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Indices, characteristic numbers and 
essential commutants of Toeplitz operators 

Kunyu Guo(I) 

A b s t r a c t .  For an  essent ial ly  no rma l  opera to r  T ,  it is shown  t h a t  the re  exis ts  a un i la te ra l  

shif t  of mul t ip l ic i ty  m in C*(T) if and  only if v ( T ) r  and  ~/(T)Ira. As appl icat ion,  we prove t h a t  

t he  essent ia l  c o m m u t a n t  of a uni la te ra l  shif t  and  t h a t  of a bi la teral  shif t  are not  i somorphic  as 

C*-a lgebras .  Finally,  we cons t ruc t  a na t u r a l  C*-a lgebra  s on the  B e r g m a n  space L~a (B~),  and  

show t h a t  i ts essent ia l  c o m m u t a n t  is genera ted  by Toepli tz  opera tors  wi th  s y m m e t r i c  con t inuous  

symbols  and  all compac t  opera tors .  

1. I n t r o d u c t i o n  

It is well known that  the index formula of Gohberg and Krein [9] gives indices of 
Toeplitz operators on the unit circle as minus the winding numbers of their symbols. 
This may be the simplest and the most enlightening case in the entire index theory. 
Let D be the unit disk of the complex plane, S 1 its boundary and C(S ~) be the 
space of all continuous functions on S 1. Write H 2 (D) for the classical Hardy space 
on the unit disk, and ~ for all compact operators on H2(D). Denote by C*(T~) the 
C*-algebra generated by the Hardy shift T~ and the identity operator, which equals 
to the C*-algebra generated by all Toeplitz operators with symbols in C(S1). One 
thus has the short exact sequence, [5], 

(1.1) O--§ ~---~ C*(T~) ~ C(S 1) ---~0. 

In the language of homological algebra, [4], the above sequence is an extension of 
/~ by C(S1). The importance of this extension is that  the index theory of Toeplitz 
operators is implicit. Let 7c1(S 1) be the group of homotopy classes of continuous 

(1) Suppor t ed  by NSFC and  L a b o r a t o r y  of M a t h e m a t i c s  for Nonl inear  Science at  F u d a n  

Universi ty.  
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maps from S ~ to C\{0} .  Then the index ind gives an isomorphism from 7r1(S 1) to 
the integer group Z by 

ind([/]) = ind(rr -1 (f)) .  

Let T be an essentially normal operator on a separable Hilbert space H,  and ~rr 
be the essential spectrum of T. Write C*(T) for the C*-algebra generated by T, 
the identity operator I and all compact operators. Then a natural extension of K; 
by C(crr arises at this point 

(1.2) o >to 

As usual, l e t  7rl(rTe(Z)) denote the group of homotopy classes of continuous maps 
from err(T) to C\{0} .  Predholm index derives thus a homomorphism 

ind:rcl(cr~(T)) > Z, i n d ( [ f ] ) - i n d ( T r - l ( / ) ) .  

Although the homomorphism ind is not an isomorphism in general, its range, 
range(ind), is a subgroup of Z, that  is, there exists a non-negative integer rn such 
that  range( ind)=mZ.  This integer m which is said to be the characteristic number 
of T, and is denoted by 7(T),  reveals many intrinsic properties of T. For example, 
from [4, Corollary 11.2] we see that  7 ( T ) = 0  if and only if T is a compact per- 
turbation of a normal operator. The explicit description of 7(T) will be given in 
Section 3. 

For the use of subsequent sections, in Section 2, we prove several results on the 
index of Toeplitz operator with composition symbol. These results may be known 
by many people, although we do not find the related references. 

The study in Section 3 is closely related to the work of Englis [7], [8], and 
Barria and Halmos [2]. Let T be an essentially normal operator, and its essential 
spectrum ~rr be non-countable. We prove that  there exists a bilateral shift W in 
C* (T), and there exists a unilateral shift S of multiplicity m in C* (T) if and only 
i f -y (T) r  and ~/(T)Ira. In particular, it is shown that  the essential commutant of 
a unilateral shift and that  of a bilateral shift are not isomorphic as C*-algebras, 
which is posed in [7]. 

