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Absolutely continuous 
spectrum of Stark operators 

M i c h a e l  C h r i s t ( 1 )  a n d  A l e x a n d e r  K i s e l e v ( 2 )  

A b s t r a c t .  We prove several new results on the absolutely continuous spectra of perturbed 
one-dimensional Stark operators. First, we find new classes of perturbations,  characterized mainly 
by smoothness conditions, which preserve purely absolutely continuous spectrum. Then we estab- 
lish stability of the absolutely continuous spectrum in more general situations, where imbedded 
singular spectrum may occur. We present two kinds of optimal conditions for the stability of 
absolutely continuous spectrum: decay and smoothness. In the decay direction, we show that  a 
sufficient (in the power scale) condition is [q(x)[<_C(l+]xl) 1/4--~: in the smoothness direction, 
a sufficient condition in HSlder classes is qCC1/2+e(R). On the other hand, we show tha t  there 
exist potentials which both  satisfy lq(x)l<_C(l+[xl) -1/4 and belong to C1/2(R)  for which the 
spectrum becomes purely singular on the whole real axis, so tha t  the above results are optimal 
within the scales considered. 

1. I n t r o d u c t i o n  

I n  t h i s  p a p e r  we c o n s i d e r  t h e  S t a r k  o p e r a t o r  

d 2 
(1.1) H q -  dx 2 x+q(x) 

d e f i n e d  o n  t h e  w h o l e  r ea l  l i ne  R .  T h i s  o p e r a t o r  d e s c r i b e s  a c h a r g e d  q u a n t u m  p a r t i -  

cle in  a c o n s t a n t  e l ec t r i c  f ie ld s u b j e c t  t o  a n  a d d i t i o n a l  e l ec t r i c  p o t e n t i a l  q(z). T h e r e  

e x i s t s  a n  e x t e n s i v e  p h y s i c a l  a n d  m a t h e m a t i c a l  l i t e r a t u r e  o n  S t a r k  o p e r a t o r s ;  for  a 

r ev i ew,  see  e.g. [11]. W h e n  q ( x ) = 0 ,  t h e  o p e r a t o r  h a s  p u r e l y  a b s o l u t e l y  c o n t i n u -  

ous  s p e c t r u m .  T h e  q u e s t i o n  we w i s h  t o  a d d r e s s  is w h i c h  c l a s ses  of  p e r t u r b a t i o n s  
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q preserve this property. We will consider two classes of conditions that ensure 
preservation of the absolutely continuous spectrum: smoothness and decay. The 
first result on the smoothness condition was proven by Walter [39], who showed 
that  if the potential is bounded and has two bounded derivatives, the spectrum 
remains purely absolutely continuous. Similar results were obtained by Bentosela, 
Carmona, Duclos, Simon, Souillard and Weder in [4] using Mourre's method. A 
corollary noted in [4] is a drastic change in the spectral properties of Schr6dinger 
operators of Anderson model type, say 

DC 

dx2 d2 

n = l  

where an are independent identically distributed random variables and the po- 
tential VEC2(O, 1), when a constant electric field is switched on. The spectrum 
changes from ahnost surely pure point to purely absolutely continuous. Recently, 
Sahbani [32], [33] relaxed the smoothness conditions of [39] and [4] (see the remark 
after Theorem 1.6). On the opposite side of the smoothness scale, Delyon, Simon 
and Souillard [13] showed that for a periodic array of d function potentials with ran- 
dom couplings in a constant electric field, the spectrum is purely singular. Avron, 
Exner and Last [3] realized that  the spectrum may be purely singular even for a de- 
terministic periodic array of very singular interactions, such as d'. Generalizations 
of these results, as well as other models with singular potentials, were considered 
in [24], [14], [2], [23], [5] and [1]. There remained a gap, however, between the 
classes of potentials for which localization was known to occur, and those for which 
the spectrum was known to remain absolutely continuous. 

As far as decay conditions are concerned, it is well known that  if q(x) satisfies 
1 Iq(z)]_< c ( 1 +  Izl)-~, c, > ~, then the spectrum remains purely absolutely continu- 

ous [38]. Moreover, there are examples where Iq(x)xt/2[ <_C and isolated imbedded 
eigenvalues appear. If Iq(z)lx~/2~oc.  it was shown by Naboko and Pushnitski [25] 
that  dense (imbedded) point spectrum may appear on all of R. We remark that 
for the operator without electric field, the decay threshold where imbedded eigen- 
values may appear is the power -1 :  of course, it is physically natural that it is 
more difficult to get an imbedded eigenvalue in the presence of the constant electric 
field. However, if we do not wish to rule out imbedded singular spectrum, it has 
been shown in [18] that  the absolutely continuous spectrum of a perturbed Stark 
operator still fills the whole real axis when Iq(x)l<_C(l+lxl) ~, a> �89  The ques- 
tion what is the critical rate of decay for which the spectrum may become purely 
singular remained open. 

Our main goal in this paper is to prove two sharp results on the preservation 
of the absolutely continuous spectrum of Stark operators. Recall that  f(x) is called 
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Hdlder continuous with exponent a ( f E C a ( R ) )  if 

If( x ) - f ( y ) l  
Ilfllc ~ = sup I f(x)l+ sup 

x E R  z . y c R  I x - y l  ~ 

We will analyze solutions of the generalized eigenfunction equation 

(1.2) - u " -  xu+q(z)u  = Eu. 

Here - x  represents a background potential due to a constant electrical field, while 
q is some perturbation.  

T h e o r e m  1.1. Assume that the potential q(x) is HSlder continuous with ex- 
1 portent c~>~. Then an essential support of the absolutely continuous part of the 

spectral measure coincides with the whole real axis. Moreover, for a.e. E. all solu- 
tions u(x, E) of equation (1.2) satisfy u(x, E ) = O ( x  -1/4) and u'(x, E ) = 0 ( x l / 4 ) ,  as 

Remarks. 1. An essential support  of tt Is a set S such that  t ~ ( R \ S ) = 0  and 
#(SL)>0 for any $ 1 C S  of positive Lebesgue measure. 

2. In this and subsequent theorems, only the behavior of q(x) for Ixl large 
matters.  We will always implicitly assume q to be locally integrable, and will 
state only additional hypotheses which concern its behavior for large x. On the 
negative part  of the real axis, it is sufficient for all our conclusions to require that  
q(z ) - x -++oc ,  as x-+-oo.  We prefer to state the results in a slightly weaker form 
to avoid making s tatements  too cumbersome. 

T h e o r e m  1.2. Assume that the potential q(x) is locally integrable, and that 
q(z2)ELP(R) for some 1_<p<2. Then an essential support of the absolutely con- 
tinuous part of the spectral measure coincides with the whole real axis. Moreover, 
for a.e. E, all solutions u(x, E) of equation (1.2) satisfy u(x, f ) : O ( x  -1/4) and 
u'(x~E):O(xl/4)~ as x-++oc. 

Remarks. 1. In particular, the assumption of Theorem 1.2 is satisfied if t q ( x ) I  < - 

c(1+I I) for some 
2. An explicit expression for the leading te rm in an asymptot ic  expansion of 

u(x ,E) ,  as x--++oc, can also be derived under the hypotheses of Theorems 1.1 
and 1.2; see Theorem 1.3 and Section 4. 

