(D"),

which completes the proof of the proposition. [

The function y will be used for computing the rearrangements of piecewise
linear functions. The following lemma gives its basic role.

Lemma 2.1. Let I;=(ay,b1) and Iy=(as.by) be disjoint, open and bounded
intervals of positive length. Let I be an interval of length |I1|+|I2|. Set E=1,UI,
and assume f: E—R has a linear restriction to the subintervals I; and I with
fh)=f(I2). Let (a,B)€Int(D?), assume |f'|=tana in I, and |f'|=tang3 in I,
and set y=~(a, 3). Then there is a decreasing linear function g: I =R such that

g =—tanvy
and
(13) H{zel:gx)>AH=[{z€E: f(z)> A}
for all \€R..

Proof. Let J=(A, B), A<B, the range of f, i.e.,

J=f(E)=f(I,) = f(I2).

We may assume f(b;)=B, otherwise we replace f by f(a;+b; —z) on I,. Similarly,
we may assume f(a2)=B so f(a;)=f(by)=A.

There is also no loss in generality in assuming a; <b;=az<b, so that f is
continuous in E= (a1, b2). Elementary geometry shows that if g is the linear function
on E with g(a;)=B and g(bs)=A, then g satisfies (13) and g’=— tan+. The lemma
is proved. O
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We shall next show some inequalities involving the function . We first define
Qn, by D" X D™= R by a1(z,y)=v(x,y) and b (z,y)=x+y if z,yeD.
If n>2 and x,yeD", we set

n—1

an(z,y) =7(x1,y1)+z 1v(@i, ) =Y (@ir1, Bir1)],
i=1

n—1

bo(2,y) =z1+y1+ D _ (17 —Tipr|+1yi —yiral)-

i=1
We next define a,, 3,: D" xD"xD—R by
ai(z,y, t) =v(z,y)+{t—v(z,y)] and Bi(z,y,t)=z+y+|t—2z|
for z,y,teD. If n>2 and if z,yeD", teD, we set
an(2,y,t) = an(z, y) +[t—¥(Tn, ¥n)l,
Bn(z,y,t) =bn(z,y) +]t—2nl|.
We can now give some basic inequalities.

Proposition 2.2. Let n>1 and let z,ye D" and teD. Then

(14) an(z,y) < bn(z,y),
(15) an(z,y,t) < Bn(z,y,t)-

We shall base the proof of Proposition 2.2 on the following lemma.

Lemma 2.2. Suppose f: D—R. satisfies 0< f'<1. Let 0D and A€ER and set

9(z) =z +[z—0| - f(z)—|f(z) - Al
Then g(z)>g(8) for all z€D.
Proof. Let h(z)=f(z)+|f(x)— A|. Clearly
0<K <2 inD.

1f 0§9<%7r, we have that g¢'=2—h’>0 in the interval (6, %w) If 0<0§%7r, we see
that ¢'=—h'<0 in (0,6) so in all cases g(x)>g(8). O
Proof of Proposition 2.2. We begin by verifying the case n=1. If z,y,t€D, we
have that
ai1(z,y) <z <z+y=bi(z,y)
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which establishes (14) in this case. If t>v(z,y), then ai(z,y,t)=t<z+|t—z|<
Bri(z,y,t). If 0<t<y(z,y), we have

which establishes (15) when n=1. Let now n>2 and assume that (14) and (15) hold
in the range 1,2,...,n—1. For zcR" let £€R"~! be the vector (2,23, ...,2,) and
set t*=(r2,&). Let e,=b,—a, and £,=8p —a,. If ,y€D" and teR, it follows
from Lemma 2.2 that

en(z,y) >en(z*,y") =en1(£,§) > 0.

Similarly e,(z,y,t)>¢e,(z*,y*,t)=en_1(£,7,t)>0. Hence the proposition follows
by induction. O

3. The main inequality
We shall in this section develop the main step in the proof of Theorem 1.2. We
begin by defining I': D3 - D by setting
D(z,y,z)=~(z,7(y,2)) for z,y,z€D.

Notice that if (z,y,t)€Int(D?), then
(16) cot I'(z, y, z) = cot z+cot y+cot z,

so I' is a symmetric function. We shall now define A,,B,:D"xD*xD"—>R by
setting A)(z,y,2)=x+2+2(z,y,2) and Bi(z,y,2z)=x+2y+2. It is easily seen
that

(17) A, <B.

