
On sums of primes 

H. Riesel and R. C. Vaughan 

1. Introduction 

In this paper we prove the following 

Theorem. Every even natural number can be represented as a sum o f  at most 
eighteen primes. 

It  follows at once that every natural number n with n >  1 is a sum of  at most 
nineteen primes. The previous best result of  this kind is due to Deshouillers [2] who 
has twentysix in place of nineteen. 

Let N(x)  denote the number of  even numbers n not  exceeding x for which n 
is the sum of at most two primes. Then it suffices to show that 

(1.1) N(x)  > x/18 (x >= 2), 

for then the theorem will follow in the usual manner (for example as in w 6 of  [7]). 
The proof  of  (1.1) is divided into three cases according to the size of  x. When 

log x~_375 we use the method described in w 7 of  [7], but with an important modifi- 
cation that enables us to dispense altogether with the Brun-Titchmarsh theorem. 
When log x_<-27 the inequality (1.1) is easy to establish. This leaves the intermediate 
region 27<1og x<375.  Here we develop a completely new argument, based partly 
on sieve estimates and partly on calculation. 

2. Some constants 

We give here a list of  constants that arise in the proof  together with estimates 
for their values. A detailed description of  the more difficult calculations is given 
in w 

Let 

[ (l~ 
(2.1) y~ = lirn ~ = x m - l ( l o g m )  k ~ .). 



46 H. Riesel and R. C. Vaughan 

Then it is well k n o w n  that 

(2.2) 0.577215-<~o<0.577216, -0.072816<~1<--0.072815.  

In fact 7o and ~,, are easily calculated by means of  the Euler-Maclaurin summation 
formula. 

Let 

(2.3) C = 2//p:,.z p(p--2) 
(p-- 1)2 ' 

the twin prime constant. Then 

(2.4) 

Define the multiplicative function g by taking 

(2.5) g(pk) = 0 
and 
(2.6) 

4 
g ( P ) =  p(p--2) ' 

Let 
(2.7) 
Then  

(2.8) 

Futher define 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 

1 . 3 2 0 3 2 3 < C < 1 . 3 2 0 3 2 4 .  

when k > 3 ,  g ( 2 ) = 0 ,  g ( 4 ) = - 3 / 4 ,  

--3p--2 2 
g ( p 2 ) _  p~(p--2)' g ( p 3 ) =  p~(p--2---~) 

. o  m m - w  H ( w )  = Z,,,=a [g( )[ " 

251.0127 < H ( -  1 )  < 251.0128. 

A 0 = ~ ' v  logp 
p ( p - 1 )  ' 

I 
A1 = ~-log 2+2A0, 

8pz-IOp + 4 "  "2 
A s = ~ p  ~ t logp),  

A3 = 4yo+2Ax, 

g(8)  = 1/4 

when p > 2. 

(2.13) 

Then 
(2.14) 

1 ~ ~ 1 (log2)2_A~" A4 = ~ A 3 - 2 y o - 4 ~ i + ~  

6.023476 < A3 < 6.023477, 1.114073 < A4 < 1.114074. 
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Let 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
Then 

(2.20) 

A5 = 3 . 2 8 2 C H { - + / ,  

An(J,) = 2A3--4 log 2--2 log 2, 

2 2 A7(2) = -~ ~ + 4A4-4Aa log 2+( log  2)2-- (2As - 4 log 2) Iog20, 

As(it) = 8Asit 1/~ 

As(it) = 4A321/~. 

~ 0 / ~ / ~  ~ 40~4~4, 8.463433 
I , z ]  

(2.21) 

(2.22) 

Let 

(2.23) 

and 

(2.24) 

_~.2606~ ~ ~ { ~ / ~ - ~ . 2 6 ~  

9~0.0~6 ~ ~ ( ~ / ~  9~0.0~, 29 . ,0~  ~ ~ , ( ~ ) ~  ~ , 0 ~ 9 .  

1 

2 p - 1  ] All =//,.~(1+ ~ ) .  
2~(3) ~(2) 105 

Then A l o -  -- - - ~ ( 3 )  and if(3) is readily estimated by means of  the 
3((6) •4 

Euler-Maclaurin summation formula. Thus 

(2.25) 
We also have 
(2.26) 

Let 

(2.27) 

and define 
(2.28) 
Then we have 
(2.29) 

1.295730 < Axo < 1.295731. 

1.772431 < All < 1.772432. 

p--1  
r(u)  = Z Z s ~ c ~ v  ~. ILl~,~v~ p - 2  ' 

s = n ( u ) - l .  

T(u) < t 
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where t=t(u) satisfies 

(2.30) 

We also have 

(2.31) 
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t(79) = 328.5614, t(99989) = 80096031. 

s(79) = 21, s (99989) = 9590. 

3. The sieve estimate 

The fundamental information concerning prime numbers that we use in the proof 
is embodied in Lemma 5 below. It is a refinement of Lemma 8 of Vaughan [7] and 
likewise follows from Corollary 1 of  Montgomery and Vaughan [4]. The improved 
values for A in Lemma 5 are essential to our argument. 

The principal term that arises from Corollary 1 of [4] is related to the sum 

2 
~'q~Q # (q)2//plq, p>2 p--2  

and in turn this is related to the sum 

Zma~ d(m) 
m 

The following lemma gives a good quantitative estimate for this latter sum. 

Lemma 1. When x>O, let 

(3.1) E(x) ~- z~<=x d(m) 1 (logx)2_2),0 logx_~,~]+2),l. 
m 2 

Then 
Ig(x)l < 1.641x -~/3. 

