On a theorem of A.C. Offord and its analogue for
Fourier series

G. P. Nfivar
(Budapest)?)
1. Let I, (n=1,2,...) be asequence of natural numbers such that I, = o(n)
and let
2.7 N
" 2m 4 17 (

Let further, f be a Lebesgue integrable function of period 2x. Let us denote
by falx) (m=1,2,...) the average of f over the interval (x — ., x 4 0n),
that is

x+&p

1
ful@) = Ty f f(&)dt. (2)
x—0y,

The function f. is continuous and we may consider the uniquely determined tri-
gonometric interpolating polynomial S,,(x, fa) of degree at most » which coincides
with the funetion f, at the nodes
2kn
2n + 1

(=0, +1,+2,...).

T = Xgn —

It is well known that (see A. Zygmund [11]),

2
2n 41

Zn Jn (k) Dn( — Tin), (3)

k=—n

S’n(x, fn) -

1) This paper was written during the first term of the 1973/74 academic year while the
author visited the Mittag-Leffler Institute, Sweden. The author seizes the opportunity to
thank the Swedish Academy of Sciences and in particular Professor L. Carleson for the scholar-
ship at the Mittag-Leffler Institute given to the author.
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where D,(t) is the n-th Dirichlet kernel defined by

sin (n - )¢
Da(t) = ———t2— (4)
2 sin P

In his paper [9], A. C. Offord claimed that the following statement is valid:

Taeorem 1. If x is a Lebesgue point of f € Ly then
g,,(x,f,,) - f(x) as n-— co. (5)

At first sight this result seems to be very surprising since there is a well known
classical result that there exists a continuous function f; of period 2z such that

Sz, f1) diverges almost everywhere. (See J. Marcinkiewicz [7] and for a very

similar result G. GRUNWALD [4]. Actually, f; may be chosen so that S.(x fi)
diverges for all x except for z = 0 (see A. Zygmund [11])). But a deeper analysis

shows, however, that in case lim I, << oo (5) is almost obvious for continuous
functions.

Indeed, let for simplicity 1. =1 (n=1,2,...). It is easy to check that

n—>0

27

Suw, f) — fl@) = %{Sz,(x,f:f -N+ S(m — i1t —f)} +

(6)

~ - 27
+ {% Sal, ) + Sn(x RETERE )J —f(x)},
where f7 is defined by
x+2—:i:_—1
2n + 1
a(@) = om f f(e)de. (7)

Since the inequality
2 S
Yo 2 IDufe — @)+ Do — )| =

holds independently of n (see S. Bernstein [1]), we obtain from (6) and (7) that

(8)

Qs

>

~ 4 20t ~ ~ 2
8. f) — f@) = — w(f; " 1) - E% {Sn@c,f) + S,.(x— T )J — f@)

where the expression between the absolute value signs tends uniformly to 0 as
n > oo because of S. Bernstein’s and W. Rogosinski’s results. (See e.g. A. Zygmund

[117).
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Offord’s theorem is less trivial for arbitrary integrable functions f and sequences
I.. Unfortunately, the proof of this theorem given by A. C. Offord turned out to be
false. This fact was observed by G. Réna, who has given another proof of this
theorem. (See G. Rona [10]). It can be easily checked that this second proof given
by G. Réna is also false. For this reason now we turn to Offord’s theorem and give
a really correct proof of it. To prove (5) we need two lemmas.

Levya 1. Let ny,ny be arbitrary integers such that ny, = ny, [y — 0y = 2.
We have

3 Dn(x —x) | =0 m=1,2,...), (9)

| 2
212

where C[ is an absolute constant.

Proof. This lemma is known and plays an important role in proving convergence
theorems in the theory of trigonometric interpolation. Here we give an extremely
simple proof of it based on inequality (8). Let first n, — n; + 1 be even. In this
case we have

2 Ty 9
é_;l + 1 kgn1 Dn(x - xk) - 27’L + 1 k=n, n1+%,:..., n2~1[Dn(x - xk) + Dn(x a xk+1)]
and consequently
Ny 2 n
on + 1 kgnl D(z—2x) = m + 1 kznan(x — ) + Do — 2p44)|

Hence by virtue of (8) we obtain

8
<7 —
2n + 1 kznl Du —x (10)

Let now ny, —n; + 1 be odd. If n; = n, then (9) holds because for every k

3 1l — @) 0. (11)
If n, <n, then
n,—1
2 + 1 kznlD %) = 5 1 anlD D G 1 Dal® — )

Since n, — n, is even, we have by virtue of (10) and (11)

> Dfe—w)| = — + L.
1 k=n,

7T
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Lemua 2. Let 1 and n be natural nwmbers. If 0 <<l <n/3 and n = |z| =
6lx/(2n + 1) then the inequality
3 1
— x| <
o 1 j:;HDn(x xj). < (:

holds with an absolute constant C,.

