Value distributions of entire functions in

regions of small growth

Davip Drasint)

1. Statement of results

Let f(z) be an entire function of finite order p. It is classical (cf. [2, Ch. 4];
[6, Ch. 1] that a proximate order o(r) may be associated with f(z) so that the
corresponding indicator function

log | f(re”)]

h(0) = lim sup e

>0

(0 <6 < 2m)

is continuous, 2m-periodic, and trigonometrically convex. Let I = (x, ) be an
open interval with

MO <0 x <0 <p, (1.1)

and choose 0, & << 0, << . We say that the complex number a is maximally
assumed near {argz = 0,} if there is some ¢ > 0 such that for all ¢ > 0

n(r, a, O, 0
_(__0__) > e (1.2)

lim sup o) >

here n(r, a, 8,, ) denotes the number of roots of f(z) — @, including multiplicity,
in the region {|z| <<r}N {|largz — 0] << 6}. The set of all maximally assumed
values near {argz = 6,} for a given & > 0 will be denoted by (6, ¢).

More generally, for a closed subinterval I, = [«,, ;1 of I, let n(r, a, I,) denote
the number of roots of f(z) — @, including multiplicity, in the region

{lz] <r}Niw <argz < By},
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and set

> ef.

(r a, I)
n—r—r?)—l_} (1.3)

(I, &) = {a; lim sup

r—>w

Note that K(Iy, &) D Us,<owp, J(6, €).

TrEoREM 1A. Let I, = [ny, f;] be a closed subinterval of I = (x, ) where (1.1)
ts satisfied. Then there exists a positive sequence {o.},

O'n—i-l/o'nﬁ w: (14)
and a sequence {an} of complex numbers with the property that if w € (I, €), then
W — an] << e °n (1.5)

for infinitely many n.

THEOREM 1B. Let a sequence {an} of complex numbers be given along with a
positive sequence {o.} satisfying (1.4), and let
R=N U fw;hw—a] <e ) (1.6)
m>0 n=>m
Then there exists an entire function of finite order whose indicator vanishes on an
interval I = («, B), and such that for some 0, € (x, f) and some & > 0

K(y, &) D K. (1.7)

2. Remarks

The indicator A(f) is non-negative on a set which includes an interval of
length 7/p, so the hypothesis (1.1) requires ¢ > L. Since p(r) — g, it is no loss
of generality to suppose

T<olr) <2 (r=0). (2.1)

The examples of Theorem 1B have order o for any o € (4, 1), with ¢ in (1.7)
equal to z'sin p. By considering f(z*) (» = 2,3,...) we obtain examples for
all orders ¢ > 1, o 5 1, and a more intricate construction, which we do not give
here, yields functions of order 1 which satisfy (1.7) for some & > 0. There is probably
a relation between the largest ¢ allowed in (1.7) and the variables ¢ and (8 — «).

In [7, p. 55], G. Valiron asserted that X(6,, ¢), for a fixed ¢ > 0, can never
be as large as the complement of a single point with respect to the finite plane
(i.e., {arg z = 0,} cannot be a Borel direction of f(z)); as far as I am aware, he never
published a proof. Since > ¢~ < o, it follows from Theorem 1A that U, - ¢<(6,, &)
has (planar) measure zero.
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The characterizations of (0, ¢) and (I, &) given here invite comparison
with the recent study of A. Hyllengren [4] on Valiron deficiencies of meromorphic
functions of finite order. Hyllengren showed that if f is meromorphic and of finite
order, and if A[e] = {a; A(a) > ¢}, where A(a) is the Valiron deficiency of the
complex number @, then A[e] is contained in a set of the form (1.6) where the
o, satisfy o, /0, = 0(1), rather than (1.4). Thus, the considerably smaller sets
X(1I;, &) are also of capacity zero and have Hausdorff measure zero for all measure
functions A(f) such that

f h(t)(— log #)~%dt < .

0

(I thank Prof. Hyllengren for several discussions on these matters).
The function €, « = i, = 137, shows that Theorem 1A is false when I,
is replaced by I.

Notations. A constant which depends only on ¢ (of (1.2)), f§ — «, f; — &4, OF
o(r) (where o(r) is subject to (2.1)) will be given without reference to these quan-
tities. Most inequalities are valid only for sufficiently large r = |z|, and such an
inequality will be qualified by 7 > r, or r > r,(K); in the latter case, r, depends
on K aswellas o(r), By — o, f — o« or z. Any of these expressions will be freely
used to denote different constants in different contexts.