Both Theorems 1.1 and 1.2 are direct corollaries of the following more general 
result. 
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T h e o r e m  1.3. Consider a Stark operator Hq on R. Assume that the potential 
q(x) admits a decomposition q=ql +qs, where both ql(x 2) and x-lq~(x 2) belong to 
(L~+LP)(R), l_<p<2 and that there exists ~<1 such that Iqs(x)l<(lx I for suffi- 
ciently large Ix I. Then for almost every energy E there exists a solution u+(x, E) 
of equation (1.2) with the asymptotic behavior 

(1.3) u+ (x, E)  = 
eir 

(X -- q2 (X) 4- E)  1/4 
1+o(1)), as x--+ +oo, 

where 

r E)  = f o ~ ( V / t ' q s ( t ) +  E -  ql(t) ~dt.  
2 V/x-q2(t  ) + E ] 

Remark. A sufficient condition on the derivative is that  Iq'(x)l<_C(1 +[xl) ~ for 
some c~< �88 A surprising aspect of this theorem is that the perturbation q2 is allowed 
virtually as much growth as the constant electric field potential, and more flexibility 
on the derivative. 

Theorem 1.2 follows immediately; Theorem 1.1 requires a simple argument 
showing that any C a potential with a >  1 can be represented as in Theorem 1.3. 
We sketch this argument in Section 4. 

We recall that  in the case of a Schr6dinger operator without constant electric 
field, the absolutely continuous spectrum is preserved for potentials with power 
decay rate a >  �89 [6], [29] and [12]. There exist potentials V satisfying IV(z)xl/Sl<C 
for which the absolutely continuous spectrum is destroyed [20], [21], so that a =  �89 
is a sharp threshold. It is natural that in the presence of a constant electrical 
field, the absolutely continuous spectrum is preserved under more slowly decaying 
perturbations of the potential. 

The next result shows optimality of Theorems 1.1 and 1.2. Fix fEC~(O,  1), 
not identically zero, and let a,~(a~) be independent random variables with uniform 

distribution in [0,2~r]. Set, 5 = ( 3 )  2/3. Let us define 

(1.4) q(x)=c~n--~/~f(x/ '~-n)sin(4xS/2+aT~(~s)  ) . 
n = l  

(There is nothing magic in the choice of c: however, this choice will simplify com- 
putations later.) We have the following result. 

T h e o r e m  1.4. Let q(x) be a random potential given by (1.4). Then for a.e. a~, 
the spectrum of the cow'responding perturbed Stark operator is purely singular on the 
whole real line. 
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In particular, any realization of q defined by (1.4) satisfies Iq(x)l <_Cx -1/4 and 
belongs to CU2(R),  so Theorem 1.4 assures sharpness of Theorems 1.1 and 1.2 in 
HSlder spaces and in the power scale, respectively. 

On a more detailed level, we may want to distinguish between perturbations for 
which the absolutely continuous spectrum is preserved, but imbedded singular spec- 
t rum may appear, and perturbations which preserve purely absolutely continuous 
spectrum. Our final results provide two criteria ensuring pure absolute continuity 
of the spectrum. Recall that  a function g(x) defined on the real line is called smooth 
in Zygmund's sense if 

fo I de s u p  < 
xER 

T h e o r e m  1.5. Assume that the potential q(x) is bounded, has bounded con- 
tinuous first derivative and is smooth in Zygmund's sense. Then the Stark operator 
(1.1) has purely absolutely continuous spectrum on the whole real axis. 

We can also allow the potential to grow at a rate arbitrarily close to that  of 
the constant electric field, and still have purely absolutely continuous spectrum, 
provided that we impose a slightly different condition on smoothness. 

T h e o r e m  1.6. Assume that the potential q(x) satisfies the condition q(x)= 
O(xC~), as Ixl-+oo, for some ~<1 ,  is differentiable, and that its derivative q'(x) is 
Dini continuous: 

f01 Iq ( x + c ) - q  (x -~) l  - -  < :x:. 
s u p  t t de  

xER g 

Then the spectrum of the perturbed Stark operator (1.1) is purely absolutely contin- 
uous on the whole ~al axis. 

Remark. The classes of potentials that  are smooth in Zygmund's sense or have 
Dini continuous derivative were first considered in this context by Sahbani in [32] 
and [33]. Using the conjugate operator approach, he proved that  under conditions 
similar to Theorem 1.5 or Theorem 1.6 (but with stronger growth restrictions) the 
spectrum is absolutely continuous with perhaps some imbedded eigenvalues. His 
results extend (in a slightly weaker form) to the higher dimensional setting. 

We will later discuss examples demonstrating that the criteria given by Theo- 
rems 1.5 and 1.6 are fairly sharp. 

We employ two different approaches to prove the stated results. First. to 
prove Theorems 1.4, 1.5, and 1.6, we apply a Liouville transformation to reduce the 
Stark operator to a form reminiscent of the SchrSdinger operator without electric 
field, but with the energy entering in a non-standard way. We then use a Priifer 
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transformation to analyze the asymptot ic  behavior of solutions. In the proofs of 

the other results, it is more convenient to represent (1.2) as a first-order system and 
to employ estimates for the solution series. Some of the tools for these estimates 
come from our recent work [6], [7], [8] and [9]. As s o o n  a s  we have control over the 

asymptot ic  behavior of solutions, we can apply the whole axis version of subordinacy 
theory due to Gilbert [15], or the approximate eigenvectors criterion of [10], to draw 

spectral conclusions. 
After this paper  had been submitted.  Killip [17] proved that  if q(x ~) E L2(R),  

the absolutely continuous spectrum fills the whole real axis. His method, related 
to that  of [12], is quite different from ours and yields less specific information 

concerning the generalized eigenfunctions. 

2. Preservation of  purely absolutely continuous spectrum 

We begin by proving Theorems 1.5 and 1.6 as a warm-up. All the proofs of 
spectral properties in this paper  rely on the s tudy of solutions of the equation (1.2), 
-u"-xu+q(x)u=Eu.  The link between the behavior of solutions and spectral 
results is provided by Gilber t -Pearson subordinacy theory, more particularly, by 
the whole-line version of this theory due to Gilbert [15]. Recall that  a real solution 
ul(x,E) of (1.2) is called subordinate o~ the rzght if for any other real linearly 

independent solution u2(x. E) we have 

lira f~ Iu~(x'E)12dx =0 .  

�9 \ = ~  f o  ~ l u 2 ( . r . E ) 1 2 d x  

Subordinacy on the left is defined similarly. Note that  it is easy to see that  for 
equation (1.2), under the assumptions of an)' of our theorems, there is always a 
solution subordinate (in fact, L 2) on the left since the potential goes to +~c there. 
The main result of Gilbert implies that  singular spectrum may only be supported on 
the set of energies where there exists a solution subordinate on both sides. Moreover. 
the set of the energies where there exists a solution subordinate on one side. but 
there is no subordinate solution on tlm other side. is an essential support  of the 
absolutely continuous spectrum, of nmltiplicity one. Therefore. our goal is to prove 
that  for all energies (if we want to show pure absolute continuity), or for a.e. energy 
(if we allow imbedded singular spectrum), there is no solution of (1.2) subordinate 

on the right. 
In the equation (1.2), let us perform a Liouville t ransformation given by (see, 

e.g. [27]) 

// (2.1) ~(x) = x/tdt= }x 3/'2 . o(~) = x(~)~/%(x(~) ) .  
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This transformation introduces an irrelevant singularity at the origin: henceforth 
we always work outside some neighborhood of 0. 

The resulting function 0 satisfies the Schr6dinger equation 

.,, [" 5 q(c~2/3)-E'~ (2.2) )o=o. 

where c= (3) 2/3. Let us introduce a short-hand notation V({, E) for the expression 
in brackets in (2.2). Let us further apply a Priifer transformation to the equation 
for 0, setting for each E, 

r E) = H(~, E) sin 0(~, E). 
(2.3) 

E) = E) cos E). 

The equations for R and 0 are as follows: 

(2.4) (log R(~, E)) '  = �89 E) sin 20(~. E). 

