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Indices, characteristic numbers and
essential commutants of Toeplitz operators

Kunyu Guo(?)

Abstract. For an essentially normal operator T, it is shown that there exists a unilateral
shift of multiplicity m in C*(T) if and only if v(T")#0 and v(T")|m. As application, we prove that
the essential commutant of a unilateral shift and that of a bilateral shift are not isomorphic as
C*-algebras. Finally, we construct a natural C*-algebra £ +-&, on the Bergman space L2 (B ), and
show that its essential commutant is generated by Toeplitz operators with symmetric continuous
symbols and all compact operators.

1. Introduction

It is well known that the index formula of Gohberg and Krein [9] gives indices of
Toeplitz operators on the unit circle as minus the winding numbers of their symbols.
This may be the simplest and the most enlightening case in the entire index theory.
Let D be the unit disk of the complex plane, S* its boundary and C(S') be the
space of all continuous functions on S'. Write H?(D) for the classical Hardy space
on the unit disk, and K for all compact operators on H?(D). Denote by C*(1},) the
C*-algebra generated by the Hardy shift 7, and the identity operator, which equals
to the C*-algebra generated by all Toeplitz operators with symbols in C(S'). One
thus has the short exact sequence, [5],

(1.1) 0K — C*(T,) -5 C(S') —0.
In the language of homological algebra, [4], the above sequence is an extension of
K by C(S'). The importance of this extension is that the index theory of Toeplitz

operators is implicit. Let 7' (S!) be the group of homotopy classes of continuous
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maps from S? to C\{0}. Then the index ind gives an isomorphism from «'(5) to
the integer group Z by
ind([f]) =ind(z " (f)).

Let T be an essentially normal operator on a separable Hilbert space H, and o.(T)
be the essential spectrum of 7. Write C*(T) for the C*-algebra generated by T,
the identity operator I and all compact operators. Then a natural extension of X
by C(o.(T)) arises at this point

(1.2) 0— K —C*(T) -5 Clo.(T)) — 0.

As usual, let 7'(0.(T)) denote the group of homotopy classes of continuous maps
from o.(T) to C\{0}. Fredholm index derives thus a homomorphism

ind: 7' (0 (T)) — Z, ind([f]) = ind(7~1(f)).

Although the homomorphism ind is not an isomorphism in general, its range,
range(ind), is a subgroup of Z, that is, there exists a non-negative integer m such
that range(ind)=mZ. This integer m which is said to be the characteristic number
of T, and is denoted by v(T'), reveals many intrinsic properties of T'. For example,
from [4, Corollary 11.2] we see that v(7)=0 if and only if 7" is a compact per-
turbation of a normal operator. The explicit description of v(T') will be given in
Section 3.

For the use of subsequent sections, in Section 2, we prove several results on the
index of Toeplitz operator with composition symbol. These results may be known
by many people, although we do not find the related references.

The study in Section 3 is closely related to the work of Englis [7], [8], and
Barria and Halmos [2]. Let T" be an essentially normal operator, and its essential
spectrum o (7"} be non-countable. We prove that there exists a bilateral shift W in
C*(T), and there exists a unilateral shift S of multiplicity m in C*(7T') if and only
if v(T)#0 and v(T')|m. In particular, it is shown that the essential commutant of
a unilateral shift and that of a bilateral shift are not isomorphic as C*-algebras,
which is posed in [7].

In [7], Englis proved that the set of all Toeplitz operators on the Bergman space
L2(Q) is dense in all bounded operators in the strong operator topology, and its
norm closure contains all compact operators. In view of the result of Englis, one is
convinced that the C*-algebra 7°°()) generated by all Toeplitz operators on the
Bergman space is “quite huge”. Let B,, be the unit ball of C", and L2(B,) be the
Bergman space on B,,. Set

E={T|T,,T-TT, €K, j=1, 2,..., n}
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and

E={T|T;T-TT, €K, j=1, 2,..., n}.

In Section 4, it is shown that £+&, is a C*-algebra, and its essential commutant
is T(SC(By)), that is, an operator A essentially commutes with any operator in
E+E, if and only if A has the form

A=T¢~+compact,

with f continuous on B,,, and f(2)=f(z), 2€5%"~! (the boundary of B,). This
implies that £+&, is a proper subset of all bounded operators, though there is no
unilateral shift which essentially commutes with each operator in £+E,.

For a related study, in the version of the Hardy space H?(D), see [10].