3. Proof of Theorem 1A

We first need a Proposition which allows (1.3) to be replaced by a more con-
venient condition.
Prorosition 1. For « € X(I;,¢), let

n(r, a, I)

B(a) = {r; 0 < 38/4} . (3.1)
Then there exists M > 1 and ry = r(a) such that
n(r, a, I,) — n(r', a, I,) > 1er¢® (r € R(a), ry(a) < o' <r[M®). (3.2)
LeMma 1. With ¢ as in (1.2), there exist ry, M, with

(r] M )™M < 47 1ere®) (p > ). (8.3)

Proof. Choose M, so that for some & >0,
M8 < 471 (3.4)
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there is no harm in supposing & so small that

Elog M, < 1. (3.5)
Now o'(t)tlogt — 0 as t-—> oo, so thereis r(§) with
')t log ] < 3£ (8 > ry(£)); (3.6)
further there is r, (= r,(£)) so that
log(l + iw) < 2p (]0 . o T"). (3.7)
p—1 log M,
Then if M;'r > 7, (3.5)—(8.7) yield that
log M,
lo(r) — o(r/My)| < 3 log{l T logr — log Mo} 5.
< £log My(log r)7t < &(log r),
so (2.1), (3.4) and (3.8) lead to
(7 M )OI —ee) oMyl —o) < IR < 47 (1 > 1),
which is (3.3).
LeMMmA 2. There exists ry(a) with
n(r, a, L) < 220 (r > ry(a)). (3.9)

Proof. This is an immediate consequence of Jensen’s theorem [2, p. 9], the
defining inequality log M(r) < {1 -+ o(1)}r*®) and
2r

n(r, a, I)) log 2 < n(r, a) log 2 < f n(t, a)t='dt < N(2r,a) (r > 1).

It is now easy to obtain Proposition 1. Lemma 1 (with 3, in place of M,) and
Lemma 2 imply that there are M, ry(a) with

n(r[My, a, 1) < 4(log 2)7H(2r/ M) ™) < ere?) (r > ry(a)),
and the Proposition, with M* = M,, follows from this and the obvious inequality
n(r, a, I,y — n(r’, a, 1)) > nir, a, 1) — n(r[M,, a, I,).

It is also useful to have a slight sharpening of (1.1). According to (1.1), there
exists ¢(r) =0 (r— co) with

max log | f(re®)| < ¢(r)re® (r > 0). (3.10)

a<e<g
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(cf. (6], p. 71). For K > 1 consider the closed regions D(K,r) and D(K,7r)
given by
D(K,r) = {té*; r|2K <t < 2Kr,x < 6 <}, (3.11)

D(K,r)= {te”;r/K <t < Kr,o; <0 < B} (3.12)

Since the function (r'/r)z maps D(K, r) onto D(K, ') and Dy(K,r) onto D;(K, r")
it follows that there is a positive constant (M) with the property that
inf Gp, (2, b) = ©(K) (2,0 € Dy(K,r), r>0) (3.13)

where Gpy, (2, b) is the Green’s function for D(K,r) with pole at b.

LemMA 3. There exists an increasing unbounded function K(r) (r > 0) such that,
if ¢ 1is the constant of (1.2) and 7 is given by (3.13)
max log |f(0)] < gen(K(m)re® > ry($) (3.14)
¢ € D(K(r), r)
and, further,

(K (r))re® = of{v(K(s))s?W} (r, s — o0, s/r — ). (3.15)
Proof. Let K, =4 and for j=2,3,... determine K; as the largest solution
of
T(K;) > 2_1/47(1{1'—1): (3.16)
K, <K, <2K, (3.17)

Since 7(K) is a continuous function of K, it follows that K; exists and K; — oo
as j— co. If r/(j) is chosen so large that

lo(t) — e(r)] <log 2(log r)™ (r(j) <r/K; <t < Kjr) (3.18)

(this is possible, as can be seen from the proof of (3.8) in Lemma 1), then (2.1) and
simple manipulations give