(2.5) 0'(~, E) = 1 -  l v (~ ,  E ) (1 -cos  20(~. ~)).  

Our main goal in the proof of Theorem 1.5 will be to show the convergence of the 
integral 

(2.6) / N ( ~  + -E+q(e~2/3)~sin20(~.E)d~.e~2/3 .,] as ..•" --+ oc, 

for every E. This goal is motivated by the following proposition. 

P r o p o s i t i o n  2.1. Suppose that 

liln sup [q(z)2 = ~ < 1. 
x--~ 3c x 

and for a given E, the integral (2.6) converges for all initial values of 0(0. E). Then 
for this value of E, there zs no subordinate o~ the right solution of the eq~tation (1.2). 

Pro@ If for a given value of E the integral (2.6) converges, it follows from 
(2.4) and (2.5) that  all solutions of the equation (2.2) are bounded and, moreover, 
any solution 0~ (where/3 parametrizes the boundary condition) has the asymptotic 
behavior as ~--++oc, 

~)~(~, E) = C3 sin(~+g3 (~. E))(1 +o(1)). 
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where Ig~(~, E)t < ( < ( 1  < 1 for ~ sufficiently large. Going back to the original equa- 
tion (1.2), we infer that every solution u3(x,E) has the asymptotic behavior as 
X--+ OO, 

u~ (x, E) : ~C~ sin(~x3/2+ f3(x ' E))(1+o(1)). 

where If~(x, E)I <(ix 1/2 for sufficiently large x. For any u3(x, E) we find 

/1 [ lu~(x,E)12dx=C ~ 1 sin2(2x3/2+f3(x,E))dx(l+o(1) ) 
x-~ 

1//1  - 

Consider the integral 

~ N 1 e 4ixa/2/3+2if3(z'E) dx 
(2.8) / z (N)  = x-y) 5 . 

Integrating by parts, with e 2iI3(xE) being differentiated~ we obtain that  I3(N) is 
equal to 

_ o c  N [~c 1 e4it3/2/3 [ 1,~e4iZ3/2/3e2if~(NE) dx4-2i [ f~(x,E)e 2if3(xE) dtdx. 
JN x~J~ Yl . . . .  Jx t - ~  

Since 

Ix t~ 1 e4ip/2/3dt=le4iZ3/2/3(l+o(1)), 

we obtain that  

pI3(X)l _< 2(1:V 1/2 

for N sufficientIy large. Returning to (2.7), it is straightforward to conclude that  
any solution u~(z, E)  satisfies, for sufficiently large N, 

< I N  C~(1-(1)N 1/2 lu3(x, E)I 2 dx < C~(I+(1)N 1/2. 
--J1 

Therefore, all solutions have the same rate of L 2 norm growth, as N--+~x;, and there 
is no subordinate solution. [] 

Now we establish convergence of (2.6) for every energy under the assumptions 
of Theorem 1.5, thus completing the proof of this result. 



Absolutely continuous spectrum of Stark operators 

Proof of Theorem 1.5. Let us write 

0Z(E, E) = E+g3(E, E), 

with/3 parametrizing the initial condition at 0 and 

C (2.9) Ig~(E, E)I _< E2/3 

uniformly in /3. Clearly we can ignore the short-range quadratic decay term and 
consider only 

~1 "N E--q(~ 2/3) e2i(~+g~(~.E)) d~. cg2/3 
Moreover, the integral 

~lN ~l~e2i(~+g~(~'E)) dE = - - (~  "~c e2irl dT]) e2iga(~'E) oN 

N ~c e2ir] 

is clearly convergent due to (2.9). It remains to estimate 

f3 N q(c~ 2/3) e2i(~+go(~,E)) dE eE2/3 

uniformly as N--+ec (we shifted the region of integration for convenience). Fix h, 
�89 and consider the equality 

(e2ih +e -2ih-2) [ N q(cE2/3) e 2i(~+9~(~'E)) d E 
J3 

= 0(11+ [ ( q(c( E + h l 2/3le ( 
J3 \ (E+h) 2/a 

q(c(E_h)2/a)e2ig~(r 2q(42/a)e2igo (r 
-} (E_h)2/3 E2/3 ) d~ 

. fNe2i(~+g~(~,E)) 
= 0(1)+.]3 - ~  (q(c(E+h)z/a)+q(c(E-h)2/3)-2q(c~2/3)) dE. 

Since we assumed that qCC 1, it suffices to control 

(2.1o) fa N -~/31q(c(E2/a+~E-~/ah))+q(e(E2/a+~E-~/ah))-2q(cE=/a)ldE. 
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Set e =  ~e~-l/3h, then uniformly in N. the integral (2.10) is bounded by 

f0 
1 de 

C [q(cl~-2+~)+q(cl~-2-c)-2q(cl~-2)[-~ 

which is finite by assumption. [] 

Remark. Without change, the proof goes through even with the weaker growth 
assumption q(x)=O(z 1/2-e) for some ~>0. 

Proof of Theorem 1.6. The proof of this theorem is very similar to the pre- 
ceding proof. However, it is convenient to employ a slight variation of the Prfifer 
transformation. Namely, we let 

V/1 -V(~ ,  E) 0(~, E) = R sin 0(~, E),  

0'(r  E) = ~ cos ~(~, E). 

This transformation is well-defined for large ~ where V((,  E ) < 1 .  and this suffices 
for our purpose since we are interested in the asymptotic behavior at +oc. The 
equations for/~ and 0 are 

(2.11) (log R)'(~, E ) =  V'(~,E) 
4(1- v(~, E)) 

(2.12) 0'(~, E)  = x / 1 - V ( ~ .  E) 

(1 -cos 2~((. E)), 

V'(~, E) cos 20(~, E). 
4(1 - V(~. E)) 

The role analogous to the integral (2.6) is played by 

(2.13) f : v  V'(r E)  1 - V(~, E)  cos 20(x, E) de; 

the other term on the right-hand side of (2.11) can be integrated explicitly. If the 
integral (2.13) converges for a given energy E. then for this energy there is no 
solution subordinate on the right. This can be shown in a direct analogy to the 
proof of Proposition 2.1; the details are left to the reader. 

Expressing V'/(1-V) in terms of q, we see that it is enough to show the con- 

vergence of f~  q'(~2/3)~-leiO(r as N--+~c. From (2.12) and the assumption 

of the theorem, it follows that. 

~(~, E) = ~+~(~ ,  E), 
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1 and consider where L0~ (~, E) I -< C~- ~ for some 5 > 0. Now fix h, 0 < h < ~ 7r, 

fa N q' (c~2/3)~e iO(~'E) d~ 

= O ( 1 ) + f N  e i((ei0~(~+h) q'(e(~+h+h)2/3) eiO~(~ h)q'(e(~-h) ) d~ 
N 

= O ( 1 ) + f a  ei~+~0~(~) 1 ~(q' (c(~ + h ) 2/a) -q' (c(~-h )2/3) ) d~ 

<_C(l+~U ~lq'(c(~+h)2/3)-q'(c(~-h)2/a)id~). 
Setting 

2 
and making a change of variable in the last integral, we find that  for a sufficiently 
large a, the controlling integral (2.13) is bounded by 

C(l+ fol[q'(f(c)+e)-qt(f(e)-s)[ d@: ) 

which is finite by the assumption of Dini continuity (here f(c)=�89 
[] 

We remark that  the results of Theorems 1.5 and 1.6 are rather sharp. For 
example, let E=0 ,  then (1.2) reduces to 

Let us denote by wn(~) the classical Wigner-von Neumann potential [26], [28]. 
Choose q so that  the expression in the brackets coincides with wn(~) for ~_> 1. It is 
not difficult to show that  we can take q=0 on ( -oc ,  0) and q smooth and bounded 
on (0, 1) so that  the whole equation (1.2) has an eigenvalue at E=0 .  (The issue 
is gluing together the L ~ solution on - o c  and the L 2 solution produced by the 
Wigner-von Neumann potential on oc. It can always be achieved by choosing q 
appropriately on (0, 1): see, e.g. [36] for a similar argmnent.) Notice that  in this 
ca se  
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The Wigner-von Neumann potential has asymptotic behavior [28] 

wn(x)-- 8 s i n 2 ~ + O ( ~ )  ' x  

with the O(x -2) term also smooth with derivatives decaying at the same rate. We 
see that  

C1 q(x) = ~ s i n  C2x 3/2 q-q1 (x), 

where q: (x) is bet ter  behaved in all respects. This function q(x) narrowly misses the 
class of functions smooth in Zygmund's sense. Indeed, [q(x+:)+q(x-:)-2q(x)[= 
:q2(x, :), where q2 is uniformly bounded. Also. q has a bounded, continuous deriv- 
ative, which however fails to be Dini continuous. 