For n>2 and z,y, 26 D™ we now set

n—1
An(z,y,2) =214+ T(w1)+ Y D(wis1) ~T(wi)| +T(wn) 420,
i=1
n—1
B (z,y,2)= Z(lxiﬂ — ;| i1 — |z —z)) o+ Fyn 21
i=1
Here w;=(x;,y;, zj), 1<j<n.
We can now formulate the main result of this section.
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Theorem 3.1. Let n>1 and suppose we D" xD*xD™. Then
(18) An(w) < B(w).

We will next introduce some notation. Let U,=D" xD" xD" and let

(19) A,=B,—A,.
Put

(20) On =min An
and let

D, =min{é;,....5,}.
From (17) follows

(21) d=D;=0.

Also set

O, ={wel, :A,(w)=6,}
and notice that €, #¢ since A, is continuous on U,. For w=(z.y.z)€U, and
1<i<n let T'j(w)=TI(z;,y;, 2;)-

Lemma 3.1. Suppose n>2, 6,<0 and D,_1=0. Then n is odd and for all
we,,

(22) FQj(Ld) <min{I‘2j_1(w).[‘2]-+1(w)}. 2<2) < n,
(23) I'(w) > o (w), I (w) > (w),
(23) [aje1{w) > max{ly;(w), Cojalw)}.  2<2j<n—2.

Proof. Let w=(z,y,2)€U,, x,y. 26 D".
For p=(py,....pn) ER™ let p=(pa.....pn). Let 5=(2.9.2)€Un_1. I T'1(w)<
I'y(w), then using that A, _1{©)>D,_;=0 we get

Ap(w) = DBp 1 (D) + o+ |z1 —z2| — 21+ +ly1 — 2| — Y2+ 21— 22+|21 — 22| 2 0.

Similarly, if T',(w)<T,_1(w), then A, (w)>0, which shows (23). Let now 1<i<n
and let W=(X,Y,Z), where X,Y, ZeD"!,

Xj =Tj;.

Y;=y;.

Zj:Zj
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for 1<j<i and

XJ =Tj+1:
}/j =Yj+1,
Zj =241

for i<j<n-—1. If I';(w) is between I';_1{w) and I';;;{w), then

Ap(w) =Bno1(W)+zi—1 — x|+ |z —zip1 | = [Tim1 — Tt |
Hlyi1 =il +yi = Yirr | = Y1 —yiva
+lzic1 =2zl zi—zig1| =121~ 241 2 0.
Using (23), we now see that (22) holds. Again using (23), we see that n must be
odd. Finally (23) yields (24), which completes the proof of the lemma. O

For feC(D) we let m(f) denote the minimum of f on D, i.e.,
m(f)=min{ f(z):z € D}.

We shall now consider functions g€ C(D) of the form

(25) 9(x) =lz—al+lz—Bl-|f(z)-a|-|f(z)-bl+c,

where o, €D and a, b, ceR. If (25) holds, we will say that g has the function f as
its base. We say that g€ My if g C(D) has the form (25) and

f(§) <min{a, b}

whenever g(§)=m(g). If
f(&) > max{a. b}

whenever g({)=m(g) we will say that g€ M.
For g€R set f,(x)=pz. Let A be the class of all feC(D) such that f is
continuously differentiable on Int(D) with

0<f'<1 on Int(D).

Lemma 3.2. Suppose ge M, has f as its base function. Let £€D. If f=Jfo,
then g(§)=m(g) if and only if €[, B]. If f=11, then g(€)=mlg) if and only if
max{a, B} <E<in. If fEA, then g(€)=m(g) if and only if E=max{c, 3}. Here the
parameters o and 3 are defined by the relation (25).

Proof. We may without loss of generality assume o <{ and set h(z)=|z—a|+

lz— 5.
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If f=fo, then g=h+C for some constant C, which concludes the lemma in this
case. Suppose now that g(¢)=m(g) and f€AU{f}. Since f is increasing, we have
for £>£ that

f(z) 2 £(§) > max{a, b}
so from (25) follows that

9(z) =h(z)-2f(z)+C, z2&

Since f is strictly increasing and h is non-increasing on (—oo, ), we see that if £
were less than 8, then

9(8) <g(¢),
which contradicts the definition of €. Hence £>3if feAU{f1}. If z>B=max{a, B},
then h(z)=2z—a—pB. If now f€A, then g is strictly increasing on (8, 37), so
g(&)=m(g) if and only if £=7 in this case. If f=f,, then it is easily seen that
g{z)=g(B) for x>{ which completes the proof of the lemma. 0

A straightforward modification of the proof of Lemma 3.2 yields the following
result.