2. Indices of Toeplitz operators with composition symbols

In this section, we shall be concerned with the question of how to compute
Fredholm indices of Toeplitz operators with composition symbols on the Hardy
space H%(D) or the Bergman space L2(D) of the unit disk D. These results will be
used in subsequent sections.

From Coburn [5] or McDonald [11], one sees that a Toeplitz operator T}, with
continuous symbol on the Hardy space H?(D) (or on the Bergman space L2(D))
is Fredholm if and only if ¢ is nonzero on the unit circle S* (i.e. ¢|s1 is nonzero).
For such a Fredholm Toeplitz operator T}, on H?(D), Gohberg and Krein [9] proved
that the Fredholm index of Ty equals to —y(¢), where y(¢) is the winding number
of ¢(z) about the origin as z describes the unit circle once in the positive sense (i.e.,
D is to be on the left as a point moves on the unit circle in the positive direction).
Let F denote all invertible functions in C(S?). For ¢; and ¢2 in F, we say that ¢
is homotopic to ¢4 if there exists a continuous function

F:S'x[0,1] — C.(=C\{0})

such that F(z,0)=¢1(z) and F(z,1)=¢2(z) for z€S1. It is well known that the
group 7! (S!) of homotopy classes of F is the integer group Z, and each ¢ is homo-
topic to some 2", [6]. This fact yields that ind(T})=n if and only if ¢ is homotopic
to 27 ". The following result illustrates how to characterize the index of a Toeplitz
operator with composition symbol.
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Theorem 2.1. Let ¢ F, and let f: C,—C, be a continuous function. Then
ind(Ty.¢) =(f) ind(Ty).

Proof. Let ind(Ty)=n. Then ¢ is homotopic to 27", that is, there exists a
continuous function
F:8'x[0,11— C,

such that F(2,0)=¢(z) and F(z,1)=2"" for z€S". Consider the continuous com-

position function
foF:S8'x[0,1] —> C..

This means that fo¢ is homotopic to foz™". So,
ind(Ty.¢) =ind(Ty., = ).

Let v(f)=m, that is, the winding number of f(z) about the origin is m as z describes
the unit circle. This thus forces f (restricted to S') to be homotopic to z™, that
ig, there exists a continuous function

G:S*x[0,1] — C,
such that G(z,0)=f(z) and G(z,1)=2™ for 2€S'. Define a function
G:S'x[0,1]—C,
by G(z,£)=G(z~",t). One then easily checks
G(2,0)=G(z"",0)=f(z"), G(z,1)=G(z""1)=z""",
that is, f(2~™) is homotopic to z~™". It follows that

ind(Tf.p) =ind(Tf.,-n) =ind(Ty-mn) =mn =y(f) ind(Ty).

This completes the proof.
Corollary 2.2. Let f and ¢ be invertible functions in C(S'), and |¢|=1. Then

ind(Tyeq) =~(f) ind(Ty).
Proof. Set f(z)=f(2/|z]) on C,. Theorem 2.1 implies that

ind(Ty.4) = ind(T},,,) = 7() ind(Ty)



Indices, characteristic numbers and essential commutants of Toeplitz operators 101

which immediately yields the desired conclusion.

For an invertible function ¢ in C(S'), let f be an invertible and continuous
function defined on ¢(S1). If f can be continuously extended into a function f from
C. to C,, this then implies that ind(7T}) is a divisor of ind(T%.s). However this
is not true in general. For example, take ¢=2+42 and f=z—2, then ind(T}t.4)=
ind(T%)=—1, but ind(T})=0.

Now return to the Bergman space L2(D). Suppose that ¢ is continuous on
the closure D of D , then Ty acting on L2(D) is unitarily equivalent to a compact
perturbation of Ty, acting on H*(D), [5]. Thus we can restate Theorem 2.1 on
the Bergman space L2(D).

Theorem 2.3. Let ¢ be bounded function on the closure D of D. Suppose
that ¢ is continuous and bounded away from zero on some neighborhood of the unit
circle. Then for any continuous function f on the complex plane C whose only
possible zero point is zero, we have

ind(Ty.4) =~(f) ind(Ty).

In view of Theorem 2.3, we require that f is a continuous function with the
only possible zero point being zero. Otherwise, the composition function fo¢ might
be out of L2(D). For example, take ¢=z2, f=1/z. However, if we assume that f is
continuous from C, to C, and is bounded on D\ {0}, then the same conclusion is
true. We thus have following corollary.