3. M a i n  t h e o r e m  

Here we prove Theorem 1.3. As before, we are going to s tudy the asymptotic 
behavior of the solutions to equation (1.2), 

- ~ " -  x~,(x)+q(x),(x) = E,,(x), 

as x--+cxD. The L: part  of the perturbation can be treated by standard means (such 
as, for example, Levinson's theorem), so we will assume that ql(X2)ELP(O, :i~c) and 
x-lq~(x2)ELP(O, oc). Write (1.2) as a system 

(3.1) 1 tt 

We are going to perform a series of transformations with this system, similarly to [7] 
and [9]. Applying first a variation of parameters-type transformation 

(3.2) 

we arrive at 

where 

(3.3) 

( u ) = ( e i~(x,E) e -/~'(~,E) ) 

u' \i~,(x,E)e~V(x.E ) _ i~ , (x ,E)e_~(xz  ) z 

z ' = (  -iE -ige -2~' ) 
ige 2i~ iE z, 

r(x, E) - 
2V'(x,E) (-i~"(x,  E)+~,'(x. E) 2 - x + q ( x ) - z ) .  
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( e - i  fo~ E(t'E) dt 0 ) 

(3.4) z = 0 e i fg g(t.E) at Y 

leads to 

(3.5) y,= ( 0 
ige 2ir fo Re s dt 

We are going to choose 

so that 

(3.6) 

- - i{e  - 2iv+i fo Re E(t.E) dt .~ 

0 ) Y" 

~ ' (x ,  E)  = V / x - q 2 ( x ) + E ,  

$(x,  E) = ql(x)  1-q~(x)  
2 V / x - q 2 ( x ) +  E - i  2 ( x - q 2 ( x ) +  E)" 

Let Q ( x ) = ( x - l q l ( x ) 2  + x-2q~(x)2 + x - 2 ) U  2, and 

(3.7) a(x, E)  - ig(x ,  E)  
Q(x) 

Let us introduce the multilinear operators 

Sn( f l ,  ... , f ~ ) ( x , E )  

/57 f (3.8) . . . .  

tn-- ). 

and 

13 

n 
I - [  [ e2 ' i ( -  1)n-)  (4,(t a ,E)__fgj Re s  E ) f j ( t j )  dtj] 

j = l  

S,~(f~, ..., f . ) (~ ,  E) 

�9 - - ' " ~ j w j , E ) f j ( t j ) d t  i , (3.9) . . . .  e2,(1)  ~ ~(v(t~,E)-fo ~ Ree(t,E) at),~ (t2 

1 -1 j = l  

where aj is equal to a for n - j  even and ~ for n - j  odd. Set f ( t ) = 2 f ( t 2 ) t .  Notice 
that  making the change of variable tj -%- 2 in (3.8) leads to 

(3.10) Sn( f l ,  ... , fn ) (x ,  E)  = S(f-1, ... , L )(x 1/2, E).  
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Notice that  by assumption, 

1 .~1/2 
(~(X)- 2(ql(X2)2-F~q12(X2)2+-~) 

belongs to LP(R) with p<2. Iterating system (3.5) starting from the vector (1, 0) 
and using (3.10), we obtain the formal series expansion for one of the solutions 

E =0 2n(Q,..., Q)(x, E) 
y+(x,E)= :~ S -~,~=1 2,~-I(Q,...,Q)(x,E) 

(3.11) _ ( ~,~C=o~2n(~,...,~)(xi/2 E) ) 

- -  - -  EnaC__l S 2 n _ l ( ~ ) ,  . . .  ( ~ ) ( X  1 /2 .  E) 

(we stipulate So(Q)((,E)=So(Q)((,E)=I in the above formula). Introduce the 
operator 

(3.12) 

where 

fO ~s Sf(E)  = S(t, E)f(t) dt. 

P r o p o s i t i o n  3.1. Fix a compact interval J c R .  Assume that the operator 
maps LP(R) boundedly to Lr(J), for some p < 2 < r .  Then for any (~cLP(R), the 
series (3.11) converges for a.e. EEJ.  Moreover, for a.e. EEJ,  the solution y+(x, E) 
of the system (3.5) given by (3.11) has the asymptotic behavior 

(3.13) 

Pro@ The proof is based on results of [7], [8] and [91. Introduce a multilinear 
operator Mn, acting on n functions gk(x, E), by 

<xl <...~xn <_x' k = l  

In the special case when there is a single function g such that each gk is either g 
or 9, we write simply Mn(g)(x,x', E). In particular, the multilinear transforms S 

�9 2 t 2 S(t, E) = a(t 2, E)e 2~(u'(t 'E)-fo ReE(t.E)dr) 
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in the series (3.11) have a structure identical to 5Ln, with g(x, E ) = S ( x ,  E)Q(x). 
Define 

]~/~*(gl,...,gn)(E): sup [M,~(gl,...,gn)(x,x',E)[, 
x < x ' E R  

M~(g)(E)= sup IM~(g)(x,x',E)I, 
x<_x'ER 

a ( g , E ) =  z m g(x,E) . 
r=0 m=l j= J'~ 

In Proposition 4.2 and in the proof of Theorem 1.3 of [8] it is shown that  

(3.14) Mn(gl, ..., gn)(E) <_ C n I I  G(gk, E), 
k=l  

. < c n a ( g ,  E)  n (3.15) ~t;~(g)(E) _ 

for some universal constant C < e c .  If the operator S satisfies the required LP(R) - 

L~(J) bound, then it is not hard to see that  

(3.16) IIG(S(Q), E)IIL"<J) ~ ClIQIIL~(R) 

(see Proposition 3.3 of [7]). The estimates (3.14), (3.15) and (3.16) allow to show 
a.e. E convergence of the series (3.11), and to prove Proposition 3.1. For details we 

refer to [7], Section 4, where a similar argument is given. [] 

Remark. An alternative route to the same result is to consider an energy de- 
pendent potential  g(x, E), rather  than  to introduce a(x, E). The paper  [9] follows 
this approach. 

I t  remains to show that  the operator S satisfies a n  LP(R)-Lr(J) bound for any 
compact J and any 1 < p < 2 ,  r=p/(p-1),  provided that  the potential q satisfies the 
assumptions of Theorem 1.2. Such a result would follow by complex interpolation if 
we establish the L 1 (R)-L ~ (J)  and L 2 (R)-LU(J) bounds. The first bound is evident 

since a(x 2, E) is bounded and the oscillatory exponential 

e 2i(~p(x,E)-fo Re E(t,E) dt) 

is bounded too. Next we establish the key L2-L 2 bound for the operator S. 
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P r o p o s i t i o n  3.2. Let J c R  be a compact interval. Assume that 

(3.17) IO~a(x, E)I <_ C 

for/3=0, 1, 2 and every EEJ, and that the potential q satisfies the assumptions of 
Theorem 1.3. Then for any fEL2(R)  we have 

IlSfl[g~(J) -< CllfllL~(m 

for the operator S defined by (3.12). 