Proof. We have 

Let Bl(y )=y-[y]  - 1 ,  B 2 ( y ) = l ( y - [ y ] - l )  ~. Then the Euler-Maclaurin 

summation formula gives 

Znay I = logy+~,o - 1 B l ( y ) - y - 2 B ~ ( y ) + f 7  B~(u)2u-3du 

and 

~.l~m~--y log m = 1 m "-2 l~176 
Y 

- - ~ g  3 -- 2 log u 1 Y B2(y)--f~ ~ B2(u ) - uZ du. 
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Hence 

E(~) =-~ ~(r f; B2(u)u-a(6-4 log (ux-~Iz))du-D ( I / ~ -  2 Z =  ~ r  D(x/m) 

where 

D(y) = 1--Bl(y)+ y-2B~,(y)-- f =  Bz(u)2u -z du. 
y J ~ '  

1 1 < 1  
Clearly --~-~_B~(u)<~- and 0<=Bz(u)=~.  Thus, for x->I,  

< fe~'r 3--210g(ux -a/2) 1 oo du 
E(x) = .,, r 4u a du+x-al2+'a~m~-1/7 7-nf~,,, 

1 1 
~ t--~+--~ e-a) x-l-lr-X -II2, 

3 -- 2 log (ux -1/2) 
4u a 

and 

e(x) 
4 ~r 

m ( 1  1/ '  

.,~ 3 _ 1"3-- 2 log (ux-1/2)]~ e~ du 1 1 
> - - - X - ~ , ~ - - - - X - * . - ~ l  . ~ .I  3 - - I  
= 4 I. --8u 2 L"~-r J~'rl/7 4u a 8x 3/2 64x ~ 

1'2 ( 3  1 _ [ ~ + _ f f  e-Z) 1 1 a,2 1 2 -----x-, x- - ~ x - ,  - ~ x - .  

Therefore, for x=>2 we have 

1"6 (3  1 ) -  2'a 1 -  7/6 1 IE(x)lxl/~ ~ 2 -  / + [ ~ + g  e -8 z - ,  + - i f 2 -  +~-~2 -~/3 < 1.5. 

When l<=x<2  we have 
1 

E(x) = 1-- ~- (log x) 2 -  270 log x -  7o 2 + 2y~. 

Moreover E(x) is strictly decreasing on (1, 2), E(1)=1--7~+271<0.53 

E ( 2 - )  = 1 - +  (log 2)2--270 log 2 ~ 0~ 5 2  �9 Hence 

[E(x){x 1/a < 0.67. 
When 0 < x < l  we have 

1 
E(x) = - ~ -  (log x )2 -  270 log x -  7o2 +27t.  

Let 

F ( x ) = -  (21 (log x) 2 + 270 log x + 702 - 27i ) x 1/a. 

and 
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Then F(x )~O-  as x ~ 0 + ,  F(x)--,--~o as x-*+o~ and F(x)has a local mini- 
mum at x_ and a local maximum at x+ where x+ is given by 

log x+ = -- 270 -- 3 ~ (27~] + 9 + 471) 1/2. 

0 < x _ < x + < l ,  F ( x i ) = 3  (log x++27o)X~ 3, F(1--)=271--7o~Z > --0.48 Moreover 

and 

Hence 

Lemma 2. Let 

--1.641 < F(x_) < 0 < F(X+ ) -< 0.13. 

IE(x)lx 1:3 : lF(x)l < 1.641. 

2 
(3.2) S(y) = Xq~-y ~ ( q ) 2 / / ; &  p _ 2 -  

Then for y >- 1, 
12CS(y)-Oog y ) 2 - A  3 log y-A4I  < AsY -1/3. 

1 
Pro@ Let g be as in (2.5) and (2.6) and define for w > - - -  

2 
(3.3) G(w) = ~=lg(n) n-w" 

Then it is easily verified that when w > 0  

S,~. #(q)2rt. 2 _ ~(w+l)2G(w). (3.4) ~ , : 1  "~  ~ly>j~ p - 2  

Thus, be the identity theorem for Dirichlet series, 

(3.5) S(y) : Zm g(m) ~,~-y/m d(n) 
n 

Therefore, by (3.1), 

(3.6) S(y) = .~,,g(rn) log +2701og +7o2-271+E . 

By (2.7) and Lemma 1, 

(3.7) ~ , , , g (m)EIY  } < 1.641y-1/3H(-----13}. 

The main term in (3.6) is 

(3.8) (~(logy)2+27ology+7~-ZTa)G(O)+(logy+27o)G'(O)+1G"(O). 

By (3.3), (2.5), (2.6) and (2.3), 

1 ( 4 p - 2 - 3 p + 2 ]  
(3.9) a (o)  = ~-/--/,>2 (1+ ~ ] = c-1 .  
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By (3.4), when w>0 

G(w) = ~(w+ 1)-=(1 +2 -w)//~,>,~ {1 -t 

Hence 

where 

S(w)  = 
2 log2 

2 w + l  - -  1 

-~ (  ) J(  ) W = W 

log 2 _ ( 2 log p 
2w+ 1 + 2'p>2 ['p~--Ti-Z-_ 1 

pC 

21ogp_ __] 
pW ( p -  2) + 21" 

Letting w-~0+ 

(3.1o) 
We also have 

gives, by (2.10) and (2.9), 

G" (O) = A1C -1. 

c"(w) = (J'(w) + J(~)$ C(w) 
and 

2~' log~ 2 [2pW(p-Z)log~p 2pW+:log2p] 
S'(w)-- (2~+1) , b ~ p l , ~ ) ~ - ~ )  ~ ~ 1 - ~ ) "  

Hence, by (2.11), 

G"(O) = ( I  (log2)2-A,+ A~) C -1. 

Therefore the main term in (3.6) is 

1 2)2_A~+A~)" 1 {(log y)~+ (43'o + 2A0 (log y) + 2y]-4y: +4yoA: + ~" (log 
2C 

The lemma now follows from (2.12), (2.13), (2.15), (3.6) and (3.7). 

Lemma 3. When n is even, let 

(3.12) 

Then 

(3.13) 

and, for z>= l, 
(3.14) 

1 
[2C& (z) - (log z) z -  1 A6 (1) (log z) ---~- A7 (1) I 

{ 2 } i 
l + z_lq I I  ~q ~ / /pl(q, . ) 'pi l -  

&(z) >= s~ (z)//;s pP7-12 

< ~ ~s(l),-"'+J A,(1),-,. 