In [7], Englis proved that  the set of all Toeplitz operators on the Bergman space 
L~(ft) is dense in all bounded operators in the strong operator topology, and its 
norm closure contains all compact operators. In view of the result of Englis, one is 
convinced that  the C*-algebra T~(f~)  generated by all Toeplitz operators on the 
Bergman space is "quite huge". Let B,~ be the unit ball of C '~, and L~(B,~) be the 
Bergman space o n  Bn. Set 

s tIC, j = l ,  2, . . . ,  n} 
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and 

C,={TITz*jT-TT~ j EI~, j = l ,  2, . . . ,  n}. 

In Section 4, it is shown that  3+3. is a C*-algebra, and its essential commutant  
is T(SC(Bn)), that  is, an operator A essentially commutes with any operator in 
g+g. if and only if A has the form 

A = Tf+compact, 

with f continuous on Bn, and f ( z ) - f (~) ,  zES 2~-1 (the boundary of B~). This 
implies that  s  is a proper subset of all bounded operators, though there is no 
unilateral shift which essentially commutes with each operator in s 

For a related study, in the version of the Hardy space H2(D) ,  see [10]. 

2. Indices of  Toeplitz operators with composit ion symbols 

In this section, we shall be concerned with the question of how to compute 
Fredholm indices of Toeplitz operators with composition symbols on the Hardy 
space H 2 (D) or the Bergman space L~ (D) of the unit disk D. These results will be 
used in subsequent sections. 

From Coburn [5] or McDonald [11], one sees tha t  a Toeplitz operator Tr with 
continuous symbol on the Hardy space H2(D)  (or on the Bergman space L~(D)) 
is Fredholm if and only if r is nonzero on the unit circle S 1 (i.e. r is nonzero). 

For such a Fredholm Toeplitz operator Tr on H 2 (D), Gohberg and Krein [9] proved 
tha t  the Fredholm index of Tr equals to -~/(r where ~/(r is the winding number  
of r about  the origin as z describes the unit circle once in the positive sense (i.e., 
D is to be on the left as a point moves on the unit circle in the positive direction). 
Let 9 r denote all invertible functions in C(S 1). For r and r in Y, we say tha t  r 

is homotopic to r if there exists a continuous function 

F: s • [0,1] c . ( =  c \{0})  

such that  F(z,O)=r and F(z, 1)--02(z) for z E S  1. It  is well known that  the 
group 7r 1 (S 1) of homotopy classes of ~- is the integer group Z, and each r is homo- 
topic to some z n, [6]. This fact yields that  ind (T0)=n  if and only if r is homotopic 

to z -n .  The following result illustrates how to characterize the index of a Toeplitz 
operator with composition symbol. 
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T h e o r e m  2.1.  Let 6EJ:, and let f: C , - + C ,  be a continuous function. Then 

ind(T/o4) = 7 ( f )  ind(T4)- 

Proof. Let i n d ( T 4 ) = n .  Then  6 is homotopic  to  z -'~, tha t  is, there  exists a 
continuous funct ion 

F : S  1X[0, 1] > C. 

such tha t  F(z, 0) r  and F (z ,  1 ) = z  - n  for z c S  1. Consider the  continuous com- 
posit ion function 

foF: S 1 x [0, 1] > C , .  

This means tha t  fo  6 is homotopic  to foz % So, 

ind(Tfo4,) ind(Tzoz--)- 

Let 7 ( f ) = m ,  tha t  is, the  winding number  of f(z) about  the origin is rn as z describes 
the unit  circle. This thus forces f (restr icted to S 1) to be homotopic  to z "~, tha t  
is, there  exists a continuous funct ion 

G: S 1 x [0, 1] ~ C .  

such tha t  G(z, 0 ) = f ( z )  and G(z, 1 ) = z  m for zES 1. Define a funct ion 

G:S 1X[O, 1] } C .  

by G(z, t)=G(z n, t). One then  easily checks 

G(z, O) = G(z -n, O) = f (z-n) ,  G(z, 1) = a(z  -n, 1) = z -ran, 

t ha t  is, f ( z  -~) is homotopic  to  z - ' ~ .  It follows tha t  

ind(Tfor = ind(Tfoz-,) = ind(T~ . . . .  ) = m n  = ~y(f) ind(Tr 

This completes  the proof. 