Py 20 < () KFere0=e) < 290K (r(f) <r/K; <t < Kpr)
Since ¢(t) —> 0, we now have an 7y (j, ¢) (= r(j)) with the property that
G(t)ie) < 27eg (K )t (ry(j, p) < r/K; <t < Kpr). (3.19)

Let us further require that ro(j + 1, ¢) = Kiry(j, ¢), and let K(r) = K; when
Kir(j,d) <r < K, y75(j + 1, ¢). It is easy to see from (3.10), (3.16) and (3.19)
that (3.14) holds as well as

K@)y r — oo (r— o). (3.20)

To complete the proof of Lemma 3, we show (3.15). Suppose 16r <t < 32r,
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with 7 so large that (3.18) is satisfied with K; > 32. Then (3.16) and (3.17) imply
that 7(K(t)) > 27 "¢(K(r)) and this, (2.1) and (3.18) lead to

(K (t))te®
2K > 274161 met) > 230 (p(K)) < #/32 <r < ¢/16),  (3.21)

and iteration of (3.21) easily gives (3.15).
Finally, we can prove Theorem 1A. Let a € X(I,, ¢) and let R(a) be asin (3.1).
Let r*(a) be so large that, with M* as in (3.2), K(r) > M* if r > r¥*(a) and

log* |a] < ger(K(r)® (r¥(a) < K(r)™); (3.22)

(3.15) and (3.20) show that 7%*(a) exists. We write R*(a) for R(a)N (r¥(a), «).
Then if r € R*(a), z € Di(r) and {b,} are the roots of f —a in D (K(r), r), we
have from Poisson’s formula ([2], p. 7)

log [f(z) — a] < f log [f(8) — a|K (L, 2)dC — 2 Gz, ba)

t€op (3.23)
(z € D{(K(r), 7}, r € B¥(a)).

Here K >0, [K(¢,2)d; = 1. Then (3.14) and (3.22) show
log |f(0) — a| < jev(K(r)y® (L € aDy(K(r), 1), r € B¥(a)),
and since {b,} are in D\ (K(r), r), (3.2) and (3.13) imply that

Thus
log |f(z) — a| < fer(K(r)e?) = — 6(r,a) (2 € D(K(r),7),r € R*(a)). (3.24)
Hence if o’ € K(I},¢), and |a' — a| > Ler(K(r))r¢®, it follows that
R@) N (K(r)™r, K(r)r) = O if r € R(a).

Thus let {¢,} — o so slowly that

bgaftn < I K(#) (Kt 1) Yoy <t < K(tp Vtmwazm=1,2,...)
and let J,, = [{,,,..]. First let m, be the least positive integer with

I, N{U R¥(a); @ € (I}, &)} # O,

and choose 7, €J,,,a, € (I, &) with r, € R*(a,). Then let m, be the
least positive integer > m,; with

Sy N { (K (7 )y» 20)} N {U R¥(a); a € (I, e)} # 9,

and choose r,, €J,,,a, €(I,¢) with r, € R*(a,)... This gives sequences
{rm,}, {am } which we label simply as {r.}, {a.}, and let
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eT(K (r,))retn. (3.25)

A=

0, —

Since the {r,} increase, and r, ,/r,_; > K(r,_;), we have that r, ,/r, — co and
so, from (3.15), ¢,,,/0, — oo whichis (1.7). Finally, let a € Z(Iy, ¢), and s € R*(a).
Then s belongs to some interval J,, and the construction given guarantees that
there is an 7, (p = m — 1 or m) which belongs to the sequence {r,} with either
1 < sfrp, << K(rp) or 1> s/r, > K(r,)™. Then (3.24) and (3.25) with a = a,,
r =1, ensure that |¢ — ap| < e, and Theorem 1A is established.

4, Proof of Theorem 1B

Let {0,} be a sequence for which ¢,, /0, — o, and, for a fixed o € (, 1),
let

0, = — 9(cos mo)r? —log2 (n=1,2,...). (4.1)
Then

Tny1[Tn —> 0O, (4.2)

and (4.1) yields a relation between 7, and ¢, which we keep for the remainder
of this paper. Given o» or r., which satisfy (1.4) or (4.2), there is no loss of generality
in decreasing the ratios o,,,/0, or r,.,/r, so that also

(log 0, ,)°
(log a,,+1)2 — 0. (4.3)