51 
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Proof Let s(q)=Holqp, the squarefree kernel of q. By considering the expan- 
sions 

2 (21h 1 ~o 1 
p - 2  = Z~=~ p , p--1 =Zh=l~-# 

it follows that 
1 

S,(z) = ~(q)~_ . q+ z_lqs(q) Z (d,d~q___lf(d ) 

where f is the multiplicative function with f(pm)=2m-L Thus 

(d,n):l dr+z-ldrs(dr)  t s(q)ln,~dd q ) 

= ~s(m)~z 
1 

m+z-lms(m)  ~Y~ol~'df(k) 1-/ff1>"2[1+1(1+2+ 22+"')} - l p  p2 

which gives (3.13). 
By (3.12) and (3.2), 

Let 
(3.15) 
Then by Lemma 2, 

zS(u) 
&(z) = S(z)+ f :  (z+u)2 du. 

M(y) ----- (log y ) 2 + A  3 log y+A,. 

2CS~(z) [1 M ( z ) - f ;  zM(u) I 1 A z -1/3• f~ zA5u-1/3 
- 5  (z+u)~ au <-~ ~ ~al (z+u)~ 

du 

.~ 1 A5 z_1/3 _~_ z - 1 A  5 u-1/a au. 

Therefore 

1 M ( z ) - f ~  zM(u) (3.16) 12CS2(z) - - 2  - (z + u) 2 du < 2A5z -1/3. 

By (3.15), 
p 

z zM(u) du = [ -  zM(u) ] r zM (u) f: L ]l+J; au. 

The first term on the right contributes 

zA4 1 2 1 1 �9 (log z) -- ~ Aa log z -  ~- A4 
z + l  2 
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and the integral on the right contributes 

2z u)au+f; f ,  1 u(z+u) (log u(-~u) du. 

On expanding z(z+u) -1 as an infinite series in powers of u and interchanging the 
order of summation and integration (obviously justified by bounded convergence) 
the first integral becomes 

.~~ = (log z)2--I-~,;:12[-+) h [,-~-logz- zh--lh2 .) 
rc ~ 2 ( -  I) h-1 

----- (log z) 2 -- 2 (log 2) (log z) + -6--- ~ = 1  zhh 2 

Hence, by (3.15), 

zM(u) 
M(z) + f ;  (z + u) 2 du = (log z) 2 + (As"  2 log 2) log z + A4 

z~ 2 2(--1) ' -1  A, ( 1) 
+ - - f f - -A31og2- -~=l  zhh2 z + l  bA31og 1+ z . 

The terms in the series Z~h~l 2Z-h(--1)h-lh -2 decrease in absolute value and oscil- 
late in sign. Thus the series lies between 0 and 2/z. Also, by (2.16) A a - 2  log 2 - -  
1 ~z 2 1 

by (2.17) &+-g--Alog2=l-A,(1), by (2.14) 0<A4<A3--2 ,  by 

1 1 
(2.18) 2As=~-A~(1), and by (2.19) As=~-Ao(1).  Hence, by (3.16) we have the 

lemma. 

Lemma 4. Suppose that x>=,~ and Z-~-(X/~) 112. Then 

[8CS2(z)-(log x)2-A,(2)  log x-A7(2)i<As(2)x-~16+Ag(2)x-1/~. 

Proof. The lemma follows at once from (2.16), (2.17), (2.18), (2.19) and Lemma 3. 

Lemma 5. Let 

(3.17) R(x, a, b) = sup ~',P~$b pr~m~ 1 

where the supremum is taken over all intervals I of  length x. Suppose that L and 
A=A(L) are related by the table below. Then, whenever x>=e z and ab~O we have 

( 8Cx _ l O O x ~ i 2 ) ~ p - I  
R(x, a, b) < (logx)(A+logx) p - 2 "  
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L A B L A B 

24 0 0.97 48 8.2 8.2054 
25 1 2.31 60 8.3 8.302 
26 2 3.40 82 8.35 8.3503 
27 3 4.28 100 8.37 8.3708 
28 4 5.00 127 8.39 8.3905 
29 5 5.58 147 8.4 8.4004 
31 6 6.45 174 8.41 8.4102 
34 7 7.24 214 8.42 8.4201 
36 7.5 7.56 278 8.43 8.4301 
42 8 8.04 396 8.44 8.44004 
44 8.1 8.11 690 8.45 8.45001 

Proof. We may suppose that ( a ,b )= l  and ab is even, for otherwise 
R(x, a, b)~-2 and the conclusion is trivial. Let N=[x] and let I denote a typical 
interval of length x. For some integer M the integers h in I satisfy M<h<=M+N+ 1. 
Let 

Then 
~z "~M+N 1 +2z~(z) +1 ~ , c I  1 = z ~ h = M +  1 

ap+b prime (h(ah+b), Q)=I 

where Q=Hp~_zp. Therefore, by Corollary 1 of Montgomery and Vaughan [4], 

R(x, a, b) <= Z,~_, N+3/2qz //nl(q,,b) _ + 2x~/2" 

Hence, by (3.12) and (3.18), 

R(x, a, b) <- x(S,b(Z))-I + 2X 1/2. 
Therefore, by (3.13), 

p - 1  
(3.19) R(x, a, b) ~ (x(g2(z))-l--[-Zx 1/2) 1-[gla>b 2 1;z2. 

3 
By Lemma 4 with 2=~-  we have 

where 
8CS2(z) > (log x)2+F(x) log x 

log x x 1 / 6 1 0 g x  x ~/~ log x" 
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By (2.20), (2.21) and (2.22), F(x) is an increasing function of x for x >  1 

F(x) > B (x>--_e L ) 

where B is given by the above table. Hence, by (3.19), 

and 

8Cx } p - 1  
(3.20) R(x, a, b) < (logx)(B+logx) t-2xl/2 _lI~t.~ p - 2  " 

Since (log x)x -1/6 is a decreasing function for x ~ e  ~ and, by (2.4), 

(3.21) 4C(B--A) xl/e (logx)(A+logx)(B+logx) < 51 

when x = e  L and A and B are given by the above table, it follows that (3.21) holds 
whenever x>=e L. Moreover (3.21) is equivalent to 

8Cx 8Cx 
t- 102x 1/2 < 

(log x) (B + log x) 

The lemma now follows from (3.20). 