Lemma 3.3. Suppose g€ Mg has f as its base function. Let £€D. If f=fo,
then g(&)=m(g) if and only if €[, B]. If f=f1, then g(§)=m(g) if and only if
0<¢<min{a, B}. If fEA, then g(€)=m(g) if and only if E=min{a, 3}. Here the
parameters o and 3 are defined by the relation (25).

Let VC{1,2,...,n}, z€R" and tcR. We define gv(z,t) as the point yeR"
with y;=x; for i¢V and y;=t when i€V. If w=(z,y,2)€Un,, we put Qv (w,t)=
(QV(xvt)ay7 Z) and
(26) EYY (1) = An(Qv (w,1))-

In the special case when V={k}, 1<k<n, we will write E“*=F“V. For w=
(z,y,2)eU, we set
0i(w) =7(ys,z:) and X, (t) =7t 0i(w)).

We observe that E“F has Ay, as its base function. We remark that if we€y,, then
under the conditions of Lemma 3.1 we have

(27) E“* e M,
for k odd and

(28) E“*F e My
for k even.

The following result is an immediate consequence of the previous two lemmas.
The verification is left to the reader.
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Lemma 3.4. Supposen>3, §,<0 and D,,_,=0. Assume w=(z,y,2)EQ, and
1<k<n. If k is odd, then

b6n = E<F (max{zi_1,Tx41})
and if k is even, then
On =E,‘;”k(min{zk_1,a:k+1}).
If 0 (w)=0 and 1<k<n, then
Sn=E<k(t)  for all t € [zk-1,Tk41)-
If 6k(w) >0, then
zp >max{zk_1,Tk+1} fork odd

and
xr <min{zg_y,xk4+1} for k even.

We shall next analyse the function E¥"Y.

Lemma 3.5. Suppose n>3, 6, <0 and D,,_1=0. Assume j>1 satisfies 2j<n
and set V={1,2,...,25}. Let £€D and assume w=(z,y, z) €, satisfies

T1=Ty=..=Tg; =¢.
If §<z2j44, then
6n=E2Y (22541)

50 Qv (w, T2j41)EQ,.

Proof. We need only treat the case when £<zz;;1. Setting 6;=6;(w) we see
from Lemma, 3.1 that

(&, 02k-1) > (€, 02k), 1<k<].

From Proposition 2.1 follows that for all teD

0v(t, 0a—1) S O(t, Oar)
ot - o

Y(t,02k-1) >(t,02¢) and

whenever 1<k<j.
Also v(§, 62;) <I'aj41(w). Letting

a=sup{u € [§,2;41]:7(t, 02;) <T2j41(w) for {<t<u}
we have that £<a<zs;yq. If t€[¢, a], then

j
BV (t)=—2t+2 ) (y(t,00k) —(t, 02k-1)) + &,
k=1
where ® is independent of t. Hence E<V is decreasing on (£, a] so 6, =FE%"Y (a) and
Qv (w,a)€RN,. In particular, ¥(a,02;)<I2;4+1(w) so we cannot have a€(§, z2;41),
i.e., =241, which yields the lemma. O
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Lemma 3.6. Suppose n>3, 6,<0 and D,_,=0. Assume that j>1 satisfies
2j<n and put V={24,2j+1}. Assume w=(z,y,z)€N, satisfies

Toj =x25+1 S Zoj-1.

Then
(5,1 - E:'V(l‘gj._l)

S0 Qv(w, .’[Jgj_l)GQn.

Proof. Put £=x2;=z;4+1. We need only treat the case when { <x2;_;. Setting
0;=0;(w) we find from Lemma 3.1 that

Y(€,02;) <V(& 02541) and (€, 62;) <Tgj_1(w),
so from Proposition 2.1 it follows that for all teD

O(t. ;) _ 3’)’(t-,92]‘+1).