C o r o l l a r y  2.2.  Let f and 6 be invertible functions in C(S1), and 161=1. Then 

ind(Tfor = 7 ( f )  ind(Tr 

Pro@ Set f (z)=f(z / Iz l )  on C . .  Theo rem 2.1 implies tha t  

ind(Tfor = ind(Tfor = 7 ( f )  ind(Tr 
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which immediately yields the desired conclusion. 

For an invertible function r in C(S1), let f be an invertible and continuous 
function defined on r If f can be continuously extended into a function f from 
C.  to C . ,  this then implies that  ind(Te) is a divisor of ind(T/o4~ ). However this 
is not true in general. For example, take r  and f = z - 2 ,  then ind(Tfo4~)= 
ind(T~)= 1, but  ind(T4~)=0. 

Now return to the Bergman space L~(D). Suppose that  r is continuous on 
the closure D of D ,  then Tr acting on L~(D) is unitarily equivalent to a compact 
perturbation of Tr acting on H2(D), [5]. Thus we can restate Theorem 2.1 on 
tile Bergman space L 2 (D). 

T h e o r e m  2.3. Let r be bounded function on the closure D of D. Suppose 
that r is continuous and bounded away from zero on some neighborhood of the unit 
circle. Then for any continuous function f on the complex plane C whose only 
possible zero point is zero, we have 

ind(Tfor = ~y(f) ind(Tr 

In view of Theorem 2.3, we require that  f is a continuous function with the 
only possible zero point being zero. Otherwise, the composition function f o e  might 
be out of L~(D). For example, take r  f = l / z .  However, if we assume that  f is 
continuous from C.  to C .  and is bounded on D\{0} ,  then the same conclusion is 
true. We thus have following corollary. 

C o r o l l a r y  2.4. Let r satisfy the assumption of Theorem 2.3. Then for f EJ: 
we have 

ind(T]or = q/(f) ind(Tr 

where f ( z )= f ( z / [ z l )  for z c C , .  

Let T be an essentially normal operator, and 5~ the image of T in the corre- 
sponding Calkin algebra. In nature, if T is Fredholm, one can define the index of 
T, ind(T), by ind(T). Assume that  the essential spectrum a~(T) of T lies on a 
Jordan curve F, then there exists a continuous flmction r on S 1 such that  r maps 
the unit circle S 1 onto F. In particular, if the origin is in the inside of F we then 
can choose a continuous function r such that  ind(Tr  Theorem 2.1 and 
the BDF-theory [4] derive the following result. 

C o r o l l a r y  2.5. Let f be a continuous function front C.  to C~. Then 

ind( f (T) )  = 7 ( f )  ind(T) : 7 ( f )  ind(T). 
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In particular, i f  ~r~ (T) is contained in the unit circle, then 

ind( f (T) )  : 7(f)ind(5~) : v ( f ) i n d ( T ) ,  

where f is in J:. 

3. The characteristic numbers of  essentially normal operators 

As is well known the index formula of Gohberg and Krein [9] gives indices of 
Toeplitz operators on the unit circle as minus the winding numbers of their symbols. 
A natural generalization of the notion of winding number may be the concept of 
characteristic number for an essentially normal operator. The characteristic number 
of an essentially normal operator has been defined in the introduction. However, the 
next equivalent definition may be more convenient for use. Assume first that  A is a 
C*-algebra of operators on a separable Hilbert space H which contains all compact 
operators and the identity operator. Since the image of all Fredholm operators 
in Z[ is a multiplication group in the Calkin algebra, it follows that  the indices of 
all Predholm operators in A form a subgroup A of the integer group Z, that  is, 
there exists a unique non-negative integer rn such that  A = m Z .  The characteristic 
number 7(-4) of A, by definition, is the above m. Thus, the characteristic number 
7 is an invariant of C*-algebras in isomorphism sense. Let T be essentially normal. 
We define the characteristic number of T, 7(T),  by 7(C*(T)) .  Prom the BDF- 
theory [4, Corollary 11.2], it is easily seen that  7(T)  =0 if and only if T is a compact 
perturbation of a normal operator. If 7(T)/L0, then 7(T)  is characterized by the 
next proposition. 