(log x) (A +log x) " 

4. An auxiliary lemma concerning prime numbers 

In order to treat N(x) we need to know that the prime numbers are fairly plenti- 
ful, and are reasonably well distributed. This information is provided by the follow- 
ing lemma. 

Lemma 6. (i) Suppose that log x->17. Then 

(4.1) 

(ii) Suppose that 

x 
n(x) > +(0.9911) (logx) 2. 

log x=>300. Then 

x x 
(4.2) n (x) < 1 - ~  + (1.0151) ( ~  x) 2 . 

Proof We quote a number of  results from Rosser and Schoenfeld [6]. Their 
Theorem 2 gives 

[O(x)-x I < xe(x) (log x => 105) 
where 
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with X = ( R  -~ log X) 1/2 and R=9.645908801. Now e(x) log x=e(x)X2R and 
Xn/4e -x  is decreasing for X >  11/4. Hence 

(4.3) lO(x)-xl < (0.000154)l@gx (logx -> 3000). 

The table on page 267 of Rosser and Schoenfeld [6], the use of which is described at 
the beginning of their w gives values of e and b such that 

[~k(x)-xl < ex ( logx --> b). 

Inspection of  this table shows that 

(4.4) IO(x)-xI < (0.00822) 1-~g x (22 <_- logx <_- 5000). 

Theorem 6 of Rosser and Schoenfeld [5] gives 

O(x) > ~ , (x ) - (1 .001102)x l /~ -3x  1/3 (x > 0). 
Thus 

O(x) > ~ (x ) - (0 .0003961)1 -~  x (logx => 22). 

Hence, by (4.4) and (4.3), 

(4.5) O(x) > x--(0.00862) l @ g  x (logx _--> 22). 

Now 

(4.6) zc(x)-  O(x) O(u) 
logx t-f~ (logu) = du. 

Writing 6=0.00862, y = e  ~2 we obtain for x>=y 

rt(x) > x fix f x  1 5 
logx (logx) ~ I - jy  

~ d u 
(log u) 2 (log u) a 

x 6x [ u 6u lX+r~  2 36 
= log~ (logx) ~ q- (logu) 2 (logu)alr Jy  (logu) z (logu) - - - - 4 d u  

When log x=>32 

x x ( 6 y (log x) 2] 
> l - ~ g x + ~  1 - 6  logx x(logy)a]" 

6 y (log x) 2 
log x X(logy)a 

is a decreasing function of x and so does not exceed 0.00028. This gives (4.1) when 
log x~32.  
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Corollary 2 to Theorem 7 of Rosser and Schoenfeld [6] gives 

X 
O(x) > x -  (x >= 678,407). 

40 log x 

Let y=678,407.  Then, by (4.6), when x~=y we have 

x x 1 1 x x 
zt(x) >- logx  40(logx) 2 ~ - f ;  (logu) ~ 40(logu) a du = - -  log x 40 (log x) 2 

[ u  u 2u 3uJXf:6 12 
+ "(log u) 2 40 (log u) z q- (log u) ~ 40 (log u) ~ y + (log u) 4 40 (log u) 5 du 

x x x [79--1ogx 3 y ( logx)3(  2 )1 
> l - ~ g x  + (logx) 2 b ~ t  40 401ogx x( logy)  2 l+l--o~gy " 

Hence, for 17_<-1ogx<=35 w e  have 

X X 

7t (x) > log x b (log x) ~ 

which is more than is required. 
It remains to prove (4.2). We have O(x)<=~(x). Hence, by (4.3) and (4.4) 

Let y = e  2~176 

3 r  
0 (x) < x + (0.00822) 

and 6=0.00822. Then, by (4.6), 

(log x =>- 22). 

Let 

I =  f~ '  - -  

Then 
[ u 2u  ]x e:, 

Hence, when log x->300, 

Similarly 

6 du 
(log u) 4 

I < 1.006818 

,, du 
f~  (log u) z 

(log u) 2 1+  du+rc(y ) .  

(log u) 2" 

< (0.003385) x 
(logx) 2 

(log x) 2" 

Therefore, by (4.7), we have (4.2) as desired. 

X 

du 

x 2x 6I  
< (log x) -------~ ~ (log x) ~ § (log y)~" 
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5. The estimation of N(x) when x is small 

Lemma 7. Suppose that 2<=x<=e ~7. Then N(x)>x/18. 

Proof. Each of 2, 4, 6, 8 is the sum of at most two primes. Hence N(x)>x/18 
when 2=<x=67. 

By considering those numbers of the form p+3  and p+5 with p=>3 it follows 
that 

N(x) >= ~(x -3)+~(x-5) - l -Z~_p~_x_~ 1. 
p--2primr 

If p >  7 and p -  2 is prime, then p -  4 is not prime whereas both p and p -  2 are count- 
ed by ~(x-3) .  Hence 

.Zs-~p_~x-s 2 <= ~ ( x - 3 ) .  
p--2primr 

Thus, when x~8 ,  

1 3 
N(x) >= - ~ n ( x - 3 ) + n ( x - 5 ) -  1 _-> -~ n(x) -4 .  

By (3.3) of Theorem 2 of Rosser and Schoenfeld [5], when x=>67 we have 

We have .... Y 
log y 

Thus 

2x 
~ ( x ) _  -> 

(2 log x)-- 1 " 
> (  32 / 1/2 ( X )1/2 

i , - ~ e  ) whenever y >  1. Thus, on writing y =  1--~) we have 

6 4 
x(21ogx-1)  z +x-~<0 for x > 2 .  

is decreasing for x=>67 

3 4 1 
(2 l o g x ) - i  x 18 

and is positive when x=e  ~7. 

6. The intermediate region 

It is in the proof of the following lemma that the improved form of Lemma 5 
plays a crucial r61e. 

Lemma 8. Suppose that 

Proof. Let 
(6.1) 

24<=1og x<-424. Then 

N(x) > x/18. 

Pl+P2 ~ n  
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where u is a parameter at our disposal with 

(6.2) 3 _~ u _<- 105. 