Proof. We obviously have

2 ! 2
— _ D .
In + 1 j:§+1Dn(x x] 20 + 1 z [D x x l+1+2]) + ( x—l+2—|—2])]7
80 we obtain from (4) that
9 1
D — ) <
27?/ + 1 ]‘:;_l_l n(x x]) =
Isin (n + ) x| 11 X — X 1495 T — X_yiaq2
< e Sl o A S '
= 1 g cosec 5 cosec 5 |

Hence we conclude that there exists an absolute constant €3 such that

A 1
2+ 1 Z W@ — )

=—I4+

oy 1

n? j=0 t lv — x—l+1+2j] o — x—l+2+2jl

x| ||
- W z x — 95—1+1+2j\ le — xﬁl+2+2jl'
Furthermore we have
l| 3ln
lx — x—l+1+2jl = x| — !x—-l+l+2ji ="y 2+ 1 - 575—1+1+2j‘ =
|| 3lx 2l ]

> _
=2 TwmErl el 2

for j=0,1,...,1 — 1 and similarly
2]
lx x l+2+2]l > _‘2‘—
for j=0,1,...,1 — 1. Hence
! | 40,1
2n 1 j:§+1D"(x o xj)[ = nE?

Now we are able to prove Offord’s theorem. So let f€ L; and let = be a
Lebesgue point of the function f. We can easily get from the formulas (2) and (3)
that
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XL+l
- 1 9 n In
S f) = 1@ = 35 507 2 [ vo—sene S b,

J=—l,+1

—n
I

Let us fix now a positive number & less than # and suppose that = is so large
that 36, << e. Then we have

5o, £, _ oy T T
o\ Jn) — JX) = S
( f( ) 26n 2n + 1 S x—xpl < 38, <lx—xpl < lx—xp| <34,
! 1 (12)
f ) — f@))dt > Dulw — aiyy) = 21+ 2y + 25
% Jj=—1l,+1
First let us estimate 2. Using Lemma 2 we obtain
X1 T
< Cal, f p 1 ~ Gyl f it
21l = 26"n28§]x7xk\§n fO) — fla)ldt - lx — 22 = 20.m22 !f(t) — flx)|dt.
xk —JT
Thus

1
12 =0, . (n=1,2,...), (13)

where C,; does not depend on n. To estimate X, we split the terms contained in
2, into two parts so that

22 = Z + z = <91 + 222-

x—g << xp<<x—3d, 2+ 38, <<ap<<xte
We shall estimate 23. Let « and p be integers such that
Yy 1=+ 30, <wy T <X F & = X5y,

Since e is assumed to be fixed, « and g exists if » is large enough. We have

1 2 8 w I
Ly = 25, m kga f [f() — flx))dt j:;: +1Dn(x — )
X, "
and by virtue of Lemma 2 we get
X1
R I i e——
= 2007 5, . e — ag|?

By Abel’s transformation we obtain
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*E4+1
1 1
12| = 26 n2 Z f x)|dt e — a2 o v — 2y l? o
(14)
*g41

Caln f 1
+ Mz If(8) — fla)|dt m = o1 + o

%o

It is quite obvious that there exists an absolute constant €5 such that

1

- 1
2 xf f#) — fla)|de - @ —ap

Il/\

hea Tkl

Let now p be an arbitrary small positive number and let us choose an ¢ such
that
X1

[ -ttt =p @=nas1, 05—

xk+1——.%‘
x

1

in case % is large enough (n = n,). Then we have

5o Cyp -1 1 -
m = e 2 G gy MEM

and consequently we can choose an absolute constant €, such that
Zom = Ceu (0 = ny) (15)
since x, > z + 36,. Further

Csl., 1
Lo = 5y 55 f Ift) — f@)idt = C; = (n = ), (16)
where (), does not depend on n. It follows from (14), (15) and (16) that
1
1252| = Copu + O n (n = ny)

and we may obtain similarly

1
12| = Con + O ; (n = nyg).