Proof. Notice that  

where rl(E) is a positive C~:(R) function satisfying zj(E)21 for EEJ. We can 
rewrite the kernel in the brackets in the above formula by making the change of 
variable t=s 2, 

(3.18) K(x, y) = fg q(E)a(x 2, E)a(y 2, E)e 4i f[(s~"(E,2)--s Re E(s2,E)) ds dE. 

Let us write for simplicity 

~(s, E) = (V'(sL E ) - R e  E(s 2, E))s .  

Since 
aE ( s 4 s 2 _ q 2 ( s 2 )  + E  ) _ s = 1+o(1) 

2x/s2-q2(s2)+E 

for large s, a direct computation using the assumption on q shows that there exists 
N such that  for any x, y > 0  such that  Ix-yi >_N, we have uniformly in EEJ, 

./Y OEa(S, E) ds > C1 tx-yt, 
(3.19) 

0 ~(s,E)ds <_C21x-yl, 3 = 2 , 3  

with positive constants C1 and C2. Integrate by parts two times in (3.18), with 

e4i ~x y a(s,E) ds ~Y  OEgr(S, ]E) ds 
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being integrated. Using (3.19) and (3.17) we obtain 

C 
IK(x,y)l ~_ for all x and y, 

1+Ix-y{ l 

which implies the desired L2-L 2 bound. [] 

The fact that  a(x, E) satisfies (3.17) can be checked directly from the definitions 
(3.3) and (3.7). 

Now we complete the proof of Theorem 1.2. 

Proof of Theorem 1.2. Proposition 3.2 ensures that Proposition 3.1 applies 
under the conditions of the theorem. Notice that 

ei~(x,E)_i fo g(t,E)d t = 1 ei fOX(~_ql( t ) /2v/ t_q2( t )+E)dt  
( x_q2WE) l /4  

Applying transformations (3.4), (3.2) and (2.1) to the solution y+(~, E) and using 
(3.13), we obtain for a.e. EEJ a solution u+(x, E) of the equation (1.2) with the 
asymptotic behavior 

1 e i f o ( ~ / t _ q 2 ( t ) + E _ q l ( t ) / 2 ~ ) d t ( l + o ( 1 ) )  ' 
U+(X, F,) = ( x _ q 2 + E ) l / 4  

coinciding with (1.3), and 

u+(x, E) = i e i ] o x ( ~ _ q l ( t ) / 2 ~ )  dt(l+o(1))" 
(x-q~+E)l/4 

There also exists a solution u_ (x, E)  which is just the complex conjugate of u+. In 
particular, for a.e. E,  any solution u(x, E) of (1.2) satisfies 

C 
(3.20) lu(x, E)[ _< ~ and lu'(x, E)I <_ Cx 1/4. 

By the results of [10], to show that  the essential support of the absolutely continuous 
part of the spectral measure fills all of the real line. it suffices to show that for a.e. E 
there exists a sequence ~n(X, E) such that  

(3.21) lim sup I~n(0, E ) I+  I~);,(0, E)I > 0. 
n-~ec [[~?n N II(Hq-E)wnl[ 

We can obtain an appropriate sequence ~ , ( E )  by taking a smooth cutoff rune- 
1 and 7)(x)=0 if x > l ,  and letting tion r/(x) satisfying 0_<~(x)_<l, r j (x )= l  if x <  5 
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~(x,E)=ft(x ,E)rl(2-~x) ,  where ~ is the solution of (1.2) which is L 2 at - co .  
Then 1~  (0, E) I+I~'(0, E)  l >c (E)  >0 since 7; is nonzero. Moreover, using (3.20) 
gives II~nll~2~/4 and II(gq-E)~nll~2-'*/4, so that 

IIr [[(Hq-E)*,II <_ C(E). 

Therefore, (3.21) is satisfied at a . e .E .  

An alternative (but more technical) way to finish the proof is to apply subordi- 
nacy theory using more detailed information on the asymptotic behavior, similarly 
to Proposition 2.1. [] 

4. P o t e n t i a l s  in C 1/2+E 

In this section we are going to prove a result from which Theorem 1.1 will 
follow. Define 

Daf(x)  = sup If(x)-f(Y)l~ 0 < ~_< 1. 
y:lx-yl<l Ix-Y[ a 

T h e o r e m  4.1. Assume that the potential q(x) satisfies ]q(x)l<_~lx] with ~<1 
for all sufficiently large Ixl, and x-~ D ~q( x2) E LP(1, ~c ) for some p<2 and 1_>o.>0. 
Then an essential support of the absolutely continuous part of the spectral measure 
coincides with the whole real axis. 

1 then / 9 ~ q C L ~ ( R )  and the Remark. In particular, if qEC~(R)  with a > ~ ,  
assumption of Theorem 4.1 is satisfied. 

Proof. We will show that  if q satisfies the conditions of the theorem, then it 
can be represented as a sum q=ql+q2 with ql(X2)ELV(R) and x-lq~(x2)ELP(R), 
lq2(x)l<_(lx with (1 <1 for large x. Then the result follows from Theorem 1.3. Fix 
a function r / (x)EC~(0,  1) such that fR q ( x ) d x = l .  Set 

q2(x) = xl/2 /R rI(xl/2(X--y))q(Y) dy~ 

q l ( x ) = x  1/2 f rl(xl/2(x-y))(q(x)-q(y))dy. 
JR 

Then 

Iql (x)l <_ x (1-~)/2 In  ~(xl /2(x-  y) )D~q(x) dy = ~ D~q(x). 



Absolutely continuous spectrum of Stark operators 19 

Therefore, by assumption, ql(x 2) cLP(R) .  The property lq2(x)l <~lx with ~l < 1 for 
all large x is clear from the definition. Also 

(4.1) 

q;(x)-- 1 2xl/2 s rl(xl/2(x-y))q(y)dyTx /R r]'(xl/2(x-Y))(q(Y)-q(x))dY 

+ -~ r/(xl/2(X--y))(x--y)q(y) dy. 

Due to the bound tq(x)l <_ (x, the first term on the right-hand side of (4.1) is 
bounded, and so harmless. In the third term, Ix-yl <_x -1/2 where the integrand is 
nonzero, hence it is also bounded (using x 1/~ fR I~'(xl/2(x-y)l dy<_C). Finally, in 
the second term we estimate 

Iq(x)-q(y)l ~_ ~ D ~q(x) 

where r~ is nonzero, and so this term is bounded by Cx(1-~)/2D~q(x). Hence, in 
all, x-lq~(x2)ELP(R). [] 

5. A counterexample  

Our main goal in this section is to prove Theorem 1.4, showing that the results 
of Theorems 1.1 and 1.2 are sharp. Namely, we will prove that  there exist potentials 
which both belong to C1/2(R), and dec&v at the rate x -1/4, yet which lead to 
singular spectrum on the whole real axis. Hence one example will show optimality 
of both theorems. Apart from establishing optimality, the example we are going to 
construct is interesting in its own right, suggesting the mechanism to get singular 
spectrum in a background constant electric field "at the lowest cost", and giving 
potentials with interesting dynamical properties. Our potentials will be random, 
and the construction is inspired by [20], although there are some notable differences. 
In [20], random perturbations of the free operator of the form 