Note that R(n)=0  when n>x.  Hence, by Cauchy's inequality 

(• .R(n))  2 ~- N(x) Z . R ( n )  ~. 
We also have 

Z .  R (n) 2 = Z .  R ( . ) +  ZZ3_~,~ <,2<_-. Z z  +~,,-~,~-,3-~-. 2. 
pa--p~+pl prime 

Therefore, by Lemma 5 and (2.27), 

16CxN(x) T(u) 
(6.3) Z ,  R (n) (,~, R (n) -- U(x)) <= (log x) (A + log x) " 

By (6.1), 

(6.4) .~ ,  R(n) = (re(u)-- 1)(re(x- u)-- 1) 

and, by (6.2) and Lemma 6, 

~(x -  u ) - i  ~ ~ ( x ) - u  >-_ a 
where 

(6.5) 

and 

(6.6) D = 0 (24 ~ log x =< 42), D = 0.99 (log x > 42). 

Therefore, by (2.28) and (6.4), 

as (as-- N(x)) <- as (.~. R (n) - N(x)) <= ( 2 .  R (n)) ( Z .  R (n)-- N(x)). 
Let 

16Cx 
(6.7) fl = (log x) (A + log x) " 
then, by (2.29) and (6.3) 

x Dx 
(log l o g x  x). 

Hence 
as(~s-- N(x)) <= fltN(x). 

~2S2 

N(x) ~= as+flit 

Therefore, it suffices to show that for suitable choices of u we have 

a2s 2 X 

as+fit > 1-8" 

By (6.5) and (6.7) this is equivalent to 
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where 
l = log x. 

For given A, D, u with A~0 ,  D=>0 the left hand side of (6.8) is a decreasing 
function of  I. We choose our parameters as follows. 

A--0, D = 0 ,  u=79  when 24 =<I~ 42. 
A=8 ,  D=0.99,  u=-99989 when 42</<=300. 
A=8.43, D=0.99, u=99989 when 300</<_-400. 
A--8.44, D=-0.99, u=-99989 when 400</<=424. 

These choices are in conformity with Lemma 5 and (6.6). Then on inserting in (6.8) 
the corresponding values ofs  and t given by (2.29) and (2.30) and the upper bound for 
C given by (2.4) we see that the left hand side of (6.8) is positive when /=-42, when 
I=300, when /=400 and when I=-424 respectively. The lemma now follows. 

7. Preliminaries to the estimation of N(x) when x is large 

Let 

(7.1) 

(7.2) 

and define 

(7.3) 

(7.4) 

and 

(7.5) 

K = 200, y = x/(K+2), 

Ik = ('~ ky; "~ ky + y] (k = 1, 2 ...... K)  

Rk(n) = Zv.p'  1, 
p+p'=n 
pElk, p" ~lk 

w(n) =lI,~_21 

e = Z [ = I  Z n  Rk (g) W (H). 

Lemma 9. Suppose that logy>350.  Then 

T < (N(x) -- N(y)) 8Cy 

Proof. By (7.3), Rk(n)=O when n_-<kj~ or 

Rk(n) = ~'~kr<p<.-~kr 1 when 
n - -  p p r i m e  

Rk(n) = Z~--~ky_y~p~ky+y 1 when 
n - -  p p r i m e  

n>lcy+2y, 

ky < n <= ky + y. 

k y +  y < n <= ky+  2y. 
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so that 
l )  

60 <= l _-< log ~- -~ = m. Then 

f '  (u) =/ (8 .3  + l ) -8 .3  - 21 
12 (8.3 + l) ~ 

m (8.3 + m) - 8.3 - 2m 
m 2 (8.3 + m)  2 

Now ( l ( 8 . 3 + l ) - 8 . 3 - 2 l ) I - 2 ( 8 . 3 + l )  -~ is strictly decreasing for l~60.  Thus 
i f ( u ) >  0 when m >  l->60 and so (7.8) holds. This completes the proof of the lemrna. 

Hence, by (7.5), 

K 
(7.6) T = Zr<,~_~yRl (n)w(n)+~k=~ky<,~ky+y(Rk(n)+Rk_l (n) )w(n)  

+ ~Kr+r  <,<_Ky+2y RK (n) w (n), 

and, by (7.4) and Lemrna 5, when k y + e 6 ~  6~ we have 

(7.7) (Rk (n) + Rk-1 (n)) w (n) 

( u y -u  t < 8C (log u)(83 +log u) + "(log ( y -  u ) ) ~ - l o g  ( y -  u))  

where u = n - k y .  If  instead k y + y - e 6 ~  then 

( : 8Cu 100ul/2+eOO] (Rk(.)+Rk-l(.))w(n) 
t(log u) (8.3 +log  u) ) 

and since u>y-e6~  ~2~ it follows that 

(Rk (,0 + R~_ 1 (n)) w ('0 < 8 Cy 
(log y) (8.3 + log y)" 

A similar argument gives the same inequality when ky < n <=ky + e 6~ Also, by Lem- 
ma 5, we have 

Rk(n)w(n ) < 8Cy (k = 1 or K). 
(log y) (8.3 + log y) 

Therefore the lemma will follow from (7.6) and (7.7) provided that we can show that 

(7.8) 
u y - - u  y 

(log + log.  f og + 5/ 
\ \ 

60-<= --~ 1 whenever e =u___~-y. Writef(u)  for the left hand side of (7.8) and consider it as a 

function of the continuous variable u. For brevity write l = log u, m = log ( y -  u), 
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8. A lower bound for 

By (7.4), 

Hence, by (7.5), 
(8,1) 
where 

(8.2) 

#(d) 
(d)" ~o 

K 7 / -  Zk=l  ~uk 

~(d) 

By (7.3), when y > 4  and d is odd, 

(8.3) Z~ ,  R~(~) -- Z ~ , ,  Z~I~+,~, l. 

1 
Hence, by (7.1) and (7.2), this expression is zero when d>-~x. 

(8.4) 

Then, by (8.2), 

(8.5) 

Let 
(8.6) 

21"d tp \t~y din 

~u k = ~ •  y/~(d) 
k T ~ ~ e (d) 2 ~ .  Rk (.). 