We may then state Theorem 1B more precisely as

TuroreM 1B’. For % < o <1, let {o.} be a sequence which satisfies (1.4) and
(4.3), and define {r.} by (4.1); finally let {a.} be a sequence with

. (log rn—l)G 1 6}
Ia/nl < min {(log rn+1)2 ’ ?(log yn—l) . (44)
Then there exists an entire function f(z) with
log M(r,f) ~7r° (r— o) (4.5)

and, if h(0) is the indicator of f(z) with respect to o(r) = g,
rO) <0 (largz — 7| < 3 — n/20)). (4.6)
Further, we have for all & > 0, in the notation of (1.2), that

n{(rn, w, 7, )

e > w1 sin wo (4.7)

fim inf

n-—>w
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Jor all w € N Unwn Cn, where

Co = {w; lw — an| << e o} (4.8

The function f(z) is obtained by Riemann surface methods, and depends on the
existence of an auxiliary entire function ¢(z) which satisfies Theorem 1B’ with
all a, identically zero. We list the requisite properties of g(z) below in Proposition
2, and then show how to modify ¢ to obtain f. In § 5 is a proof of Proposition 2.

Propostrion 2. There exists an entire function ¢(z) which satisfies (4.5) and
(4.6). Further, if {ra} 1is the sequence which appears in Theorem 1B, there exist
sequences {R,} with R, [r,— oo and r, /R,— c©, and {n,} — 0 such that

. n{r, w, w, J) .
inf ————— > (1 — gz tsinmg (4.9)

Q
N ESES r

SJor all w satisfying
[w] << 2e7m, (4.10)

Finally, we can choose &, — 0 so slowly that

e, RS > (log R,)’ (4.11)
with that property that if
D, ={R, , < |z| < RN {x > |arg z] > n/4}, (4.12)
and B, = 0D,, then
log |g(2)| > €n_1(Ru_1)? (n > ng; 2 € K). (4.13)

We accept this Proposition for now, and produce f(z) using an indirect approach.

Using ¢(z), we shall construct a continuous function F(z) which is regular in the
complement of certain simply-connected resgions

{4 m=1,2,..;m=1,... k(n)

with A4, ,c D, for all m and n»n, where D, is defined in (4.12). Inside the
{Apm o}, F will not be holomorphie, but will be nearly so in the following sense:
each A, , can be divided into three subregions in each of which F(z) = F(x, y) =
u(x, y) + tv(x, y) has continuous partial derivatives, and

|[F/F,| < A(log [z])72 (ae. z€A4,.,) (4.14)

for some positive constant A4, where, as usual
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1 , )
Fz = E (ux + Uy) + 75 (vx - /LLy),
. (4.15)
1 )
F, = 3 (u, — v,) + EY (v + w,).

This will imply that the dilatation p(z) of F (cf. [3, p. 439], [5, p. 18]) satisfies

(0 <)pz) — 1 < A(log |2])72, (a.c.) (4.16)
and so
dxdy
f {p(z) — 1} P < oo. (4.17)
s >1

Finally, we will show that

F maps the plane topologically onto a Riemann surface 7. (4.18)

The utility of (4.17) and (4.18) arises from results of O. Teichmuller and P.
Belinskii ([5, Ch. 5, § 6]). For these conditions imply that ¥ is parabolic and, if
fi1(¢) maps the ¢-plane conformally onto Z, then for a suitable choice of A4, the
induced transformation £(z) = A" (F(z)) satisfies

{(z) ~z (22— ). (4.19)

Although F is not regular, we have max, _, [F(z)| ~7¢, and this and (4.18)
allow the expressions A(0) and n(r, a, 0y, 6) to be defined for F(z) as if F were
entire. Our explicit construction of F will guarantee that (4.9) is satisfied for those
w which belong to infinitely many of the discs (4.8) so that (4.19) yields that
f(z) = fi(42z) meets all conditions of Theorem 1B’.