Corollary 2.4. Let ¢ satisfy the assumption of Theorem 2.3. Then for f&F
we have

ind(T%, ) =~(f) ind(Ty),
where f(2)=f(z/|z]) for zeC,.

Let T be an essentially normal operator, and T the image of T' in the corre-
sponding Calkin algebra. In nature, if T is Fredholm, one can define the index of
T, ind(T), by ind(7). Assume that the essential spectrum o.(T) of T lies on a
Jordan curve T, then there exists a continuous function ¢ on S! such that ¢ maps
the unit circle S* onto I'. In particular, if the origin is in the inside of I' we then
can choose a continuous function ¢ such that ind(T@:ind(T). Theorem 2.1 and

the BDF-theory [4] derive the following result.

Corollary 2.5. Let f be a continuous function from C, to C.. Then

ind(f(T)) =7(f) ind(T) = 7(f) ind().
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In particular, if o.(T) is conlained in the unit circle, then
ind(f(T)) =4(f) ind(T) =(/) ind(T),

where f is in F.

3. The characteristic numbers of essentially normal operators

As is well known the index formula of Gohberg and Krein [9] gives indices of
Toeplitz operators on the unit circle as minus the winding numbers of their symbols.
A natural generalization of the notion of winding number may be the concept of
characteristic number for an essentially normal operator. The characteristic number
of an essentially normal operator has been defined in the introduction. However, the
next equivalent definition may be more convenient for use. Assume first that A is a
C~-algebra of operators on a separable Hilbert space H which contains all compact
operators and the identity operator. Since the image of all Fredholm operators
in A is a multiplication group in the Calkin algebra, it follows that the indices of
all Fredholm operators in A form a subgroup A of the integer group Z, that is,
there exists a unique non-negative integer m such that A=mZ. The characteristic
number y(A) of A, by definition, is the above m. Thus, the characteristic number
7y is an invariant of C*-algebras in isomorphism sense. Let T be essentially normal.
We define the characteristic number of T, v(T), by v(C*(T)). From the BDF-
theory [4, Corollary 11.2], it is easily seen that (7)) =0 if and only if T is a compact
perturbation of a normal operator. If v(T)-£0, then «(T) is characterized by the
next proposition.

Proposition 3.1. If v(T)#0, then ~(T) is the greatest common divisor of
{|ind(T—=X,,)|}, where {A\,} is a set with evactly one point A, in each bounded
component of C\o.(T'). In particular, if o.(T) lies on a Jordan curve, then

(1) = |ind(T=A)],

where A is located in the inside of the Jordan curve.

Proof. Let w'(0.(T)) be the group of homotopy classes of continuous maps
from 0.(T) to C,. Then n'(c.(T)) is the free abelian group generated by the set
{[z=Axn]} (see [4]). Thus for each invertible and continuous function f on o.(7T), f
is homotopic to some (z—X;,)* ... (z— A, )=, and hence

ind(f(T)) = i kjind(T—\;,).

=1
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The desired conclusion follows and the proof is complete.

To understand the characteristic number a little better we will turn to the
following discussion.

It is well known that Toeplitz operators on the Hardy space H?(D) are com-
pletely characterized by T;TT.=1T. This fact forces all Toeplitz operators on the
Hardy space to form a rather small w*-closed subspace of the space of all bounded
operators of infinite codimension. However, Englis [7] proved that the set of all
Toeplitz operators on the Bergman space L2((2) is dense in the space of all bounded
operators in the strong operator topology, and its norm closure contains all com-
pact operators. In view of the result of Englis, one is convinced that the C*-algebra
T°°(Q) generated by all Toeplitz operators on the Bergman space is “quite huge”.
However, for a wide class of plane domains QC C, and bounded symmetric domains
Q2CC™, Englis [7], [8] proved that each Toeplitz operator on L2(f2) essentially com-
mutes with some fixed shift (unilateral or bilateral shift), and hence 7°°(Q2) is a
proper subset of all bounded operators. In view of Englis’s results, it would be
useful to know something more about the essential commutants of the unilateral
and the bilateral shift. Englis said in [7] that it is not even clear whether these two
essential commutants (of unilateral and bilateral shifts) are not in fact isomorphic
as C*-algebras. To answer Englis’s question, let us state and prove the main result
in this section. Let 7" be essentially normal. One then has a natural extension of K

by C(oe(T)),
(*) 0—K—C*T) 5 Clo(T)) — 0.

If 0.(T) is countable, then C*(T) does not contain any unilateral or bilateral
shifts by the above extension (). If 5.(1") is uncountable, then the characteristic
number of T characterizes whether C*(T) contains any unilateral or bilateral shifts
in the following way.