Propos i t ion  3.1. I f  ~ ( T ) r  then "~(T) is the greatest common divisor of 
{lind(T--A~)l}, where {A,~} is a set with exactly one point A~ in each bounded 

component of C \a~ (T) .  In particular, i f  ar lies on a Jordan curve, then 

z(T)  = I ind(T- )l, 

where A is located in the inside of the Jordan curve. 

Proof. Let 7c~(a~(T)) be the group of homotopy classes of continuous maps 
from ere(T) to C, .  Then %~(a~(T)) is the free abelian group generated by the set 
{Ix-An]} (see [4]). Thus for each invertible and continuons function f on a~(T), f 
is homotopic to some (z-Ate)  k~ ... (z--Al,~) k-~, and hence 

m 

ind( f (T) )  E k j i n d ( T - / ~ ' J ) "  
j--1 
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The desired conclusion follows and the proof is complete. 

To understand the characteristic number a little bet ter  we will turn to the 
following discussion. 

It is well known that  Toeplitz operators on the Hardy space H2(D) are com- 
pletely characterized by T*TTz=T.  This fact forces all Toeplitz operators on the 
Hardy space to form a rather  small w*-closed subspace of the space of all bounded 
operators of infinite codimension. However, Englis [7] proved that  the set of all 
Toeplitz operators on the Bergman space L~(ft) is dense in the space of all bounded 
operators in the strong operator topology, and its norm closure contains all com- 
pact operators. In view of the result of Englis, one is convinced that  the C*-algebra 
T ~ (t2) generated by all Toeplitz operators on the Bergman space is "quite huge". 
However, for a wide class of plane domains 9 C C, and bounded symmetric  domains 
f t c C  n, Englis [7], [8] proved that  each Toeplitz operator on L~(ft) essentially com- 

mutes with some fixed shift (unilateral or bilateral shift), and hence T~176 is a 
proper subset of all bounded operators. In view of Englis's results, it would be 
useful to know something more about  the essential commutants  of the unilateral 

and the bilateral shift�9 Englis said in [7] that  it is not even clear whether these two 
essential commutants  (of unilateral and bilateral shifts) are not in fact isomorphic 
as C*-algebras. To answer Englis's question, let us state and prove the main result 
in this section. Let T be essentially normal. One then has a natural  extension of 
by C(cre(T)), 

(,) o - - , J c  >C*(T) 

If ~e(T) is countable, then C*(T) does not contain any unilateral or bilateral 
shifts by the above extension (*). If  c%(T) is uncountable, then the characteristic 
number of T characterizes whether C* (T) contains any unilateral or bilateral shifts 
in the following way. 

T h e o r e m  3.2. 
(1) There exists a bilateral shift W in C*(T). 
(2) I f  7 ( T ) = 0 ,  then C*(T) does not contain any unilateral shift of finite mul- 

tiplicity. 
(3) If "7(T)T&0, there is a unilateral shift of multiplicity m in C*(T) if and only 

if  ~/(T) I m .  

Proof. (1) Since a t (T)  is uncountable, there is a continuous function f from 
~ ( T )  onto [0, 27@ Consider functions 
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It is easily seen that  fk(z) is invertible in C(ar Take AkEC*(T) such that  
rr(Ak)=fk for all natural numbers k. The above extension (*) thus implies tha t  
~ ( A 1 ) = S  1. Notice that  

ind(A1)=ind(A~)=kind(Ak), h = l ,  2,. . . ,  

and hence ind(A1)=0. Consequently, the BDF-theory [4] derives that  A1 is a com- 
pact perturbat ion of some bilateral shift. One thus concludes that  there exists a 
bilateral shift, W in C* (T). 

(2) If 7(T) 0, then for any Fredholm operator A in C*(T), we have 

ind(A) 0. 