(t,625) <7(t,02+1) and o 5t

Suppose now that 2j+1=n. Let
a=sup{u€ [£,$2j_1] :’y(t,ﬁgj) < ng_l(w) for all t € [{,u]}

If te[¢, a], then
E;'J,V(t) = 2(7(t7 62]) —’Y(ta 02j+1))+®»

where ® is independent of t. Hence E%"" is decreasing on [€, a] so 6,=FE%"V (a) and
Qv (w,a)eR,.

In particular, v(a,02;)<T2;_1(w), so we cannot have a€({,x2;-1), i.e,, a=
T2j—1 which establishes the lemma in this case.

We shall now treat the remaining case, so we assume now that 2541 <n. In this
case Y(§,02;41)>T2j12(w) so we now set b=sup{u€l€.zaj_1]:7(t.02;) <251 (w)
and (t,02j4+1)>T2j42(w) for all te[€, u]}. If te[€,b], then

E2Y (8) = —t+[t—zaj42]+2(7(t. 02;) = ¥(t. 02511)) + 1,

where 1 is independent of t. Hence E'V is decreasing on [, b] so §,=E%"Y (b) and
Qv (w,b)€,. In particular, (b, 82;)<T2;_1(w) and (b, 02;41) >T2j42(w), so we
cannot have b€ (€, z2;_1), i.e., b=x2;_;. This concludes the proof of the lemma. [J

The next lemma will provide the crucial part of the proof of Theorem 3.1. For
£€R we let Q, (&) denote the point in R™ with all components equal to §.
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Lemma 3.7. Suppose n>2, §,<0 and D, _;=0. Assume W=(X,Y,Z)ef,.
Then there exists a £€D such that (Qn(£),Y.Z)€,.

Proof. Let Qn,(W)={w=(z,y,2)€Q:y=Y and z=2} and notice W €Q,,(W).
For w=(z,y,2)€U, let N(w) be the largest integer p€{l,....n} such that z;=z;
for 1<i<p. Set

N =max{N(w):w € (W)}

and pick w=(z,y,2)€Q, (W) such that N=N{w). Assume that N<n. We shall
show that this assumption leads to a contradiction. Note that n is odd by Lemma 3.1,
so that n>3.

Suppose first that N=n-1. From Lemma 3.2 follows that é,=FE%"(zy) so
(=Qn(w,zN) €0 (w) with N(¢)=n. This contradicts the definition of N.

Suppose next that N<n—1. Put 6;=v(y;. z;). From Lemma 3.4 it follows that
6n=E%N*l(zy), if On41=0. Hence, if On 41 =0 we have (=Qn 11 (w, zn)EQ (W)
with N({)>N+1. Again this contradicts the definition of N, so we must have
Ony1>0.

We can therefore from now on assume that §y1>0 and 1<N<n—-2. Also
recall that n must be an odd integer.

We first treat the case when N is even, say N=2j. Since N+1 must be odd
with 641 >0 it follows from Lemma 3.4 that zn.1>zx. Setting V={1,...,N} it
follows from Lemma 3.5 that (=Qv (w,zn+1)€Q,(W). But N(¢)>N+1, which
again leads to a contradiction.

It remains only to treat the case when N is odd and Oy41>0. Setting py=
min{zy,zns2} it follows from Lemma 3.4 that zy.1 <onv <zn. Putting now n=
@n+1{w, on), we also see from Lemma 3.4 that n€Q,(W). If oy =z n then N(n)>
N +1, which is a contradiction. If gy <zp, then oy =z n42 so if n=(£,Y, Z), then
Envi1=ENy2=on <zn. Hence 7 fulfils the assumptions of Lemma 3.6. Setting S=
{N+1,N+2}, we therefore have g=Qg(p, xn)€N,(W). But N(g)>N+2 which
again contradicts the definition of V.

So in all cases the assumption N <n is impossible, which yields the lemma. O

We can now prove the main result of this section.

Proof of Theorem 3.1. Since A,(0)=0, we see that §, <0 for all n>1. Hence
it is enough to show that D, =0 for all n>1. From (17) it follows that §; =D; =0.
We shall now proceed by induction.

Suppose n>2 and

(29) D, =0.
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We shall prove that D,=0. It is enough to show that d,=0. We shall argue by
contradiction, so assume

(30) 8, <0.
Define the mapping p: R® —R" by

Q(x):(zna-~-,$1) for .’E:(.’L‘],...,.’L‘n),

For w=(z,y, z) €U, we set

R(w) = (0(2), o(y), o(x)) € Un.