Theorem 3.2.

(1) There exists a bilateral shift W in C*(T).

(2) If v(T)=0, then C*(T') does not contain any unilateral shift of finite mul-
tiplicity.

(3) If v(T)#£0, there is a unilateral shift of multiplicity m in C*(T) if and only
if ~(1)|m.

Proof. (1) Since o.(T') is uncountable, there is a continuous function f from
c.(T) onto [0, 2z]. Consider [unctions

fk(z)zeXp<%f(z)>, k=1, 2, ...
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It is easily seen that fi(2) is invertible in C(c.(T)). Take Ax,eC*(T) such that
7{Ag)=fi for all natural numbers k. The above extension (x) thus implies that
oe(A1)=S'. Notice that

ind(A4;) =ind(A¥) =kind(4z), k=1, 2,...,

and hence ind(A;)=0. Consequently, the BDF-theory [4] derives that A; is a com-
pact perturbation of some bilateral shift. One thus concludes that there exists a
bilateral shift W in C*(T').

(2) If v(T)=0, then for any Fredholm operator A in C*(1"), we have

ind(A) =0.

Consequently, the conclusion of (2) follows.

(3) According to the definition of the characteristic number, the necessity is
obvious. For the sufficiency, we only need to construct a unilateral shift S of multi-
plicity v(T) in C*(T). Let AcC*(T') be such that ind(A)=~(T"). Write f for n(A).
Let BeC*(T') be such that w(B)=1/|f|. This induces that ind(B)=0 by [4, Corol-
lary 11.3]. Set L=AB, then

ind(L) =ind(A) =~(T)

and 7(L) is of unit modulus on o.(T). Therefore, the image of L in the Calkin
algebra is a unitary element. From [4, Theorem 3.1], L is a compact perturbation
of the adjoint of a shift of multiplicity v(7T), and hence the conclusion of (3) follows.
The proof is complete.

Let A be a C*-algebra of operators on a separable Hilbert space H. The
essential commutant A/, of A is defined by {B]AB—BA€K for all AcA}. For an
operator T on H, the essential commutant 77 of T is defined by {B|BT'-TBecK}.
In particular, when T is essentially normal the Fuglede—Putnam theorem implies
that 7! =[C*(T)]..

Before continuing we need a striking result of Voiculescu [1, Corollary 2].

Lemma 3.3. FEvery unital separable C*-algebra in the Calkin algebra equals
its own double commutant. Equivalently, if A is a unital separable C*-algebra of
operators on H which contains all compact operators, then we have

(ALY, = A

In what follows we always assume that the C*-algebra A contains the identity
operator and all compact operators on H, and A is separable.
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Lemma 3.4. The C*-algebras A; and Ay are isomorphic as C*-algebras if
and only if (A1), and (A3), are isomorphic as C*-algebras.

Proof. Let ¢: A1 — Az be an isomorphism of C*-algebras. Applying {6, Corol-
lary 5.41] we see that there exists a unitary operator U on H such that ¢(A)=U* AU
for any A€ A;. A direct verification shows that ¢y: (A1), —(Az2), gives the de-
sired isomorphism from (A;). onto (A2)., where ¢y: (A1), —(A2)., is defined by
oy (A)y=U*AU for any A€(A;).,. Indeed, since Ao=U*A,U, the equality

(Az2), = (U AWU) =U"(A).U
follows. The opposite direction is achieved by the same argument and Lemma 3.3.

The next corollary answers the question of Englis [7].

Corollary 3.5. The essential commutants of unilateral and bilateral shifts are
not isomorphic as C*-algebras.

Proof. Let S be a unilateral shift, and W a bilateral shift. Since

S.=[C"(9)]e and W =[C™(W)],

e’

Lemma 3.4 implies that [C*(S)], and [C*(W)], are isomorphic if and only if C*(S)
and C*(W) are isomorphic. The latter case is impossible because ¥(S)=1 and
v(W)=0. This completes the proof.

For an essentially normal operator T, the C*-algebra T, is “quite huge”. One
thus would like to see if there exists any shift S (unilateral or bilateral shift) such
that S essentially commutes with every operator R in T, i.e., SR— RS is compact
for each R in T},. If 0.(T) is countable, then, by applying Lemma 3.3, there exists no
shift which essentially commutes with every operator in T7. If 0. (T") is uncountable,
Lemma 3.3 and Theorem 3.2 imply the following result.

Theorem 3.6.