Thus we start with g¢(z), as in Proposition 2, and for z € D, describe how to
achieve the F(z) which will satisfy (4.17) and (4.18). Let

Tp = (log Rn~1)6 (420)

and consider the closed subsets 4 of D, in which

ig(z){ S Tn (Z e Am,n) (421)
Note that (4.11), (4.12), (4.13) and (4.21) imply that 4, , < D, for all m. Thus

we may consider n fixed in this construction. If «, satisfies (4.4), consider the
Mobius transformation

L, W —
Lw = ¢Prg? ——— - (4.22)
T, — AW

which maps the dise {|w| < 7.} to itself, with p, chosen so that L(t.) = 7n.
Then L induces a map s so that
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L{1:6"®) = 1,6 5(0) = 0. (4.23)

for all 6, and we can now define the mapping H from {lw| < 7.} to itself as
ue' 0 <u <311

H(ue®) = log u — log 7,/2 4.24

(we™) % exp {z {v + (s(v) — ») —1——1@5&—/” 1. <u < Ta ( . )

and define F(z) for z€4, , by
Fy=HoLog(z) (z€4,,,) - (4.25)

where L is specified in (4.21). For z ¢ U,, 4,... we set F(z) = g(2); it then follows
from (4.22)—(4.25) that F is continuous in the full plane.

The next task is to show that F satisfies (4.7) and (4.8). Consider the disc
{lw — an] < e7»}. Since R, > r., (4.4) and (4.20) imply that this disc is inside
{lw] < %7.}. Tt thus follows from (4.22), (4.3), (4.4), and (4.20) and the interlacing
of the {R.), {r»} that there is a constant A4 (independent of n) with

(]‘Og rn—l)é 1
(log R, 1)° (log 7ns1)
which tends to zero as n — 0. Now L(0) == a., so (4.26) implies that if » is
sufficiently large, the inverse of {|w — a.| << e %} under L is contained in
{|]z] < 2e7»}, and (4.7) follows from (4.9), (4.10) and (4.19).

It remains but to verify (4.17) (or (4.16)) and (4.18). Evidently F;=0 if
2 € U nAm . and the representation (4.25) shows that it suffices to show

An

L — Lw)] < 4 <4

s < A(logr, )% (4.26)

n

(H(w))g/H(w)),, < A(log [z))7* (w = g(2), 2 € 4,,,,); (4.27)

further since ¢ is a regular, the explicit formula (4.24) shows we need only consider
these z for which 7. < |g(z)| < .. We cut A = {w; 47, < lw| < 7.} along
the axis {argw = 0} and write ue™ = exp (U 4 iV). Then (4.4) may be written
H(ue?) = exp {k(U + iV)} = exp {K(U + V) 4+ iK*(U + ¢V)} with

KU+3iV)y=U
. ] U — log ta/2 (4.28)
EX¥U +iV)=V + (s(V)— V) (W)
for
log tn — log 2 <U<logz, 0<V <2n.

Since exp {} is conformal, we have that
H(w)g/H(w)y = k(W )5 k(W )w, (4.29)

and we can compute the left side of (4.29) using (4.25), (4.23), (4.26) and
(4.28). Thus (4.22), (4.23) and (4.26) show that [¢'(V) — 1] < Alax/7.], and
1s(V) — V| < 2md|an/7s]. It is then easy to show that
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Ky=1, |[Kf—1]<[8(V) — 1] < Ala, /7|
Ky=0, [KE <|s(V)— V| < 2zdla,/z,],

so that, for perhaps a different constant 4

o) < Ala,]7,| (2 €4,,,)
and thus (cf. (4.26))

lFi/Fz| S A(log ,,'n+l)~2 S A(log ]Z])_z (Z € Am,n);

since D, C{|z| << r,.1} and this proves (4.16). To obtain (4.18), we observe that
the image of A4, , by ¢ isa bordered Riemann surface, and hence so is the image
of 4, , under F. F is also regular in the complement of the 4,, ,, and since F
is uniquely defined on 04, ,, (4.18) follows from standard gluing arguments (cf.
[1, pp. 117—119]).

5. Proof of Proposition 2

The methods used here rely heavily on Chapters 1 and 2 of [6].