Since A, (R(w))=A,(w), we have that
R:Q,—Q,.

From Lemma 3.7 follows the existence of £€D and y, z€ R™ such that if z=Q, (&),
then w=(x,y, z)€Q,,.

Since g(x)=z in this case, we have that R(w)={(o(z),0(y),z)€,. Using
Lemma 3.7 one more time, we see that there is an n€D such that if p=Q,(n),
then V=(p, o(y),z)€Q,. Hence W=R(V)€,,. Since W=(z,y,p), we see by set-
ting 8=~(&,n) that

On=A, (W)
n-1

=y1+4n— (Y (¥1,0)+7(Un, )+ Y (v —vis1 | = [7(y:, 0) = 1(¥i+1,0)]) 20,

=1

by Proposition 2.1. This contradicts the assumption (30) which completes the proof
by induction. O

4. Total curvature of piecewise linear functions

Let I=[a, b] be an interval and let feC(I). We will say that f is unimodular if
there exists a c€[a, b] such that the restrictions f|},.¢) and f|c s are both monotone.
We shall begin by showing that if f is unimodular and piecewise linear, then T(f*) <

T(f)-
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Lemma 4.1. Let n>1 and assume
Tp <Tp-1<..<21 <20 <<€ <. <oy <

Put a=z, and b=§,. Suppose yp>y1>...>y, and assume that f is piecewise linear
on [a,b] with nodes {z,,Zn_1,..., 20,80, ....&n}. Assume that f(z;)=f(&)=y;, 0<
1<n. Then

T(f)<T(f).

Proof. We define for 1<i<n the angles a;, 5;€(0, 37) by

tanaizw and tangizw_
Ti—Tio1 £&i—&i1

Notice that f'(x)=tanq; for z€(x;,z;_,), and f'(z)=-tanG; for z€(&_1,&). It
is easily seen that

n-1

(f) :al+,31+2(lai+l — 0|+ Biv1 = Bil)-

i=1
Let e=1 if 9>z and £=0 otherwise. From Lemma 2.1 it follows that

n—1

T(f") =57(0£17/31)+Z (y{aisr, Bivr)—v{as, Bi)l.

i=1
Hence the lemma follows from Proposition 2.2. O
We will need the following variant of Lemma 4.1.
Lemma 4.2. Let m>n>1 and assume

T <ZTp_1<..<T1 <2 <EH <€ <. <oy <&

Put a=x, and b=£,,. Suppose yo>y;>...>Yym and assume that f is piecewise linear
on [a,b] with nodes {z,,Tn_1,..., 20,0, ... ,Em }. Assume that f(x;)=vy; for 0<i<n
and f(&)=y; for 0<i<m. Then

T(f*)<T(f).

Proof. We define for 1<i<n the angle a;€ (0, i7) by

Yi—Yi—1
Ti—Ti—1

tana, =



338 Bjorn E. J. Dahlberg

For 1<i<m we define ;€ (0, %ﬂ') by

Yi—1—Yi
tan 3; = ——.
G-

It is easily seen that

n—1

T(f)=on+B1+ Y (lair =l +|Bix1 = Bil) 180 = Brsr| +T(9),

i=1

where g=f|(¢, 5. Let e=11if {o>x¢ and £=0 otherwise. From Lemma 2.1 it follows
that

n—1

T(f*) =ev(en, B)+ 3 (M(@is1- Fir1) = (e 3D+ 1Bass —7(@n. B) |+ T(g).

1=1
Hence the lemma follows from Proposition 2.2. 0O

We can now analyse the total curvature of the rearrangement of a unimodular
piecewise linear function.

Lemma 4.3. Let I=[a.b] be an interval. If feC(I) is unimodular and piece-
wise linear, then

T(f*) <T(f).

Proof. Let cela,b] be such that f|j,.) and f|}c.s are monotone. We may with-
out loss of generality assume that f is non-decreasing on [a. c]: otherwise we consider
—f instead. The result is trivial if f is also non-decreasing on [c.b] so we may as-
sume that f is non-increasing on [c. b]. The result is also trivial if f(c)e{f(a). f(b)},
so we will assume that f(c)>max{f(a). f(b)}.