(1) There exists a bilateral shift W such that W essentially commutes with
each operator in T,.

(2) There exists a unilateral shift S of multiplicity m which essentially com-
mutes with each operator in T) if and only if v(T)#£0 and v(T)|m.

Let © be a pseudoregular domain in C", and let C*{Q) be the C*-algebra
generated by Toeplitz operators Ty, $€C(Q), on the Bergman space L2((2), and K
the ideal of compact operators on LZ(£2). From Salinas [13, Theorem 2.3], one has
the canonical exact sequence

00— K —C*Q) "5 C(0Q) —0.
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Consequently, T, is essentially normal, and its essential spectrum is uncountable,
where z; is the ith coordinate function. Notice that the pseudoregular domains in-
clude the strongly pseudoconvex domains, pseudoconvex domains with real analytic
boundary, and domains of finite type (see [13]).

Now applying Theorem 3.6, we have the following corollary.

Corollary 3.7. Let Q be a pseudoreqular domain in C™. Since there is an
essentially normal Toeplitz operator Ty with uncountable essential spectrum on the
Bergman space L2(2) such that each Toeplitz operator essentially commutes with
Ty, it follows that there is a bilateral shift W such that W*TyW —T is compact for
each Toeplitz operator Ty. This implies that the C*-algebra generated by all Toeplitz
operators on the Bergman space L2(Q) is a proper subset of all bounded operators.

In the last part of this section, we give some examples to illustrate the appli-
cation of the characteristic number. These examples are closely related to the work
of Barria and Halmos [2].

Ezample 1. On the Hardy space H?(D), E, will denote the essential com-
mutant of T,~» for the natural number n. From Proposition 3.1 and Lemma 3.4,
the following is immediate. Essential commutants FE, and E,, are isomorphic as
C*-algebras if and only if n=m. In particular, we have

E.NE, = E('n,m)>

where (n,m) denotes the greatest common divisor.

Ezample 2. Let B, be the unit ball of C*, and $?"~! be its boundary. We
consider the Toeplitz algebra T(S?"~1) generated by all Toeplitz operators on the
Hardy space H?(B,) with continuous symbols on $?*~!. From Coburn [5] or
McDonald [11], we know that in the case n>1, ind(Ty)=0 for T} with continu-
ous symbol ¢. This means that 7(S!) and 7(S?"!), n>1, are not isomorphic
as C*-algebras. The reason is that v(7(S'))=1, v(7(5?"!))=0. In particular,
T(S?"1), n>1, does not contain any unilateral shift. Therefore, there is no uni-
lateral shift which essentially commutes with each operator in [7(S2" 1]’ n>1.

4. The essential commutant of £+E&,

Let L?(B,,) be the space of square-integrable functions on B,, (we will consider
only the usual Lebesgue measure on B,). A unitary operator U: L?(B,,)— L*(B,,)
is defined by

(Uf(2)=f(2), z={(z1,%2,-s2n)
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For ¢€ L?(B,,), a small Hankel operator I'y with symbol ¢ is defined by
I'yh=P(¢oUh), heH>™(B,),

where P is the orthogonal projection from L*(B,,) onto the Bergman space L2(B,,).
Since H*(By,) is dense in L2(B,,), this means that if T’y is a bounded operator (when
we put the L2 norm on H>), then I'y extends to a bounded operator on L2(B,,).
Therefore, in this section we consider bounded small Hankel operators while their
symbols may be unbounded. By a straightforward verification, the following alge-
braic equations completely characterize small Hankel operators.

Proposition 4.1. Let T be a bounded operator on L2(B,). Then T is a small
Hankel operator if and only if

I;T=TT., j=1,2.., n

5

In [14], Zhu introduced the concept of reduced Hankel operator. A reduced
Hankel operator Hy with symbol ¢ is defined by

Hy: L2(B,) — L2(By,), Hyh=P(¢h), heH™(B,),

where P denotes the orthogonal projection from L?(B,) onto L?(B,) (the complex
conjugate of L2(B,)).
A direct verification shows that the following is true.

Proposition 4.2. The following relation is true
I'y= UHy,
where ¢(z)=¢(z) for z€B,.

Let BC(B,) be the space of bounded continuous functions on B, C(B,,) be
the space of continuous functions of the closure B,, of B, and Cy(B,,) be the space
of continuous functions on B, which vanish on the boundary $2”~! of B,. By
Proposition 4.2 and Corollary in [14], the following assertions are immediate.