Consequently, the conclusion of (2) follows. 
(3) According to the definition of the characteristic number, the necessity is 

obvious. For the sufficiency, we only need to construct a unilateral shift S of multi- 
plicity ~,(T) in C*(T). Let AEC*(T) be such that  ind(A)=7(T) .  Write f for ~r(A). 
Let BEC*(T) be such that  rr(B)=l/Ifl. This induces that  i nd (B)=0  by [4, Corol- 
lary 11.3]. Set L AB, then 

ind(L) i n d ( A ) = 7 ( T  ) 

and re(L) is of unit modulus on vr Therefore, the image of L in the Calkin 
algebra is a unitary element. From [4, Theorem 3.1], L is a compact perturbation 
of the adjoint of a shift of multiplicity -y(T), and hence the conclusion of (3) follows. 
The proof is complete. 

Let A be a C*-algebra of operators on a separable Hilbert space H.  The 
essential commutant  ~4' e of A is defined by {BIAB BAc]C for all AEA}. For an 
operator T on H,  the essential commutant T" of T is defined by {B]BT-TBCIC}.  
In particular, when T is essentially normal the Fuglede Putnam theorem implies 

/ * / that  T~=[C (T)]~. 
Before continuing we need a striking result of Voiculescu [1, Corollary 2]. 

L e m m a  3.3. Every unital separable C*-algebra in the Calkin algebra equals 
its own double cornmutant. Equivalently, if A is a unital separable C*-algebra of 
operators on H which contains all compact operators, then we have 

! t (A& =A. 

In what follows we always assume that  the C*-algebra .4 contains the identity 
operator and all compact operators on H,  and A is separable. 
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L e m m a  3.4. The C*-algebras A1 and A2 are isomorphic as C*-algebras if 
and only if (A1)'e and (A2)~c are isomorphic as C*-algebras. 

Proof. Let O:A1--+A2 be an isomorphism of C*-algebras. Applying [6, Corol- 
lary 5.41] we see that  there exists a unitary operator U on H such that  O(A)=U*AU 
for any A~A1. A direct verification shows that  Cu: (A1)~--+(A2)~c gives the de- 

/ i / 3  i sired isomorphism from (M~)~ onto (A2)~, where Cv: (A~)~ (A2)~ is defined by 
r  for any A~(AI)'~. Indeed, since A2=U*A~U, the equality 

(A2) :  = = v * ( A d : v  

follows. The opposite direction is achieved by the same argument and Lemma 3.3. 

The next corollary answers the question of Englis [7]. 

C o r o l l a r y  3.5. The essential cornmutants of unilateral and bilateral shifts are 
not isomorphic as C*-algebras. 

Proof. Let S be a unilateral shift, and W a bilateral shift. Since 

/ * / / * / 
= [ c  and W; = [C 

Lemma 3.4 implies that  [C* (S)]~ and [C* (W)]t~ are isomorphic if and only if C* (S) 
and C*(W) are isomorphic. The latter case is impossible because ~/(S)=1 and 
"z(W)=0. This completes the proof. 

For an essentially normal operator T, the C*-algebra T~ is ':quite huge". One 
thus would like to see if there exists any shift S (unilateral or bilateral shift) such 
that  S essentially commutes with every operator R in Te ~, i.e., S R - R S  is compact 
for each R in T~. If ~r~(T) is countable, then, by applying Lemma 3.3, there exists no 
shift which essentially commutes with every operator in 2r~. If ere(T) is uncountable, 
Lemma 3.3 and Theorem 3.2 imply the following result. 

T h e o r e m  3.6. 
(1) There exists d bilateral shift W such that W essentially commutes with 

each operator in T~. 
(2) There exists a unilateral shift S of multiplicity m which essentially com- 

mutes with each operator in T~ if and only if y (T)r  and ~(T)lm.  

Let f~ be a pseudoregular domain in C ~, and let C*(ft) be the C*-algebra 
generated by Toeplitz operators Tr r  on the Bergman space L~(ft), and/C 
the ideal of compact operators on L~(ft). From Salinas [13, Theorem 2.3], one has 
the canonical exact sequence 

o tc > c ( o f t )  > o. 
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Consequently, T~ is essentially normal, and its essential spectrum is uncountable, 
where zi is the ith coordinate function. Notice that  the pseudoregular domains in- 
elude the strongly pseudoconvex domains, pseudoconvex domains with real analytic 
boundary, and domains of finite type (see [13]). 

Now applying Theorem 3.6, we have the following corollary. 