Put zo=inf{zcl:f(z)=F(c)} and &x=sup{zel:f(z)=F(c)}. Clearly f(z)=
f(c) for all z€(xg,&]. By approximation. it is enough to treat the case when
f is strictly increasing on [a,zo] and f is strictly decreasing on [£o.b]. Also, we
may assume that f(b)< f(a); otherwise we consider g(x)=f(a+b—z). Set M ={x¢€
I: zis amnode for f} and set V={f(x):z€M}. Let yo>..>¥yn be listing of the
distinct numbers in V. For 1<i<n let r;=inf{z€l: f(z)=y;} and & =sup{rcl:
f(x)=y;}. For n<i<m let & be the unique solution of the equation f(z)=y;, r€l.

Clearly, the function f can be viewed as a piecewise linear function with nodes
{Zn, ., 20,€0s - s &m}. If m=n the lemma follows from Lemma 4.1. If m>n, then
the lemma follows from Lemma 4.2. O
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Let I={a, b] be an interval. We let A'(I) denote the class of functions feC(I)
that satisfy the following two properties:

(i) There are two points c;,c2€1 such that a<c; <co<b and the restrictions
fla.er]s flics,ez) @and flc, 5 are all monotone.

(ii) Set m=min{f(a), f(b)} and M =max{f(a), f(b)}. Then m< f(z)<M for
all z€(a,b).

We shall next establish the inequality T(f*)<T(f) for the case when feN([)
and f is piecewise linear.

Lemma 4.4. Let n>1 and assume that 20<...<ZTn, £ <...<&y, M0 <...<Mn
and yo>...>Yn. Assume also that ,<&,, <m0, a<zo and n,<b. Suppose f€
C(la, b)) is piecewise linear with nodes {a, o, ..., Tn,&ns -+ €0, M0, - » > b}. Suppose
furthermore that f(a)>yo, f(b)<yn and yi=f(z;)=f(&)=Ff(n:) for 0<i<n. Then

T(f*) <T(f).
Proof. Let y_1=f(a), z_1=a, Yny1=f(b), Mn+1=b and define a,, b;,c; € (0, 37)
by
tana; = Zﬁ__y;’l’ tan b; = Yi—Yi-1 . tane = Yi—Yi-1
Li-1— & &i—&i-1 o1 ="

It is easily seen that

n—1

T(f)=lar—aol+ Y (11—l +[biy1 —bi|+lesr1—cil)

i=1

+bi+eitan+bytcni1 —cnl

Let O=lao—T'(a1,b1,c1)| if &=n9 and f=ag+T(a;.b1,c1) otherwise. Let o=
lens1—T(an, by, cn)| if z,=&, and p=c, 1 +T(an.b,.c,) otherwise. From the def-
inition of I and Lemma 2.1 it follows that

n—1

T(f)=0+>  ITiy1—Til+¢.

i=1
where I';=I'(g;, b;, ¢;), 1<i<n. We now set w=(ay,....an.b1, ..., bn,C1,...,cn)€U,.
We find by Theorem 3.1 that

T(f)’—T(f*) > An(w)+|a0—all+|cn+1 _cnl_ao+a1 —Cpt1tCn = An(w) >0

which establishes the lemma. O

We can now study rearrangements of piecewise linear functions of the class

N(D).
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Lemma 4.5. Let I=[a,b] and suppose feN(I) is piecewise linear. Then

(") <T(f).

Proof. Let a<ci<ce<b be such that f has a monotone restriction to each of
the intervals [a,c1], [c1,c2] and [cp,b]. We may assume that f is non-increasing on
[@, ¢1] since otherwise we consider — f.

We may also assume that the restriction of f is non-monotone on any of the
intervals [a, c2] of [c1, b] since otherwise f is unimodular and the result follows from
Lemma 4.3. Hence f must be non-increasing on the intervals [a,c;] and [c2,b] and
non-decreasing on [¢;, ¢2]. Consequently,

f(b) < fer) < f(e2) < f(a).

Let Iy =[a,cy) and I;=[c;,b]. Put Ap=inf{zx€l;:f(z)=f(ck)} and Bx=sup{z€ly:
f(z)=f(ck)}. Then

a<A1_<_Bl<A2§Bz<b.