Suppose gy(z) is a canonical product of order o, % < o <1 with g,(0) # 0,
and let {b.} be the roots of g,. Many functions can play the role of ¢, below, but
all will have, for some absolute constant K,

n(r, 0) << Kr? (5.1)

(K may be taken as 6, for example). Let r, > 0, 4 > 0 be given, and define
products my(2) and m,(z) by

mE) = TT (1 —zb) m@= T @0 —zb) (5.2)
[b] < A2 o] > Arg

The discussion of [6, pp. 62—3] and (5.1) imply that, given & > 0, there exists
Ay(e;) (which also depends on the absolute constant K of (5.1)) such that if

4 = Ayfz)
loglm (2)]] - Jloglma(z) [| << &y (5.3)

if

red 1 < 2] < r 4. (5.4)

One further element of flexibility will be needed. Let M be a (large) positive
integer and let {An(0)} (m =0, & 1,... 4 M) be a family of 2n-periodic trigono-
metrically convex functions of order g,% < ¢ << 1. Thus each A, is continuous,
has right and left-hand derivatives which agree off an at most countable set of 0,
and
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52(0) = BL(6) — ¢ f ho(@)id (0 <0 < 2m) (5.5)

increases (in (5.5), h, denotes either the right or left-hand derivative of k).
In our situation, s.(0) will increase only by simple jumps at one or three values
of 0, and there exists a set E(M) = {6, 0;, 6_, 0,, 0_,} outside of which all func-
tions hn(6) are continuously differentiable. To measure the denseness of the family
{hm} let

g(M)=  max max |k, 1(0) — h(0)]. (5.6)

~M<mSM-1 6€E(M)

Then for each m, Chapter 2 of [6] yields an entire function f,, whose indicator is
hw(0). This f. has several properties which are useful here and so we indicate
the salient features of the construction. For 0 < 6 << 2z, let

A,(0) = (2mg)2 lim {},(0 4 8) — hp(6 — 6)} (5.7)
30

measure the jump of the derivative of A, at §, and observe from our convention
that A4,(0) =0 for all 6 ¢ E(M). Then for j= —2,...,2 we place n; .(r)
zeros of f(z) on {argz = 0,} to satisfy

7, m(r) — Aml(0)r¢] < 1; (5.8)

fm(z) is the canonical product whose zeros are so distributed. Then, to each & > 0
is a pj with the property that if |z] = r > pj

1hn(0) — er? < log |fm(2)| < r%hm(0) + arr® (— M <m < M) (5.9)
save for points z contained in circles C,, , whoseradii 7, ,(k =1, 2,...) satisfy
P 2 <& (— M <m <M, r>py) (5.10)

(the symbol > means summation over those & such that O, , intersects
{|z] <r}). Also, we obtain from (5.6), (5.7) and (5.8) that given &, > 0, there
exists a ¢; > 0 and py, such that if ¢(M) < gq,, then

1%, m(T) — i (r)] << &gr® 7 > Por- (5.11)

Finally, we let p, = max (py, Pu)-

For N=1,2,..., let &(N)= N-? and then consider a family of 2M - 1
trigonometrically convex functions %4.(0) where the specific choice of M will be
made later. Easiest to define is

ho(0) = cos 0f (10| < =);

the remaining functions are divided into two classes, each of M functions. Those
in Class I will be labelled 4, ...,y and we first describe these. Choose
0,0 < 0, <7z — z=f2p¢ with
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cos pf; = N1 (5.12)

and, in the interval 0 <8 << 601, let hn(0) = ho(0) for 1 <m << M. Next, we
define
hy(m) = (2N)71 (5.13)

and then, for 1 <m < M,

1) = o) + 7 (haa(m) — hofe). (5.14)

For 61 < 6 < 7, b is the unique portion of a sinusoid of period 2z/¢ which
at w and 0; interpolates the values hu.(7r) and ho(f1) (to see how this sinusoid
is constructed, cf. [6], p. 52; uniqueness follows since = — 0; < wp™!). Next, for
w <0 < 21 let hn(0) = hna(27 — 6). Thus, in the enumeration of E(M), 6, the
solution of (5.12), 6_, = — 6, and 6, = &. The functions in Class II are written
h 1, ..., h_y, and are constructed as in (5.12), (5.13) and (5.14) save that m is
replaced by — m, N by N + 1 and 6, by 6,, where 0, is defined by the equation
cos g6y, = (N 4 1)"1. Note that the functions hn.(f) are 2m-periodic and trigono-
metrically convex. The easiest way to establish this convexity is to verify that each
sm(0) (defined in (5.5)) increases. To see that s. increases, we observe that /m(0)
is a continuous function and is sinusoidal at all points of continuity of #,,; at the
remaining points of the domain A, has a positive jump discontinuity.