Mk = k , Nk = k y  + y --  M,, ,  
( 2 )1/2 

z = z k =  t T N k )  , 

Let 

z 
W=Wk= 100" 

When d~_-~ y 

by (8.3), 

(8.7) 
where 
(8.8) 

it follows from (7.2) that every prime p in Ik satisfies pJ(d. Hence, 

1 
Z n  .Rk(n) = ~ •zraodd X(--1)lSk(z)] 2 

din 

Sk(x) = Z , , c i ~  x ( p ) .  

Moreover each term in (8.7) is unaltered if we replace Z by the primitive character 
Z* that induces it. Let d* denote the conductor of Z. Then, by (8.5) and (8.7), 

(8.9) ~k = Ck -- Ak + 0~ + ~k 
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where 

(8.10) It(d) 
~k = X ~  d ~o(d)2 ~z~Oddd,_~w if(-- 1)lSk(ff)12' 

(8.11) - 

(8.12) 

Let 
(8.13) 

It(d) 
a~ = X ~ ,  e(d)~ XjN$~ z*(- 1)Is,(z*)l ~, 

Ok = X ~ ,  q~(d)2 It(d) X:~,m~$d X(--1)ISk(Z)[ e" 

S k -.= X p C l  k 1. 

Lemma 10. Suppose that log y>350. Then 

I_~1 <_- 6.31A1oSk . 

Proof. The length oflk is y and in (8.3)p' is determined by p modulo 2d. Hence 
1 

when d>~y,  p' is uniquely determined. Therefore 

Z .  Rk(n) <= S~. 
dTn 

Hence, by (8.4), 

We have 

_ ~ "  ~ ,,(a~.. 2 
2{d ,,y \t*) 

(8.14) 1 1 #(02 
q~ (d) = "d X'la q~ (r) " 

Hence 

Z 1  1 P(d)Z P(r)~ ~ 1  < 1 1 It(/~)2 ( l + l o g y } .  
-~,<d_yx q~ (d) <- Z~,od~ r~o (r) ~-, m_-~ ~- < 2?,odd r~o (r) 
2a'd 

Therefore, by (7.1) and (2.23), 

[zkl ~- al0(l+log(202))sk. 

Lemma 11. Suppose that log y>350. Then 

Y&.  
IOk[ ~ 3A10 w 

Pro@ When w<d<=2y, it follows from (8.8) that 
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Therefore, by (8.12), 
3 S #(d)2 

[O~l <_- 5 ~y Z ~  d r  " 
By (8.14), 

/t(d)2 < #(r) = 1 < 2 / / p > z / l + o ( o l _ l ) )  
Za>~,a d p ( d )  = Z'~ Z m > ~ / ' - ~  = w t, p t p - )  " 

The lemma now follows from (2.23). 

Lemma 12. Suppose that logy>350.  Then 

Proof. Clearly 

d*~w r~=w 

Izt i < & k = 8 A l l W  �9 

Z z m o d r l S k 0 0 [  2 "~ Z r ~ _ w  (t9(r) Z Z p E I k ,  p'EIk 
p~p" (mod r) 

Hence, by (8.6) and (8.11), 

P(d)2 2WySk. (8.a5) IZkl <---- Z ~ ,  ~o(d)~ 

Define the multiplicative function g by 

g (2) = 0, g(p) = - -  

Then for odd squarefree d 

Hence 

2p--1 (p>2) ,  g(pk)=0 ( k > l ) .  
(p-- 1)2 

1 1 
g(r).  

q~(cl)~ - d~  ~,Zd 

#(d)~ < X g(r) Z 1 < 4 Z g(_r). 
Z d,-1, (p(d) 2 -= ~'% r 2 ,.~---~-~ = y - - ,  r 

2{a 

Therefore, by (8.15) and (2.24), we have the lemma. 

Lemma 13. Suppose that logy>350.  Then 

1 /16 2 2Sk(Nk--Sk_lOg5) ] 
~k ~ ~ C ( - ~ S k  15(--2.9024+lOgNk)) 

Proof. By (8.10), 

~k = Zq~_w Z~mo~q Z(-- 1)ISk(DI 2~ya #(d) 
~Jd ~~ 2 
2i'd 



On sums of primes 65 

where ~ *  means that we sun only over the primitive characters modulo q. Let 

1 
f (q)  = IIplq p(p -2 )  

when q is odd and squarefree, and let f ( q )=0  otherwise. Then, by (2.3), 

Hence 
(8.16) 

Let 

#(d) _ 1 C~(q)f(q).  

1C2q~w p(q)f(q) ~ m o d q  z ( -  1) lak(x)I  ~. 

S(~) : Z p ~ ,  k e(ap) 

where e(fl)=e 2~ip. Then, by (2.6) of Montgomery and Vaughan [4], (7.2) and (8.6), 
we have 

(8.17) Zq~=~ Nk+-~q z Z <= Sk. 

When Z is a character modulo q, let z(X) denote the gaussian sum associated with Z, 

1 
Then, for q<=~y, 

Hence 

= Z~=I z(r)e . 

(q) 1 
S k =- qg(q) ZzmodqZ(a)z(]~)Sk(z). 

a) _ 1 
Z f f = l  =1 Sk q ~o(q) Zx ['~(Z)I2[Sk(z)[2" 

(a, q) 

Let q* denote the conductor of Z. It is easily shown (e.g. on page 67 of Davenport [1]) 
that I~(z)l~=q * when q/q* is squarefree and (q/q*,q*)=l, and that I~(z)12=0 
otherwise. Hence 

(~.)1~ I~(q/r)2r Z~.I)_ 1 Sk a =Zrlq Z;modrlSk(z)] 2" 
, -- (q/r, r) =1 go(q) 

Therefore, by (8.6) and (8.17), 

( #(m) 2 1 }~,~ 2 
(m,O=~ q~(rn) l+r~nz -~ = 



66 H.  Riesel  a n d  R.  C. V a u g h a n  

By Lemmas 3 and 8 of Montgomery and Vaughan [4] and (8.6), whenever 

r ~ w  

we have 
r / / ( m )  2 1 

Zm~_zlr " > 0.361 +log ___z. 
~o(r) {.m,r)=l qg(m) l +rmz  -1 r 

Hence 

(8.18) .~5~_r~_w(O.361-FlogZ) ~zmodrlSk(z)[z <= SkNk--Sg(O.361q-logz). 