Hence

1
12| = 20gu + 205 n (n = my). (17)
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To obtain a useful estimate for 2 in (12) we have to apply Lemma 1. By virtue
of it we have

et 1 x+40p,
C, C,
125 = 20 Py k/ (&) — flo)|dt = 25, x_l f(&) — flz)|de

and so if = is large enough (n = n,) then
Zal=p (n=mn) (18)

We infer now from (12), (13), (17), and (18) that for an arbitrary small positive »
and for arbitrary large n = n,(f,v) we have

Cy
x, fn) — fl2 ]<v+— (n = my)

with a constant (g independent of ». Thus (5) holds at every Lebesgue point
of the function f, and this was to be proved.

2. The purpose of this section is to discuss the following problem. Let
A (m=1,2,...) be an arbitrary sequence of real numbers such that 7, —0
as m— oo. For f€L; let us define f.(x) as

atAy

fu@) = [, @) = {24, f f@&)y if A #0,

x—2n

f(@) if =0,

and let us consider the n-th partial sum S.(z, f.) of the Fourier series of the function

fa, that is
fn - ffn x ‘—t

TuroreM 2. Let f€ L, and 3 —>0 as n— co." Then

Sn(z, fu) = f(x) a.e. as n— o
if and only if

8in ni,
W Sulz, f) — f(x)] =0 ae. as n— o0,
more precisely
sin ni,
@, fa) — fl@)] — Su(x, f) — flx)] — 0 a.e. as n— oo,

NAn
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To prove Theorem 2 we need the following result which can be easily proved by
using a classical result of D. K. Faddeev [3]. (A very particular case of Lemma 3
when I, =1 and f€0C, was a proved by C. Lanczos [6]).

LEMMA 3. If An = On, where &, is defined in (1) and x is a Lebzsgue point of
f€ Ly then
S, f,,s,) —flx) as n— co.

Proof of Theorem 2. We may obviously assume that 1. =0 (n=1,2,...)
sinee f, ; =f, . Further, for 1, =0

sin ni,

(@, fa) — flx) = [Sa(x, f) — f(@)]

N

therefore without loss of generality we may suppose 4, >0 (n=1,2,...). Let
us now represent A, in the form

A 2.7 26,7
" o 1T 3m 1

= On -} &n,

where [, is a non-negative integer and 0 << @, = 1. We have

6n
@ Fri) = J@) = 7 18, fo,) — J@)] +

. x—0p, xt+iy (19)
Y f Sa(t, f) — flx ]dt+ f [Su(t, f) — flx)]de.
" x—Ay x+¢§
Let ny, ny, ... be the indices n for which d, % 0 (n = ny, n,, . . .). By virtue of

Lemma 3 we have

S, [ ) —fx) >0 ae as i— oo,

therefore

ln Ty fr o) — f(®)]— 0 ae. as n— . (20)

To estimate the second expression on the rightside of (19), let us notice that

x+A,

/ [Su(t, ) — f@)dt + 5 / [8u(t, ) — flx))dt =

x+dp
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. sin%1 , 4 @
78 (6n + 5) |ty — s +
. ken . (k4 Dew
&p n—1 sm _2‘ s —T .
+ I IZI [Sile, f) — f(@)] ke (k- Den cos k(én + 5) 4+ (21)
2 T2
. (B De
&n "} STy &n .
+ T 121 [Si(x, f) — f(@)] Tk e {Gos k(a,, + -2—) — cos (k + 1)<5n+ 5)} +
—
M
Sin ~2— .
T o8 n(én + E) [Sa(@, f) — fl)] = 41 + Az + A3 + As.

It is very easy to estimate A,. Since A,— 0 as n — co, it follows that 6, — 0
and &, —0 as n— . Therefore

. En
&n Sy &n
el 1 — o cOS 6n+§ —0 as n— o©
and consequently
Ay —0 a.e. as n-— oo. (22)

Now we recall that the function z M\ sin z/z together with its first derivative is
bounded on the real line. Hence

(en)2 n—1 1 »n—1

[As] = Co = 2 ISk, f) — fl@)] = Com — 2 Sk(x, f) — f(=)

;{n k=1 k=1

and
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where C, is the upper bound for |(sinz/z)’|. By a theorem of J. Marcinkiewicz
[8]%) we have for every f€ L}

nil |Sk(x, f) — f(x)] >0 ae. as n— oo,

3| =

that is,

Ay A;—0 ae. as n-> 0. (23)