We can now relate the choice of M to N and the sequence {r.} which is
specified in the statement of Proposition 2. Choose {{.} with

Tn/tn—l - tn/Tn (515)

so that both sides of (5.15) tend to infinity as »— co. With &(N)= N2 as
mentioned above, in (5.3), (5.9) and (5.10), choose A = Ay so large that (5.3)
holds with & = &(N) and then choose py, M (M = M(N)) and & (= &(N))
so that if the {f.} are chosen as in (5.8), then (5.11) may be sharpened to

7, m(ANT) — 1y, m_1(ANr) | < 7%(N log AN)™* (r > pu). (5.16)

According to (5.7) and (5.8), (5.16) can be achieved by making [4,,(0) — 4,_4(0)]
small for all 6, and these differences will be diminished if ¢(M) is small, i.e. if M
is large.

We next choose n(N) so large that n(N) > n(N — 1),

10g (fys1/t,) > 42MN) + 1) log Ay (0 > n(N)) (5.17)

and in addition, with pyyy, selected so that (5.9) and (5.10) hold with our choice
of ¢, we also have

For each n,n(N) <n <n(N + 1), the interval (£, ¢,.,) is divided into
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(2M(N) + 1) intervals (xj(n), Bi(n)) with «i(n)/Bi(n) = x;j(n)/B;j(n) for all ¢ and
Jj(— M(N) <4,j5 < M(N)). When the value of n is clear from the context, we
abbreviate «;(n) and Bin) by «; and ;. We set, for each n,T; (= Tj(n)) =
{z; 4 < |2| < B}, and for the moment suppose n # n(N + 1) — 1. Then in
T;, ¢ is assigned the same zsros as the corresponding f; if j > 0, and as f; if
j<<0; if n=mn(N+1)—1, then in T; ¢ has the same zeros as f; forall j.
(This special definition, when % = n(N 4 1) — 1, allows a smooth connection
near {|z| = t,y,p}). Finally in {jz] <#},g is assigned the same zeros as Ity
With {b.} these zeros, we set g(z) = | |(1 — 2/bn).

The point of this construction is that if z € T; and fj is the proper choice
of f;i or f_;, as explained above, then

log |g(z)| = log | fin(2)] + wi(2) (2 €T}) (5.19)
where, for large n,
()] < 2Nz (5.20)
outside circles C) of radius r, such that
137 < a(N) = o(N7Y) (V) <n < nlN + 1)) (5.21)

(ef. (5.10)). Granting this for the moment, it is easy to complete the proof of Proposi-
tion 2, Indeed, (5.21) implies there exist {Rn} -+ o0 with R./t.— 1 (n-> co) such
that (5.19) and (5.20) hold on all of {|z| = R,}. In particular, this, (5.9) and the
fact that |h, ,(0)] = (2N + 2)71 (0 <6 < 27) imply for large n that

log [g(R,¢*)| = R(2N + 2)~' — N2 — 2N %} > (3N)7R¢

(5.22)
(0 <0 < 2m,n > ny)
On the rays {argz = 4 n/4} we have
log |g(re**)| > L(cos Im)re (r > ry) (5.23)

Since 7m(0) > cos (4m) for all § with 0 <6 < ix, (5.23)is clear from (5.9) and
(5.19) if 2z does not belong to the circles estimated in (5.10); if z is interior to
one of these circles, then it follows from (5.8), (5.19) and (5.20) that f(z) does not
vanish in the circle, and so (5.23) follows from (5.9), (5.19), (5.20) and the minimum
principle. Thus (5.22) and (5.23) imply that (4.13) holds with any e, > (4N)7!
(n > ng, n(N) < n <n(N 4 1)), so (4.11) can be achieved as well, by increasing
the numbers #n(N) if necessary.

Similar reasoning gives (4.5) and (4.6). Indeed, when (5.20) is valid, these con-
clusions follow from the construction of the A () since max, A (6) = 1, and the
inequality An.(0) < 2N-' when |6 — x| < #/20 and — M(N) <m < M(N).

Finally, we consider (4.9) and (4.10), and let {s.} be a sequence with
re < sn < 2rn. Then s, is well-contained in 7'o(n) in the sense that sa/xe(n)— o
as m—o0. Let {8})0 and {4.}-—>c0,{8.}-—> be sequences (with
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xo(n) << An < Su << Su, An ~xo(n) and S, ~8, as n— o) so that (5.19), with
m = 0, holds on all of {|z2] = 4.}, {|z] = 8.} and the segments

{arg 2 = @ + 8a, An < |2] < Su}.