C o r o l l a r y  3.7. Let f~ be a pseudoregular domain in C ~. Since there is an 
essentially norvnal Toeplitz operator Te with uncountable essential spectrum on the 
Bergman space L~(f~) such that each Toeplitz operator essentially commutes with 
T<~, it follows that there is a bilateral shift W such that W * T / W - T  I is compact for 
each Toeplitz operator T/. This implies that the C*-algebra generated by all Toeplitz 
operators on the Bergman space L~(ft) is a proper subset of all bounded operators. 

In the last part of this section, we give some examples to illustrate the appli- 
cation of the characteristic number. These examples are closely related to the work 
of Barria and Halmos [2]. 

Ezample 1. On the Hardy space H2(D), E~ will denote the essential coin- 
mutant of T ~  for the natural number n. From Proposition 3.1 and Lemma 3.4, 
the following is immediate. Essential cornmutants E~ and E,~ are isomorphic as 
C*-algebras if and only if n rn. In particular, we have 

E,n AE,~ = E( . . . .  ), 

where (n, rn) denotes the greatest common divisor. 

Ezample 2. Let Bn be the unit bali of C n, and S 2n-1 be its boundary. We 
consider the Toeplitz algebra T ( S  2n-1) generated by all Toeplitz operators on the 
Hardy space H2(B~) with continuous symbols on S 2~ 1. From Coburn [5] or 
McDonald [11], we know that  in the case n > l ,  ind(T4~)=0 for Te with continu- 
ous symbol (b. This means that  T ( S  1) and T($2~-1) ,  n > t ,  are not isomorphic 
as C*-algebras. The reason is that  7 (T ($1 ) )=1 ,  7 ( T ( S  2~ l)) 0. In particular, 
T(S2~ 1), n > l ,  does not contain any unilateral shift. Therefore, there is no uni- 
lateral shift which essentially commutes with each operator in [T($2~-1)]'~, n >  1. 

4. T h e  es sent ia l  c o m m u t a n t  o f  s 

Let L2(Bn) be the space of square-integrable functions on B,n (we will consider 
only the usual Lebesgue measure oil Bn). A unit ary operator U: L 2 (Bn) --+ L 2 (Bn) 
is defined by 

( U f ) ( z ) = f ( z ) ,  z=(zl ,z2, . . . ,z ,~) .  
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For dEL2(B~), a small Hankel operator Fr with symbol r is defined by 

r c h = P ( r  h E H ~ ( B ~ ) ,  

where P is the orthogonal projection from L 2 (Bn) onto the Bergman space L~ (B~). 
Since H~ is dense in L2a(Bn), this means that  ifFr is a bounded operator (when 
we put the L~ norm on H ~ ) ,  then r e  extends to a bounded operator on L~(Bn). 
Therefore, in this section we consider bounded small Hankel operators while their 
symbols may be unbounded. By a straightforward verification, the following alge- 
braic equations completely characterize small Hankel operators. 

P r o p o s i t i o n  4.1. Let F be a bounded operator on L~(B~). Then F is a small 
Hankel operator if and only if 

T~* F = FTzj j = l ,  2, n. j ' - , -  , 

In [14], Zhu introduced the concept of reduced Hankel operator. A reduced 
Hankel operator ~rr with symbol r is defined by 

Lrr 0 >L~(B~), t I ch=P(r  hEH~(B,~) ,  

where P denotes the orthogonal projection from L 2 (B~) onto L~(Bn) (the complex 
conjugate of L a(Bn)). 

A direct verification shows that  the following is true. 

P r o p o s i t i o n  4.2. The following relation is true 

Fr ---- U-~;, 

where for Bn. 

Let BC(B~) be the space of bounded continuous functions on B~, C ( B , )  be 
the space of continuous functions of the closure B,~ of B~, and Co(Bn) be the space 
of continuous functions on Bn which vanish on the boundary S 2~ 1 of Bn. By 
Proposition 4.2 and Corollary in [14], the following assertions are immediate. 