(5.1) V(x) = ~ an(cJ) f (x-n)  
/ /a  

n = l  

were considered (here f and a~ can be taken as in (1.4)). This model has a transition 
1 (see also [21] of spectral properties from absolutely continuous to singular at c~=~ 

for a similar earlier model). 
By subordinacy theory, it is enough to construct the potential on the positive 

half-axis with the above decay and smoothness properties such that  for a.e. E E R  
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there exists a solution subordinate on the right. We are going to analyze the equa- 
tion (2.2), 

_ r  (3_~2 A q(e~2/3)-c~2/3 E ) 0 = V, 

and its Prfifer variables representation (2.4), (2.5), 

(logn(~, E)) '  = ~ + ~ j sin 20(~, E), 

1 ( 5 q(c~2/3)-E~(I_cos20(r 

Let us denote by /~ the boundary condition for 0 at the origin. Let an(w) be 
independent random variables with uniform distribution in [0, 27r]. Fix a function 
fEC~(O, 1), f not identically zero. Consider a family of random potentials q(x) 
chosen so that  

q(c~2/3)_ 1 ~ ,  1 
(5.2) f (~l/3-n) sin(2~ +a,(w) ) C~2/3 ~2/~ ~ ~ 

Notice that in the coordinate x, according to the Liouville transformation, our 
potential q(x) looks exactly like (1.4), 

~X2 

q(z) =c E n ~  f ( vr~ -n)  sin( ~x3/2 +an(w) ) �9 
n = l  

In particular, any such q satisfies Iq(x) l< Cx -1/4 and belongs to C1/2(R). We begin 
the proof of Theorem 1.4 with a series of auxiliary statements. The key, as before, 
will be the analysis of the asymptotic behavior of solutions. First, we are going 
to show that  in order to apply subordinacy theory, it is sufficient to study the 
asymptotic behavior of R(~, E). 

L e m m a  5.1. For any q(x) satisfying ]q(x)[ <Cx, any energy E and any bound- 
ary condition [3, we have 

L L / L  
/ r  R2(~,E, 3)d~<Cq(E) 02(~,E,/3)d~. 

Proof. Notice that  the condition on q ensures that  q(c~2/3)~ -2/3 is bounded. 
By the definition of R, it is enough to show that the L 2 norm of the derivative of 0 
on [1, L] is controlled by some constant Cq(E) times the L 2 norm of r The proof of 
the latter fact is a simple elliptic regularity type argument, and is well known. We 
refer, for example, to [22], the proof of Theorem 2.1C, for a proof of a completely 
parallel result. [] 
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(5.3) 

where 

T h e o r e m  5.2. Consider the Priifer variables equations (2.4) and (2.5), with 
potential q defined by (5.2). Then for any E E R  and any boundary condition .~ we 
have for a.e. w, 

lim log R(~, E, 3) _ A(E), 
~ log 

37r ^ / 3 E \  2 
(5.4) A(E)--- ~-  f ~ - c )  

(here f denotes the Fourier transform f~texp(i~x)f(x) dx of f) .  

Remark. Notice that the "Lyapunov exponent" A(E) is positive everywhere 
except for perhaps a discrete set of points since the Fourier transform of f is analytic. 

We begin with a sequence of auxiliary lemmas. Consider the unique solution 
of (2.5) satisfying some fixed boundary condition 9- First, notice that the integral 

36~2 C"~3 sin20((,E) d~ 

stays bounded, as N--+oc, for any w, by the argument in the proof of Theorem 1.5, 
and so in the equation (2.4) for R(~, E) it is enough to consider the integral 

1 j(N q(c~2/3) 
(5.5) ~ c ~ 2 / ~  sin 20(~, E) d~. 

First we are going to analyze R(~, E) along a sequence ~=n  a, as suggested by the 
form of the potential (5.2), since the parts with independent phases are supported 
on [n 3, (n+l)3]. Notice that 

.~r q(c~2/3) sin 20(~, E) d~ 
c~2/3 

(5.6) n~/2 ~ )  ~ d~ 
C 

= f(~l /3_n)  sin(2~+a, (~')) sin 20(~, E) ~_ nl/~ Z 
3 

for ~E[n 3, (n§ Therefore, if we control R(n 3, E), we will have sufficient control 
for all ~, in particular 

(5.7) lim R(x ,E)  _ 1 lira R(n3' E) 
x-~, logx 3 ~ logn 

Denote by 0~ the value of 0 at the beginning of the nth interval, On-~O(n 3, E)= 
O(n ~, E,/~, ~). 

Define 

(5.8) F(~, E) = -~ 3 ~ d~l = E(~ 1/3 - n). 
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L e m m a  5.3. We can represent 0(~, E) on [n 3, (n+ l )  3] in the form 

0(~, E) = On +[ + F( ~, E)+O(~, E) 

1 
(5.9) + 2~i~ L~3 -~5 f (o1/3-n) sin( 2q+a,(o.,) ) cos(211+ 2F(q, E)+ 2On) drl, 

where 
c(E) 

IO(~, E)I <_ - -  

Proof. Let us analyze the terms arising in the equation (2.5) for the angle 0. 
The proof reduces to showing that 

1 r 

+ q(e~)2/3~) (cos 20(77 E) -cos(2r/+2f(r/ .  E) +20n))) d0 c02/3 

satisfies the required estimate. The first term satisfies 

(5.10) + cos 20(q. E) < ~ 
3 

by an integration by parts argument identical to that in the proof of Theorem 1.5. 
The second term satisfies 

5 
c~ 2/3 J @ < - ~ ,  

also by a simple integration by parts estimate for the second summand. For the 
last term, we have 

fn ~ q(c02/3) (cos 20(0. E) -cos(20+ 2F(0. E)+20,  )) do 
a c@/3 �9 

~ sin(20+a, (a:))sin(0(q. E)+q+F(q. E)+O,,) 
f(@/3--n) 

(5.11) =2  3 n l /202/3  

• sin(0(o, E ) - o - F ( ~ ,  E) -0,~) @. 

Now, we have by (2.5), 

IO(o,E)-o-F(o,E)-O~I 

1L~l[(q(et2/3 ) 5 )(1--COS20( ' :E))  E cos20(t;E)J dt 
C 

- nl/2 
for 0E[n 3, (n+ l )  3] by the decay of q and the estimate (5.10). Putting this into 
(5.11), we bound the last term in the expression for O(~, E) by Cn -~. [] 
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Next we need Lemma 8.4 from [20], concerning series of random variables. We 
will denote by Exp(X) the expectation of the random variable X. Assume that 
Xj (co) are independent random variables with zero mean Exp(Xj)=0,  and let 

(5.12) Z,~ = X~f~(X~,. . . ,  Xn_l) , 

where f~ are some measurable functions. We have the following result. 

L e m m a  5.4. ([20]) Suppose that Exp(Z2)<_Cn - ~ .  Then for a.e. co. 
(1) if a<�89 and /3>�89 then 

" z j  lim E 1 
n-+~c j = l  ~ : 0; 

(2) if~-~-~ and 9>�89 then 

D 
�9 1 ,!ira ~ Z~ (log;~)~ =0; 

j = l  

1 (3) i f ~ > 5 ,  

exists, and for any/3<c~-�89 

Consider 

log R((n+ 1)3' E) 

Zj = O. 

R(n3, E) = In(E,  CO) 

(5.13) 1 [ ('+1)3 f (~ i / u -n )  - 2~ /2  j ~  ~2/3 sin(2~+a,~(co)) sin 20(~, E) d~. 