Corollary 4.3. Given ¢€L?(B,,), then

(1) Ty is bounded if and only if qA;ELO"(Bn)—i—Lg(Bn)J- which holds if and only
if $cBC(Bn)+L2(By)"

(2) T'y is compact if and only if (;A;GC(En)—i—LZ(Bn)J' which holds if and only
if $€Co(Bn)+L2(Ba)*.

Set,

E={T|T,T-TT,, is compact for j=1, 2,..., n}.
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Thus it is easily checked that £ is the essential commutant of the C*-algebra T (By)
generated by all Toeplitz operators with continuous symbols. This implies that £
contains the C*-algebra 7°°(B,,) generated by all Toeplitz operators. Set

E={T|T; T-TT,, is compact for j=1, 2,..., n}.

Thus &, is a self-adjoint norm closed £-bimodule, and &, contains all small Hankel
operators. By the Fuglede—Putnam theorem, we see that for T'€&,, TfoTTf is
compact for any f€C(B,), and hence derives that £2CE. Theorem 2 of [12] thus
implies that £+&. is a C*-algebra. We define the space SC(B,) of symmetric
continuous functions by

SC(B,)={f€C(B,)| f(z) = f(2) for all z€ §?"'}.

Let T(SC(B,,)) denote the C*-algebra generated by all Toeplitz operators with
symbols in SC(B,,) and all compact operators. Then we have the following result.

Theorem 4.4. The essential commutant of E+E. is equal to T(SC(B,)),
that is, an operator A essentially commutes with each operator in E+&, if and only
if there exists some f€SC(By,) such that A=Ty+ compact.

Proof. Since
[E+ENL=ENE]. and EL=T(B,),

we need only show that for f€C(B,), TfI'y—T»T; is compact for any ¢p€L>(Bj,)
if and only if feSC(B,). The sufficiency is obvious. To complete the proof of
necessity, we first claim that if g€ C(B,), and I'4T}, is compact for any ¢ €L (B,),
then g|gzn-1=0.

Proof of the claym. According to the relation
UlyTy=H (;T o

we see that I'yT, is compact if and only if H 41y is compact. For any PEL>(By),
a simple verification shows that

HyT,=Hy,—HH,,

where H,, is defined by H,h=(I—P)gh for h€ L2(B,). By [5], the Hankel operator
H, is compact. Consequently, for any ¢, T'yTy is compact if and only if ﬁ¢g is
compact which holds if and only if ¢geC(B,)+L2(B,)", [14]. From the above
discussion, we see that

196 € C(B)+LA(B,)*
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for any ¢€ L>°(B,,). If there is a point 2o€.5?"~! such that g(zy)#0, then the rota-
tion invariance of C(B,)+L2(B,)" implies, by considering finitely many rotations
g; of g such that Zf:l [9;1*#£0 on §*"~1 that

k
(Z 1gj|2)¢ec<Bn>+Li<Bn>i

j=1

for any ¢€ L>°(B,,). Therefore, there exists some neighborhood V of $2"~! such
that Z§:1 |g;]*>c on V for some positive constant c. It follows that

dxv € C(Bn)+LE(Ba)*

for any ¢ L™ N(B")’ where yy denotes the characteristic function of V. Since for any
¢peL>®(B,), H(1_y,)e is compact, and hence (1—xv)¢p€C(B,)+L2(B,)* by [14].
Consequently,

¢ € C(Bp)+L2(B,)™*

for any ¢€L°°(B,,). This is obviously impossible, and hence leads to the desired
conclusion, that is, g|g2=—1=0. The claim is proved.

Assume f€C(B,,) such that TyT'y—T4T} is compact for any ¢€L°°(B,,). Since
Tily—TyTy =DyT;—T¢Ty+compact =I'yT;_ .-+ compact.

By the above claim, the equality f=f on $2"— follows. This completes the proof
of Theorem 4.4.

Corollary 4.5.

(1) There exists a bilateral shift W such that W essentially commutes with
each operator in E+E,, that is, WA— AW is compact for each AcE+E,.

(2) There is no unilateral shift of finite multiplicity which essentially commutes
with each operator in £+E,.

Proof. (1) Apply Theorem 3.2.

(2) In the case n=1, since each operator 4 in 7(SC(D)) has the form A=Ty+
compact for some feSC(D), Corollary 2.4 implies that the index of each Fredholm
operator in 7 (SC(D)) is zero. In the case n>1, since the index of each Fredholm
Toeplitz operator is zero by [5] or [11], the conclusion follows.
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