By approximation it is enough to treat the case when f is strictly monotone on
the intervals [a, A;],[Bi, A2] and [Bs,b]. Let Ag solve the equation f(z)=f(c2),
x€[a, A1], and let Bj solve the equation f(z)=f(c1), €[Ba2,b]. Let R={&o, ..., &m}
be the set of nodes of f and let a=sup{€€R:£< Ao} and b=inf{£€ R:¢>Bs}.

It is easy to see that possibly after introducing additional nodes, we have that
g=f|[a’5] satisfies the assumptions of Lemma 4.4. Let fi=fl(a. 4]» fo=f|Bs,5- Then

T(f)=T(9)+T(f1)+T(f2)

and
T(f)=T(g")+T(f1)+T(f2)

which yields the lemma. [

5. Proof of the main results

We shall in this section finish the proofs of our main results. We begin with
the following lemma.
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Lemma 5.1. Let I=[a,b] be an interval. If feC(I) is piecewise linear, then
(31) T(f")<T(f).

Proof. Let n>2 be the number of nodes of f. The result is trivial if n=2. If
n=3, the result follows from Lemma 4.3. We shall prove (31} by induction over the
number of nodes of f.

We shall therefore assume that n>4 and that (31) holds for all piecewise linear
functions with less than n nodes.

Let V={1,...,n}, V*={2,...,n—1}, and let §{; =a<&;<...<&,=b be the nodes
of f. Set n;=f(&), m=min{n;:i€V}, M=max{n;:i€V}, m*=min{n;:ieV*} and
M*=max{n;:iecV*}. We will first treat the case when M*=M. Pick jeV* such
that n;=M=M". Set g1=f|.¢,) and go=f|¢, 4. Let G be the increasing re-
arrangement of g;, and put Go=g}. Define 8, p€ [0, %’K) by

(32) tanf=f'(¢;-) and tanp=—f'(£;+).
Then
T(f)=T(g1)+T(g2)+0+.
Define 6*,*€ [0, £7) by
(33) tanf* =G1(&-) and tang*=—G5H{{;+).
Set G(z)=G1(z) if a<z<E; and G(z)=G>(z) if <z <b. Now
T(G)=T(G)+T(G2)+0"+p".

By the induction assumption T(G1)<T(g1) and T(G2)<T(g2). Since 0<6* <@ and
0<¢" <y, we find that T(G)<T(f). Because G and f are equimeasurable, f*=G*.
Since G is unimodular, we have T'(f*)=T(G*)<T(G)<T(f), which establishes the
induction step in this case.

If m*=m, the previous reasoning applied to — f shows again that T(f*)<T(f).
We are now left with the case m<m* <M* <M. We may assume f(&,)<M?*, since
otherwise we consider —f. Pick j€V* such that n;=M*<M. Set g1=f|a.,)
gng|[§j,b], and let 8, p€ [0, %7() be defined by (32). Then

T(fy=T(g1)+T(g2)+0+.

Let g(x)=f(x) for a<z<¢;, g(z)=g3(z) for £, <z <b. Then g and f are equimeasur-
able so f*=g*. Furthermore, g€ C(I) is piecewise linear. Let ¢*€ [0, ) be defined
by tan ¢*=—g'(§;+). Since 0<p* <, we have from the induction assumption that

(34) T(9)=T(g1)+T(g5)+0+¢" <T(f).
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Set p=min{f(z):x€la,&;]}. Then u<M* and if p=M"*, we must have f(x)=M"
for £&,<x<¢; and consequently g is decreasing on [a.b]. Hence, if u=M", we have
f*=g, so (31) follows from (34) in this case.

We suppose now that u<M* and pick k, 1<k<j, such that my=p. Put hy=
flia.g) @and ho=f|i¢, ¢,)- Let Hy be the decreasing rearrangement of hy and H, the
increasing rearrangement of hy. Define H by

Hi(z) fora<z<é,
H(:E)Z HQ(.Z') for £ SIS&
g(z) for§;<z<bh.

Then H and f are equimeasurable, HeC(]) is piecewise linear and arguing as in
the derivation of (34) one finds

T(H)<T(g) <T(f)-

By the construction the function HeN(I) so T(f*)=T(H*)<T(H)<T(f). The
proof of the induction step is complete, which establishes the lemma. (]

Proof of Theorem 1.2. Let X={&....,&,}, n>1, be a partition of . For
feC() let
T(f, X)=B(. X).

where v is the graph of f. Let ;€ (—4n, i),

f&)—fl&i-1)
&—&-1

tanf; = 1<i<n.