We have the following lemma. 
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L e m m a  5.5. The expression I,~(E,w) may be represented as 

(5.14) I ~ ( E . w ) =  97r ] ( ~ 2 )  2 Z(I)4-Z (2) 
' 8~  -I- n -- n " 

where [ZO)(w)[<Cn -a/2, {Z(2)(a,,)}~==l is a sequence of random variables of type 
(5.12), and (Z(2)) 2 has expectation <Cn -1. 

Proof. The first observation is that we can replace 20(~, E) in (5.13) by 

2~+2F(~. E)+On + / ~  q(cr]2/3) cos(2r/+2F(r/. E)+20,~) dTl. 
J J n 3 C~] 2/3 �9 

By Lamina 5.3, the value in (5.13) will change by at most Cn -3/2, and we can put 
this difference into Z (1). Also by an estimate similar to (5.6), 

s i n ( 2 ~ + 2 F ( ~ , E ) A - 2 O n + / i ~ 3  q(crl2/3-------~) 

f r  cos(2r/+2FQ/, E) +20n) d*l 
q( c~] 2/3) 

(5.15) =cos(2~+2F(~,E)+2On) z c~12/3 

+sin(2~ + 2F(~,E)+ 20,~)+O(1), 

and so it suffices to consider the contributions from the first two terms on the right- 
hand side, putting the O(n -1) terms (multiplied by n -1/2) into Z(~ 1). We will write 
Z(s 2) as a sum of four parts, each satisfying the conclusion of the lamina. The first 
of these four is 

i f(n+i)z 1 
2hi/2 gn 3 ~ 3 f(~l/3-n) sin(2~+an(w))sin(2~+2F(~'E)+2On)d~" 

Clearly its mean is zero, and the expectation of its square is O(n-2).  It remains to 
discuss the contribution arising from the first term on the right-hand side in (5.15), 

f (n+l)3 1 3  f ( ~ l / 3 _ n )  s in (2~+an(w) )  cos (2~+2F(~ .  E ) + 2 0 , , )  
1 
2n j ,~ 

• [ '  f < / 3 _   /sin(2,j+ao + 2F( , E/+ 20o)d. de 

1 / r(n-t-i)3 1 ,~2 
(5.16) = --4n \Jn3[[ -~3~ / f(~a/3 -n)  sin(2~ +a,~ (w)) cos(2~+ 2F(~.. E)+20~ ) ) .  
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Write the product of trigonometric functions as 

1 sin(4{+2F(~. E)+2On+an(co)) sin(2~+a,~(co)) cos(2{+2F({, E) +20,~) = 

+71 sin(2F(~. E) +20,~ - a,~ (co)). 

The first term, by integration by parts, gives a contribution of the order n -3. 
Introducing the notation 

n+l)a 1 
/sin = an a ~2/3 f ( ~ l / a _ n )  sin(2F(~, E)+20,~) d~, 

icon= [ ('~+1)3 1 j n  a ~2/3 f(~1/3 --r~) cos(2F(~, E) q-20,,) d~ 

we obtain that,  modulo small corrections that can be put into Z(~ t), the right-hand 
side of (5.16) is equal to 

(5.17) ~(([szin)2 C082 sin 2 , sin co~ an (CO ) + ( lC~ ) 2 a,,(co)+I. I .  sin2a~(a~)). 

The contribution of the last term in the brackets is one of the random variables of 
type (5.12) constituting Z (2). Subtracting from the first two terms their expecta- 

tions, we get the other two constituents of Z},2 ) . Finally, note that  Exp(cos 2 a,~(co))= 

Exp(sin z a,~(c~))=Tr, and so after subtracting Z},2 ) from (5.17) and taking expecta- 
tions we deduce that  the right-hand side of (5.16), modulo the sum of the various 
terms Zn, equals 

7r [ (**+1)~ d~ 2. rr ((Isin)2+(IC~ = ~ a.3 1 8n ~21a f ( ~l la _ l~ ) e 2 i F ( ~ , E )  

Recalling that  F(~, E )=3E(~  1/3 -n)/2c, and making the change of variable t=~ 1/3, 
we obtain 

f(aE  2 
\ T ) '  

proving the lemma. [] 

Proof of Theorem 5.2. The proof follows directly from combining the results 
of Lemma 5.5, Lemma 5.4, and the relation (5.7), choosing 3<1 in conclusion (2) 
of Lemma 5.4. [] 

The final step in our construction is showing that for a.e. w and a.e. E there 
exists a subordinate solution. 
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P r o p o s i t i o n  5.6. Define the potential q by (5.2). Consider any energy E such 
that ] (3E/c)r  Then for a.e. a~' there exists a boundary condition 3(a,')=3(~.',E) 
such that 

(5.18) lim log R(~, E. 3(~')) = -A(E). 
~-*~ log~ 

where A(E) =(37r/8) lf(3E/e)l 2. 

Proof. By Lemma 8.7 of [20] (which is formulated there in a discrete setting 
but extends trivially to our situation), it is sufficient to show that for a.e. a:, 

0(~, E) = log 

has a limit poe(E), as ~-+~c, and that  

R(~. E, 0) 
R(~. E. 1 5~) 

(5.19) limsup log I0(~, E)-O~(E) I  <_ -2A(E). 
log 

Notice that  by constancy of the Wronskian. 

R(~, E, O)R(~, E, 15") sin(0(~. E. O)--0(~. E. �89 = constant. 

Therefore, by Theorem 5.2 for a.e. ~'. 

(5.2o) lira logl0( . E, E. �89 =-2A(E). 
~ c  log~ 

On the other hand, by Lemma 5.3. 

.+1 1 f (n+1)3 1 
c~ 1)3, E) = Z n~ ~ t ~2/3f(~U3-n)sin(2~+a,(~'))  

j=1 j . 3  

x (sin(2~+2F(~. E)+20. (~. E.0)) 

, -  -s in(2~+2F(~.  E)+20,, (~. E. ~,,))) d~+O 

Expanding sin(2~+a,(a:)) into a sum of products, and using (5.20), we can apply 
Lemma 5.4 to prove convergence to 9~ and estimate the rate of convergence ob- 
taining (5.19). The estimate (5.6) as before allows us to pass fi'om estimates over 
the sequence n a to estimates over all ~. [] 
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Our main Theorem 1.4 follows immediately from Proposition 5.6. Theorem 5.2 
and Lemma 5.1. 

Proof of Theorem 1.4. Going back to the x variable representation, we find 
that  for a.e. w and for a . e . E ,  there exist both a decaying solution u~(x, E)  and 
a growing solution ug(x, E), and the asymptotic behavior of their L 2 norms taken 
over [0, L] is given by 

(5.21) log~o L 

(5.22) log fo L 

lud(x, E) I 2 dx = max{0, �89 - 3 A ( E )  } log L( l+o(1) ) .  

lug(z, E) I ~ dx : (�89 +3A(K)) log L(l+o(1)).  

Hence, given a generic w, there is a solution subordinate on the right for a . e .E .  [] 

We would like to conclude by making several remarks about some curious 
properties of the random potential (1.4). First of all. the structure of the potential 
(1.4) indicates that  to get singular or point spectrum "at minimal cost" in terms 
of decay or smoothness of a random potential, it is important to have correlations 
over large (increasing) distances. In particular, in our example correlation distance 
grows as a square root of the distance from the origin. This contrasts with the free 
SchrSdinger operator case [21], [20], ,,'here long distance correlation would have 
been ineffectual. Another characteristic feature is the presence of increasingly fast 
oscillations at infinity. 