Let us turn to the expression A4. Since A, = 6. + &, We have

sin ni, sin nd,
Further,
. S
sinndy_ sin [(n + $)0 — §0] 2
nz’" - n}“n B (— 1) n}.n
Hence we obtain
sin 70, | O 1
< < —.
ln | 20, T 2n

Therefore

7 sin nd,

logn  nin [Sa(e, f) — fl@)] =0 a.e. as n— oo,

since it is a well known classical result, that for every f € L} (See e.g. A. Zyg-
mund [11].)

fog 7 ISu(z, f) — f(x)] =0 a.e. as n-— co. (24)

Therefore we conclude that

sin i,
—— [Sulz, f) — f(x)] = 0 a.e. as n— oo, (25)

L —
Nhn

By virtue of formulas (19)—(23) and (25) we have

sin n i,

[Salz, fa) — fl2)] — Sulx, f) — flx)] -0 ae. a8 n— 0

NAn

which was to be proved.

2) Actually, J. Marcinkiewicz proved only that 1/n X Z;i [Sklx, f) — flx)—0 a.e. as
n —>00, but using the Holder inequality one can obtain the result we need.
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CoroLLARY 1. Let 4, —>0 as n— oo. If

sin ni,
Nhn

lim

n—oo

logn < o

then for every f€ Ly —we have

x+2,

1
YR f Sa{t, [idt — f(z) a.e. as n— co.

n

This follows immediately from Theorem 2 and (24). Let us remark that (26) is
necessarily fulfilled if |A.] > Cwlogn/n (Cio > 0) or

. e O< 1 )
" T nlogn/’

where [, are integers such that [, # 0.

COROLLARY 2. Let An—0 as n-— oco. If

Sin # A,
Nin

lim

n—-c0

>0 (27)

then there exists a function f belonging to L such that

x+2gn
— |1
lim 27 Su(t, fidt| = o a.e. (28)
n—>c0 n xw/’!n
Indeed, let us choose a sequence n1 << ng << ... <<m; << ... so that
Sin 2iln,
lim ————— > 0.

n; Zn

i—>o0 i

By a result of Kolmogorov [5] there is a function f€ L) such that?)

lim |8, (2, /)| = o ace.

=0

Therefore we have for this function f,

—|sin ni,

lim | ——— [Su(z, f) — f(®)]| = oo a.e.

n—>& nl”

3) Kolmogorov proved only that there exists a function f belonging to L;n such that
Sy, f) diverges everywhere as n —> 00, but the result we need also follows from the arguments
used in the course of the proof of this theorem given by A. N. Kolmogorov. This fact was
noticed by A. Zygmund (see [11], vol. I, p. 314).
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Hence, applying Theorem 2, we obtain (28).
Let us observe that (27) holds whenever we can choose a sequence
ny<<mg <_...<<m<"... such that ni. converges as ¢~ oo and

lim n,-lni *kn (k= +1, £2,...).

1—>o0

CoroLLARY 3. Let A,—0 as n— co. If

sin ni,

i = o (29)

im

n—c

loglog n

then one can find a function f € Ly such that (28) holds.

To prove this let us write

sin ni,

8ol f) = o ke S)

on o loglog n’

NAn

o

Since «,—> 0 as n — o, by virtue of a theorem of Y.-M. Chen [2] there exists
a function f € Ly such that

where
sin i,

Nhn

1
-z
loglog n) .

. S”(xaf)
lim ———— > 1 a.e.,
nsoo Onloglog n
that is,
— |sinnd,
11_)12 —E*Sn(x,f) = 00 a.e.

Using Theorem 2 we obtain (28).
We remark that (29) holds if for example nl. = 0(1) and

min |#i, — kx| > COn (loglog n)™° (0 < e < 1).
k=11, +2,..

3. To study the behaviour of the polynomials S’n(oc, .1, for arbitrary sequences
2, and functions f € Ly, seems to be much more difficult than that of S,(x, f, ;).
For the time being we have no deep results concerning the convergence or divergence
of S’n(x, fn.2,)- In particular, we donot know what to expect in the case 1, =1 /\/ n

which is a »good» parameter for the Fourier sums as it has been proved in Theorem 2.
At the same time, however, we think that the following conjectures are true:
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a) Let Jn=um/2n (n=1,2,...). Then there exists a function f€C,  such

that S~n(x, fu,2,) diverges almost everywhere.

b) Let Jn = mjn (n=1,2,...). Then there exists a function f € Ly  such that
8., f,,,,) diverges almost everywhere.

We hope to return soon to these questions.
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