Then if D} denotes that region bounded by these curves which contains a segment
of the negative axis, our construction implies that ¢ has at least

k(S,) = atsinmp (82 — A2) — 2 = m1sin mo 81 + o(1))

zeros in D) where the rate at which o(1) tends to zero depends on n but not
the choice of s, € [§7a, 2ra]; further, (5.9), with m = 0, and (5.19) yield that

log |g(0)] = log |f(O)] — |e(8)] = 2 cos o |12 — o(1)[C}°
> 3 cosmp [£]® > 3 cosm (3r,)2 > 9 cos o 72 (L € 0D, n > n,).

Hence, by Rouché’s theorem g¢(z) assumes every value w with
lw| << exp (9 cos mp 72) (5.24)

at least k(S,) times for z € DX,
For a fixed 0 > 0 and all large n, if w satisfies (5.24)
(Sn, W, 7, 8) — N(Ln, w, 7w, 8) > n(Sn, w, T, 6u) — N(An, w, 7, On)

(5.23)
= 77t sin wo s3(1 + o(1)),

and so (4.9) and (4.10) are consequences of (5.22), (5.23) and the definition (4.1).

We conclude by sketching a proof of (5.19) and (5.20) provided z avoids the
circles estimated by (5.21). Let z, € T, |z| = r, and, for convenience of notation,
suppose — M(N) 4+ 1 <j = j(zy) < M(N) — 1. Then the interval (Ax%ry, A%
meets at most one T, (k # j) (cf. (5.17)). Let {b,} and {b,;} denote respectively
the zeros of g(z) and f;(z), and given a sequence {a,}, define =*(1 — z/a,) to
be the product over those n with rAy® < |a,| < ryd%.

Since &(N) = N-2, (5.2) gives

log lg(z)] — log If(2)|] < [logla*(1 — 2/b,, ;)| — log |#*(1 — 2/b,)|| + 2N-%2. (5.26)
However, the {b,} and {b,;} agree in T;, and thus (5.16) implies that
Pz

log [7*(1 — 2/b,, ;)| — log [#*(1 — #/b,)|| = |log I_]: (L — z/a,)™[], (5.27)

where &, = 4 1, and p(z) < (N log Ay)" ¢ Let
plz)
on(z) = ——Il (]‘ - Z/an)i

It is clear that if @, is any partial product of @,, then

log [@4(2)] < log {(1 + AZy“C "8 4N} < 3N-2(log Ay)® (N > N,) (5.28)
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and Cartan’s estimate ([6], p. 21 with 2eR = 12r) and the manipulations leading
to (5.27) ensure that outside circles €, whose radii satisfy

>, < 6r(NAR) (5.29)
that

log |Q(z)| = — [2 + log (12eN A})] max log |@(0)|
=120 (5.30)
> — 3[2 + log (12eNA%) N *(log Ay) 2.

From (5.28) and (5.30), it is clear that (5.27) is estimated by
log |w*(1 — z/b, ;)| — log [z*(1 — z/b)[| < N7 (r > ry), (5.31)

and (5.26) and (5.31) give (5.20). Finally, the bound (5.21) is a direct consequence
of (5.29).

References

1. Amrrors, L., Sario, L., Riemann Surfaces, Princeton, 1960.
2. CarTwrIGHT, M., Integral Functions, Cambridge, 1956.
3. GoLpBERG, A., OstROWSKI, 1. V., The distribution of values of meromorphic functions (in
Russian), Nauka, Moscow, 1970.
4. HYLLENGREN, A., Valiron deficient values for meromorphic functions in the plane, Acta
Mathematica 124 (1970), pp. 1-—7.
5. Lenro, O., VirTanNeEN, K. 1., Quastkonforme Abbildungen, Springer, 1965.

6. LeviN, B., Distribution of zeros of entire functions, A.M.S. Translation, Vol. 5, 1964.

7. VALIRON, G., Directions de Borel des fonctions méromorphes Memorial des sci. math. 89
(1938).

Received May 14, 1973 David Drasin

Department of Mathematics
Purdue University

‘W. Lafayette Indiana 47907
U.S.A.