Then
n—1
T(f, X)=)_ [6i+1-6il.
i=1

Notice that if f,eC(I), fn—>f uniformly, then T(f,, X)—=T(f,X). Also fi— f*
uniformly.

Pick f,€C(I) such that f,— f uniformly and f, is a piecewise linear function
for all n, such that f, has its nodes on the graph of f. Then T'(f.)<T(f) so

T(f7,X) = lim T(f;. X) <limsupT(f3) <T(S)
by Lemma 5.1. Since
T(f*)=supT(f*, X),

where X ranges over all partitions of I, we have proved the theorem. 0O
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Lemma 5.2. Suppose feC(I), I=|a,b|, is piecewise linear. Then

I1Fllc =lim 2T(=).

Also
I lle <lifllc-

Proof. Let a=§;<&; <...<&,=b be the nodes of f. Set

f(fi)_f(fi—l).

Qi: gi—gi—l

1<i1<n.

Now

n—1

n—1
ST(ef) =2 3 arctan(eQi) —arctan(e@u)| > 3. 1Qir1 - @il = fllo

i=1 =1
as €/0. Since f* is piecewise linear, the lemma follows from Theorem 1.2. [J

We shall next prove Theorem 1.1 in the case of smooth functions. We will use
the Green function
(1 _6 ):1: y X S 6?

(35) G(z,s>={ e ooy

For a measure ¢ on (0, 1) set

Gu(x) = / Glx.£) du(é).

Lemma 5.3. Let I=[a,b]. Suppose f is twice continuously differentiable on I.
Then

1f*lle <l flle-

Proof. By rescaling there is no loss in generality in assuming that I=[0,1]. Let
h=f". Then

f(@)=(1-2)f(0)+zf(1)-Gh(z)
and ||fllc=f |h(z)| dz.
Let X={&,..., &}, 0=£0<...<&, =1 be a partition of I. Let F=Ax(f) denote

the piecewise linear function in I whose set of nodes equals X and F(&)=f(&).
We claim that

(36) [Ax (Nlle <l flle-
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If g is twice continuously differentiable with g”’ >0, then G=Ax (g) is convex. Hence
IAx(9)llc =G'(1-)=G'(0+)=g¢'(p)—9'(a)

for some p,g€(0,1). As g”>0, we have that ¢'(p)—g'(q)<g'(1)—¢'(0)=[, ¢" dz=
llgllc. Hence ||Ax(g)llc<|lgllc. Notice that we can write f=f,— fo, where f; and
f2 are both twice continuously differentiable, convex and

Iflle =lfille+falle-

Hence (36) is proved. By selecting a suitable sequence X (™) of partitions we con-
clude the existence of a sequence {f,,}%5_, of piecewise linear functions in C(I)
such that ||fnllc<||fllc and f,— f uniformly. If peC§°(0,1) with |¢|<1, then
the previous lemma gives that

/go”f*dx = lim ‘/w”f;ldx
I M~ 00 I

Hence || f*||c <!l fllc which shows the lemma. O

<limsup || frllc < [Iflle-

m-—>o00

Proof of Theorem 1.1. By rescaling we may without loss of generality assume
that I=[0, 1]. Suppose f€C(I) with || f||c <oco. Then there is a measure y on (0, 1)
such that

(37) f(@)=(1-z)f(0)+2f(1)-Gu(z). =€[0,1].

In addition ||f||c equals the total variation of p. Notice that G is defined for all
z,£€R by (35). From (37) it follows that f can be extended to a function F' on
R such that | [, ¢"F dz|<[|¢llo || fllc whenever p€C3°(R). Let p€C5°(—1,1) be
nonnegative with [, ¢dz=1. For £>0 set

we(w)zéso(z)-

£
Let F.=Fx*p. be the convolution of F with ¢.. Putting f.=F¢|;, we have that
I felle < fllc

and fe— f uniformly on I. If ¢€Cg°(0, 1) with |p]{<1, then the last lemma implies

that
/@I/f* d.’[ /wllf: d.'l'
1 I

The theorem is proved. 0O

<lflic-

=lim
el0
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