The half-line Stark operator with potential (1.4) exhibits a number of inter- 
esting spectral and dynamical properties which are similar to the properties of 
potentials with the borderline decay rate in a model of [20] in the free case. In- 
troduce X for the coordinate operator acting by Xf(x)=lx]f(x  ). Denote also the 
inner product of two vectors by (Wl, >'2). Given an initial state zS,, w(t) stands for 
its unitary evolution e-iHqt~. One reasonable measure of propagation properties is 
the averaged moments of the coordinate operator 

1[ 
( ( x ' ~ ( t ) ,  c,(t)))~ = ~ (c(t) ,  x ' "  ~.(t)) dr. 

Scaling 

{{X" C.(t). u(t)) )7 .~ C T "  

corresponds to the constant velocity ballistic rate. while tim behavior 

((x"~e(t) ,  ~( t ) )b-  -~ CT ~" 



28 Michael Christ and Alexander Kiselev 

corresponds to the superballistic constant acceleration rate. as for the free Stark 
operator. We will denote by Pc the spectral projector on the continuous part  of 
the spectrum of the operator Hq. Also, given a Borel measure it, we will say that  
p has local Hausdorff dimension d(E) at the point E, if for every e > 0  there exists 
(5>0 such that  the restriction of # to [ E - s  E+d]  gives zero weight to any set of 
Hausdorff dimension d ( E ) - c ,  and is supported on a set of Hausdorff dimension 
d(E)+e. Let us denote by Hq,3 the SchrSdinger operator (1.1) defined on the 
positive half-line with the boundary condition 3u(O)-u'(O)=O. Finally, let #~ be 

the spectral measure associated with Hq,3 in a canonical way, namely 

f dp3(t) 
( (Hq ,~ -z ) - l d0 ,  d0) = / 

t - - z  J 

where 60 is the delta-function distribution at 0 (see, e.g. [35], Sections 1.1 1.6). The 
following proposition holds. 

P r o p o s i t i o n  5.7. Assume that q~(x) is given by (1.4). Then for a.e. /~ and w, 
the spectral measure of Hq,2 is pure point on the set where A ( E ) >  1 -g, and is singular 
continuous with local Hausdorff dimension 

d(E) = 1 - 6 A ( E )  

1 on the set where A ( E ) < g .  Moreover. for a.e. 3 and w, for any W such that 
P~(~,w)~r we have 

( (x rn@( t ) ,  f ' ( t ) ) ) T  > Ce.m,3.~T 2re(l-e) f o r  any ~ > O. 

Proof. The proof of this proposition is analogous to the proof of Theorem 8.10 
of [20] and Theorem 5.1 of [19], where similar properties were established for a 
model (5.1) of [20] with a - ~ -  1 in a discrete setting. Let us sketch the arguments for 
the sake of completeness. First. let 

A =  { E ] A ( E )  > ~}. 

Notice tha t  by (5.4) and the properties of f ,  A is a finite union of disjoint bounded 
intervals. By Proposition 5.6. for a.e. w and for a.e. EEA,  there exists a solution 
uZ(~)(x,E,w)EL2(R).  Also, the set A belongs to the spectrum of Hq,3 for any 
w and /3 since q is decaying. The general theory of rank one perturbat ions then 
implies that  for a.e. w and for a.e. 3. the spectrum on A is dense pure point (see, 
e.g. [30], Theorem 5.1, or [34], [35]). 
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1 and fix c>0.  Consider an interval I~= Now let E be such that  A ( E ) < g ,  
[E-b, E+5] such that  the values of the Hausdorff dimension function d ( E ) = I -  
6A(E) on I5 belong to the interval (d(E)-c, d(E)+e). We can choose (~>0 since 
A(E) is continuous. Let 

I1 11  = -/i L I (x) l 2 dec. 

and recall that  the upper a derivative of the measure # is defined by 

D~#(E) = lim sup 

By the Jitomirskaya-Last extension of the subordinacy theory [16], the spectral 
measure #/? satisfies 

/~ 2--a 

(5.23) D ~ # ~ ( E ) = o o  if and only if l iminf II ~IIL =0 ,  
11 3 -I1,s 

where u~ is a nonzero solution satisfying the boundary condition at zero. and u ~  
is the solution satisfying an orthogonal boundary condition 3-1u(O)+u'(O)=O (in 
fact, any linearly independent solution will do in place of u3~). From the estimates 
(5.21) and (5.22) it follows that for a.e. uJ and a.e. EEI5, there exists a boundary 
condition 3(u:) such that  

(5.24) inf{a ] D~#~(,,)(E) = oc} = d(E). 

Recall two basic facts from the general rank one perturbation theory: first, 

R p.3(S)  d 3  = iTt(S) 

for any Borel measurable set S, where m is the Lebesgue measure. Second. we 
can have D I # ~  ( E ) = D I # ~  (E )=oo  for some 31 ~32 only on a fixed (for a given u:) 
exceptional set of energies of Lebesgue measure zero. The first fact, in the context 
of SchrSdinger operators, is due to Simon and Wolff [37]. The second is a simple 
consequence of an explicit formula relating the Cauchy transforms of #& and #9:- 
See, for example, equation (I.13) of [35] for more details. Using these properties, 
we see that  (5.24) implies that  for a.e. u: and and a.e..3, we have 

inf{a I D~#.3(E) = ac} = d ( E )  

for every ECI~ in the support of #8. Similarly, we also obtain that for a.e. ~' and 3, 
the solution u~(x, E) satisfies the bound (5.21) for the energies in the support of P3. 
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By the choice of d and well-known relations between D ~ derivatives and dimensional 

properties of Radon measures (see [31]) it follows that  for a.e. ca and 3. the restriction 
of the spectral measure #a to I~ is supported on a set of Hausdorff dimension 
<_d(E) +e and gives zero weight to any set of Hausdorff dimension <d(E)-e. 

To show the dynamical bound, notice that  Theorem 1.2 of [19] says that  if the 
spectral measure # is a-continuous on a set S. and for every EES, the generalized 
eigenfunction u(z,  E)  satisfies 

1 2 
limsup zTIlull/< x ,  

f-+~c 

then for any vector lb with nonzero projection on S. that  is. with Ps (> ' ) r  

( ( I X l ~ ' v ( t ) , t ; ( t ) ) ) r _ > C r  .... /:'. 

The proof is now completed as in Theorem 5.1 in [19], noticing that  in our context. 

~ - 3 A ( E ) .  [] a ~ I - 6 A ( E ) ,  while by (5.21), 2 . ~  

Remarks. 1. The methods of [19] also give a stronger dynamical estimate that  

for a.e. /5 and ca and for every e > 0  and g>0.  there exists a constant Cs.~,o,e such 
that  if  RT=C~,w,~,eT 2-~, then 

(s.2s) (tlw(OIl~T>r -< Iltu- PJ3, ca)~-'ll2 +-o11~112. 

From (5.25) it follows that  the whole part  of the wavepacket lying in the continuous 
spectral subspace travels at a rate > T  2(1-~). even though we can choose f in (1.4) 

so that  the spectral dimension d(E) is arbitrarily close to zero in some parts  of the 
support  of the spectral measure. 

2. Proposition 5.7 is not true for a fixed boundary condition. In fact. for a.e. w 
and for a dense Gd set of boundary conditions 3 E R ,  the spectrum of Hq.s is going 
to be purely singular continuous [30]. 

A final remark, which is more of academic interest, is that  our method can be 
modified in a straightforward way to treat  perturbat ions of background operators 

d 2 
_ m _ x  )~" 

dx 2 

where 0</~<2 (tile operator becomes non-selfadjoint for larger )~). In particular, one 
obtains that  the absolutely continuous spectrum of such operators is preserved for 
perturbat ions q satis(ving Iq(x)l _<C(I+ Ixl) -(2-~)/4 ~ or qEC(2-:')/2a+~(R), where 
c is an arbi trary small positive number. These results are optimal in the power 
scale and in HSlder spaces, respectively. 
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