There is only one primitive character Z modulo 3, and for that character we havo 
X ( - 1 ) = - I .  Hence, by (8.16), 

1 2 * 
~k >= -~ C(S~, -- ~5~_q~_wf(q) ~zmoaa [Sk(Z)I2). 

Therefore, by (8.18), 

~k = "~ C (S~, - FSkNk + FS~, (0.361 + log z)) 
where 

f (q )  F = max 
5~--q ~ w  Z 

0.361 +log-~ 

The lemma will now follow from (8.6) if we show that the maximum occurs when 
q=5. Consider the function of 

ct(0.361+log z )  (l <_-- ct <_-- z). 

This has its maximum when ct=z exp (-0.639), i.e., by (8.6), when ct>w. Hence 
it is strictly increasing when 5<_-ct<=w. Therefore, when 7<=q<-w and q is odd and 
and squarefree we have 

0"361+10g zq plq ( q ) - -  3 ( + l o g 7 )  q 0.361+10g 7 0.361 

By (8.6) and the hypothesis logy>350 this is 

1 

15(0.361§ 
This establishes that the maximum occurs when q = 5 and completes the proof of 
the lemma. 
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Lemma 14. Suppose that logy>350. Then 

-~5(( log5] l--~--yy( +2.9267] } ~k :> 8+T~--~- ) Sff-- 1 ~ ) S  k . 

Proof. By (2.25), 

6.31Alo < e -3~176 

Hence, by Lemma 10 and (2.4), 

(8.19) I~1 <- ~ 1 0 - 5 ~  

(8.21) 

We have 

Y 
(log y)2" 

(log y)2 

Z 

. 

(2 Nk)~l~ W=- . 
By (8.6), y - - l < N k < y + l ,  z= --~ ' 100 

1 
Therefore w > - - y l / ~ > e ~ 5 ( l o g y ) Z .  Therefore, by (2.25), Lemma 11 and (2.4), 

200 

C lO_SO y____.~__ Sk. (8.20) [Okl <-- --~ (logy)2 

r 2 ~1/2 
Similarly w<LTNk j <yl/2<e-125y(logy)-2. Hence, by (2.26), Lemma 12 and 

(2.4), 

lakl <-- ~ 10 -50 Y--Y--&. 
(log y)2 

( ,)( 2.9024)-1= Nk Y l + y  1 Y 
--2.9024+1ogN k < 1 - ~  logy logy 

y (log y +(2.9024 ) logy (2.9024) log y ) 4 (log y)2 t y  - 2.9024 +log y ~- y ( ~ 4 T l o g  y))" 

Since logy=>350, this does not exceed 

Y +(2.92667) Y ~  
log y (log y)2 �9 

We also have 
- 2.9024 +log Nk < -- 2.9024 +log (y + 1) < log y. 

Hence, by Lemma 13, 

((8+ l~  Y (14 2.92667~ ) +~ ~-~5 tt logyjS:-l--~--~-~ ~ js j. 
The lemma now follows from this and (8.9), (8.19) (8.20) and (8.21). 
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We now have to estimate S~ from below, and the following lemma gives a sui- 
table bound. 

Lemma 15. Suppose that logy>350. Then 

K S ~  ~ = 1  k 

Proof. By (7.2) and (8.13), 

Ky l1 3.6581 
log y log y ~ " 

(8.22) 

By (4.1), when 2 ~> 1 we have 

2y g (;~y) -- 
log 2y 

~y (l_l_~gly((log2)logy 
log y log 2y 

q-(0.9911) 2y 
(log 2y) ~ 

Moreover, when 2=>exp (1.9822) 

(log 2)z- (0.9911)z z 

is an increasing function of z for z<= 1 and (logy)]log 2y 
of y bounded above by 1. Thus 

(8.23) 

By (4.2), 

and 

2y (1 (log2)-0.9911 }. 
rc (~y) > ~ log y 

y ( 1.0151 ) 
7 z ( y ) < ~  1+ logy ) 

is an increasing function 

7z ( l y )  < Y~21ogy (1 + 1-@gl y ((log 2) ~-t-l~ ' ( 1 . 0 1 5 1 ) ( ~ ) z ) )  

< 1 o ~  ( 2 +  0"85683) " logy 

Therefore, by (8.22) and (8.23), 

K ICy ( 1 -  AI~ 
log y log y I 
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where 
1 / ) 

A12 = ~ -  - - ~  log 2 -0.9911 

+ -----2-- K+2 (l~ K+2 - 0"9911) + 1"0151+ 0"85683 } 2 

The lemma now follows from (7.1). 
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9. Completion of the proof of (1.1) 

In view of Lemmas 7 and 8 it suffices now to show that 

x -y  
(9.1) N(x)-N(y) > 18 

where logx_->375 and y is given by (7.1) (so that logy>350). 
By Cauchy's inequality and Lemma 15, 

Z~kK $2 1 [w~ Sa2 
=1 k ~ '~ ' -k~k=l  k) > - -  

Therefore, by Lemma 14 and (8.1), 

K S Y (1 3"6581"}~+1 k- 
log y log y 

(1+2"9267]] 7 t> '~ t /~+ l -~gy jC  ((_ l o g 5 , f l  3.6581)_1ogy ~ 7 )  1o--~ z:=ISk 

C (7_  30.5989] y K 
> 1--ff logy ) ~  Z~=ISk" 

Thus, by Lemma 15 again, 

Since logy=>350 we have 

56.2056.] Ky 2 
log y ) (log y)2 �9 

log y 

6.8986 
~1- t  log y 
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Therefore, by (9.2) and Lemma 9, 

Ky {7 56'2056)f1+6"8986~ 
N(x) -  N(y) > ~ log y ) I. l - - i - ~ )  

Ky [ 9.0233 ) Ky 
> ~ .7 1--~y ) > (6.974) 120" 

Hence, by (7.1), 
N(x ) -  N(y) > (0.0578)(x--y), 

which gives (9.1) and so completes the proof of (1.1). 