C o r o l l a r y  4.3. Given CEL2(B~), then 

(1) Fr is bounded if and only if ~EL~(B~)+L~(B~) • which holds if and only 

if ~cBC(Bn)+L~(B~)•  

(2) Fr is compact if and only if ~eC(B~)+L~(B~) • which holds if and only 

if ~eCo(B~)+L~(B~) • 

Set 

s = {TIT~jT--TTz  j is compact for j = 1, 2, ..., n}. 
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Thus it is easily checked that  s is the essential commutant of the C*-algebra 7-(Bn) 
generated by all Toeplitz operators with continuous symbols. This implies that  g 
contains the C*-algebra T ~ (Bn) generated by all Toeplitz operators. Set 

s = { T I T ] j T - T T z  j is compact for j = l ,  2, ..., n}. 

Thus g, is a self-adjoint norm closed g bimodule, and g. contains all small Hankel 
operators. By the Fuglede Pu tnam theorem, we see that  for TEs T fT  TT  I is 

compact for any fEC(Bn),  and hence derives tha t  g] Cg.  Theorem 2 of [121 thus 
implies that  s163 is a C*-algebra. We define the space SC(Bn) of symmetric 
continuous functions by 

SC(B~) = { f  C C(B,n) ] f(z) = f(z) for all z E S2n-1}. 

Let T(SC(Bn)) denote the C*-algebra generated by all Toeplitz operators with 
symbols in SC(B,~) and all compact operators. Then we have the following result. 

T h e o r e m  4.4. The essential commutant of g+g.  is equal to T(SC(B~)), 
that is, an operator A essentially commutes with each operator in g +g. if and only 
if there exists some f ESC(B~) such that A=Tf  + compact. 

Pwof. Since 
[g+S.]'~ ' ' ' = T(B~) ,  =g j~ [g . ]~  and g~ 

we need only show that  for fEC(Bn),  TIFr  is compact for any r 
if and only if f eSC(Bn) .  The sufficiency is obvious. To complete the proof of 
necessity, we first claim that  if geC(B,~), and FcTg is compact for any r 
then gls2,~ 1 =0. 

Proof of the claim. According to the relation 

we see that  rcTg is compact if and only if ~I~T v is compact. For any r  
a simple verification shows that  

where Hg is defined by Hyh=(I e)gh for hEL~(Bn). By [5], the Hankel operator 

H 9 is compact. Consequently, for any 05, F~T 9 is compact if and only if H~g is 
compact which holds if and only if [14]. From the above 
discussion, we see that  
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for any r 149176176  If there is a point z o � 9  2~-~ such that  g(zo)#O, then the rota- 
tion invariance of C(Bn)+L2a(B~) • implies, by considering finitely many rotations 

k S2n- 1 gj of g such that  ~ j = l  [gj[2# 0 o n  , that  

for any r 1 4 9  Therefore, there exists some neighborhood V of S 2~ 1 such 
k 12 that  ~j - -1  Igj > C  on V for some positive constant e. It follows that  

Cxv �9 C(~)+L~(B,~) ~ 

for any r 1 4 9  L ~176 (Bn), where Xv denotes the characteristic function of V. Since for any 

do~L~176 H(1-xv)4 is compact, and hence (1-XV)r149  • by [14]. 
Consequently, 

r c C(Bn)+LX(B~) ~ 

for any r149176176 This is obviously impossible, and hence leads to the desired 
conclusion, that  is, g l s~  , =0. The claim is proved. 

Assume I GC(B~)  such that T I F e - F c T  I is compact for any r149176176 Since 

TIFr - F r  = F ~ T f - F c T f  §  = FcT:_: +compact .  

By the above claim, the equality f = f  on S 2~-1 follows. This completes the proof 
of Theorem 4.4. 

C o r o l l a r y  4.5. 
(1) There exists a bilateral shift W such that W essentially commutes with 

each operator in s163  that is, W A - A W  is compact for each A E E + g . .  
(2) There is no unilateral shift of finite multiplicity which essentially commutes 

with each operator in s  

Proof. (1) Apply Theorem 3.2. 
(2) ~n the case ~=1, since each operator A in V-(SO(D)) has the form A = T , +  

compact for some f E S C ( D ) ,  Corollary 2.4 implies that  the index of each Fredholm 
operator in T(SC(D) )  is zero. In the case n > l ,  since the index of each Fredholm 
Toeplitz operator is zero by [5] or [11], the conclusion follows. 
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