10. The computations 

The different products taken over all primes p with p~-q were computed in the 
following manner. Consider 

a = l [ p ~ f ( p )  
or equivalently 

R = log Q = ~ _ ~  logf(p). 

In each case it is possible to expand logf(p) in the form 

ZT=r+lajp -j/r. 

Usually r =  1, but in the case of (2.8) it is necessary to take r=3.  Thus 

R = 2T=,+lajPq(j/r) 
where 

= p-'. 

The value of P~(s) can be easily deduced from the corresponding value of the prime 
zeta function 

e(s) = ?~(s). 

For some values of s this has been computed by Fr6berg [3]. In general the value of 
P(s) can be obtained from the relation 

e(s) = l o g  

Since log ~(ks)~log (1 +2 -k') ~2 -k' this converges more rapidly than the geometric 
series 

(2-') 

However the convergence is still quite slow when s is close to 1. For instance, to find 

P f 4 / c o r r e c t  to 10 decimal places would already require about 25 terms. This dif- 
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ficulty was surmounted by using instead the relation 

Pq(s) = Zk=: /~(k)k-: log (a(ks) 
where 

~.(ks) = / / , ~ q  (1 _ p - S ) - 1  = ((s)//s ( l_p_~) .  

We chose q = 19 and terminated the summation at k =  15. Then the relative error is 

PI9(S)-Iz:=:7 # (k)k-: log (:9(ks) 

n-~-+["+:u-'du,.._: so that Sl,(S)~_l+19-'+l f : u - ' d u ,  the re- and since 

lative error is majorized by 

11 ( 1 9 )  1'] < 19_1~15_: < (2.4)10_2, . 19~Zy=:,p(k)2k-:19 -k~ l+ - i -g t~ -  ) ) 

Thus we have only a small error in P19(s) provided that log ~:9(ks) can be computed 
with a small error. Since (:g(ks) is close to 1 when ks is large it is necessary, in order 
to avoid loss of  accuracy in this case, to write x=:19(ks)-i and to calculate 
log ( l + x )  as 

1 ~ 1 3 x--~x +-5-x - . . .  

This in turn requires an accurate estimate for ~:9(s)-1 when s >  1. This was ob- 
tained, without much cancellation, from the relation 

rewritten as 

where 

: : 9 ( s )  = : 3 ( s )  " - s  H3~p~17 (1 - -p  ) 

::9(S)-- 1 = T//n~=p~_l 7 (1 _ p - S ) +  U 

T = Zn~19 n-s  
n odd 

and U is a finite sum consisting of  powers of  primes not  exceeding 17. The sum T 
was computed, as usual, via the Euler - -Madaur in  summation formula and the rest 
of  the calculation introduced only rounding errors. 

As a check on the programme we also computed log ~19(s) as 

20 k--: ~=: P19 (ks) 

for different values of s. In no case was the difference larger than 10 -1~ log (:9@). 
All the sums and products needed were computed by using the calculated values 

of P19(s). For example, in the case of (2.8), the general factor in H ( - 1 )  when 
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p ~ 3  is given by 

and on writing 

4 3p+ 2 2 
1+ p2/3(p_2 ) + pV3(p_ 2) -k p ( p -  2-----~ 

z=p -~/3 this becomes 

with 
c ~ = 3 ,  c 5 = 4 ,  c k=21-1  

1 +2;2"=4 ck z* 

(k = 3l), c~ = 21+1 ( k  = 31+1, k = 3l+2) 

when I_~2. The logarithm of this has an expansion of the form 

where 
Z~=4 bk zk, 

bk ~ X l ~ _ j ~ _ � 8 8  Clx...Cl i. 
ll+...+lj=k 

We calculated -/-�88 truncating at k=62.  This probably gives rise to a 

truncation error < 10 -19. However this is quite difficult to prove. Instead the follow- 
ing crude argument suffices for our purposes. 

Clearly, when 0~z<=9/16. 

Hence 

where 

Thus 

and 

Z;=4 Ibkl zk ~= - l o g  (1-Z~'=4 ckzk)" 

4z 5 3z4+2z 7 2z ~ ] 
F(z) = - l o g  1 l__2z 3 l__2z z l__2z~). 

1 6  -63 
IZk~6z bk zk] < 3.5 (---~-z) . 

It  follows that 

4 3p+ 2 2 } 
log//,~19 1+ p~/3(p_2) + p,/3(p_2) ~ p(p-2)  

where 
63 

6~ k Zk=4 bkP19( /3)-~ E 
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The coefficients bk were evaluated exactly by a computer programme when k<=62. 
Then the prior estimates for P19(s) give 

.~=4 bkP19 (k/3) = 0.8850635511946 .... 

The estimate (2.8) now follows. 

The series containing log p and (log p)Z were computed as derivatives, via the 
relation 

d k 
ds k p-Sf(p) = (_ log p)k p-Sf(p), 

by Richardson extrapolation with successive differences h=0.08, 0.04, 0.02, 0.01. 
An analysis of the errors arising shows that, using floating point, double precision 
arithmetic (61 bits= 18 decimals) throughout we obtained about 16 decimal places 
in function values, 14 in first derivatives, and 12 in second derivatives. 

The very laborious computation of T(u), given by (2.27), for all primes u<  105, 
was speeded up in the following manner. First of all the value of 

]-/'pla p-- 1 
p>~ p--2 

was calculated for each even d<  105 and stored. Then for each prime u the value of 
T(u) was updated from the value of T for the previous prime by adding on the contri- 
butions arising from each d with d = u - p  and p<u. This required about 
1 

~-n(105)2-~46.106 accesses to the values stored at the beginning. Using double 

precision arithmetic we finally found 

T(99989) = 80096030.30... 

correct to at least 10 significant figures. 
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