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0. Introduetion

Let A be a classical scalar pseudo-differential operator of order m (cf. Kohn —
Nirenberg [7]) in an open subset 2 of R". We are interested in estimates of A
from below of the form

Re (Au , u) > Clulyy, € CF(K) (0.1)

where K is a compact subset of £ and |u|, is the norm of u in the space
H,, of functions with derivatives of order s in L? and (v,u)= f vii dz, If
s > m/2 the estimate is always true for some C since (4w ,u) is continuous
in Hi,. On the other hand, if s <m/2 it is easy to see that (0.1) implies

Rea,(x,& >0 (0.2)

where a, is the principal symbol of 4. In the opposite direction Garding [3]
proved that if (0.2) is valid, then we can for every ¢ > 0 and every s find a constant
C=C(K,e,s) such that

Re (du , u) + sjujf, > Cluly,), » € C0P(K) (0.3)

if 4 =m/2. A simple modification of the proof gives the same result for any
u> (m—1)/2. In fact if A satisfies (0.2) and m/2 > u > (m — 1)/2 then we
can write

(4 + A4%)/2 + (1 + [DP)* = P*P + @

where P and @ are pseudo-differential operators in £ and the order of @ does
not exceed m — 1.

However the situation becomes more complex when g = (m — 1)/2. It was
proved by Hoérmander [5] that (0.2) does imply that (0.3) is valid for some & > 0,
but to have (0.3) for every &> 0 we must clearly in addition to (0.2) place a
restriction on the termsin 4 of order m — 1. In this paper we shall study necessary
and sufficient conditions on A for (0.3) to be valid for every &> 0 when
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# = {(m — 1)/2. The proof depends on the localization technique introduced in
Hormander [5, 6] but requires more careful estimates of remainder terms. In addition
we have to make a complete study of inequalities of the following kind,

Re f W) S (BN D o)y >0, v €CI(RY) (0.4)

lat+pl =2

where a; are complex numbers.

This will be done in section 2 and the study of (0.3) when u = (m — 1)/2 will
be carried out in section 3. In section 4 we shall use our results to prove a theorem
due to Radkevi¢ [10] about hypoellipticity for a certain class of classical pseudo-
differential operators with non-negative principal symbol. We also mention that
the inequality (0.3) with u = (m — 1)/2 has been treated in the vector valued
case by Lax-Nirenberg [9]. (See also [2] and [11].)

Finally I want to thank my teacher prof. L. Hérmander for his kind interest
in this work and many suggestions for improvements.

1. Notation and preliminaries

We shall make use of the familiar notation D; = — i 9/dx;, where i = vV —1
and if D= (D,,...,D,) is the gradient vector and &« = (%, ..., «,) is a multi-
index with the «; non-negative integers then D* denotes the differential operator
Div...Don. We set |a|=2a and ol =o!...ax) If y=(y,,...,%.) we
define 3* in a similar way. By & or S(R") we denote the set of all functions
@ € C*(R") such that

sup |2’ D*®(z)] < © (1.1)

for all multi-indices « and f. H, is the completetion of S in the norm

ity = (271)_"/ (14 [E7)" (&) dé (L.2)

where # denotes the Fourier transform of «

#(&) :fe*"<”"5>u(x) dx

If X is an open subset of R® and a belongs to O (X X R") and satisfies the
inequality

\DED%a( , £)] < Cy px(l + [E)" ™, 2€K, FER (1.3)

when K is a compact subset of X, then a(xz, D) will denote the corresponding
pseudo-differential operator (of order m)
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a{x , D)u(x) = (2x)™" / e~ >q(x , EYu(E)dE, u € OF(R™) .

In particular, if  and % belong to S then y(D)u will denote the function whose
Fourier transform equals .

If A is a classical pseudo-differential operator of order m with symbol a,
then q; (with j =m, m — 1,...) will denote the part of a that is homogeneous
of degree j with respect to &. Finally with @ as in (1.3) we shall use the notation
af = (iD,)’(iD,)* a.

2. A study of the inequality (0.4)

Let af denote complex numbers and consider the inequality
Re/@ > (Yalphagy’D*u(y)dy >0, v € CP(R) (2.1)
la+B] <k

where k is a non-negative integer. Of course the form defined in (2.1) does not
determine the coefficients af uniquely, but we claim that there exist uniquely
determined real coefficients bf such that

Re / wWy) S (b y Dru(y)dy , v € CF(R™) (2.2)
a8l <&

defines the same form. For the existence of such &% it is enough to prove that

Im / @)y Dv(y)dy = Re / oY}y D™ — D*yP)[23} v(y)dy

can be written in this form, but this follows easily from the fact that
YD — Dyy; = 0y, (2.3)

To prove the uniqueness when the coefficients are real we replace »(y) in (2.1)
by ¢(y — tx)e*=7'¢> where f lp(y) By = 1 and get the expression

Re / dB S (slphas(y + t=f(D + o)y

la+AT<k
which is a polynomial in ¢ with the leading coefficient
e, & = > aja’&/«!p! (2.4)
la+-B|=k

Hence by letting ¢t tend to infinity we can conclude that two sets of real coefficients
defining the same form must coincide and that the validity of (2.1) implies that
the form % is positive semi-definite. When k& = 2 and there are no lower terms
the converse statement is valid for by formula (2.3)
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/ oY)y Do)y = / o(y)Dyp(y)dy + o, / lo(y)Pdy , v €CP(R")  (2.5)

so when taking real partsin (2.1) ¥ and D can be treated as commutating operators.
In particular, if A(x, &) is a real quadratic form on R" @ R", then we have a
well defined form

Ro / 20) by , Dly)dy , v € CR(RY)

and by a diagonalization of % one immediately sees that the expression is non-
negative if A is positive semi-definite. Also, when &k = 2,

hy <y implics Re f 2@k (v » Dy(y)dy < Ro / Sty , D)y . (2.6)

When k = 2 we get the correspondence between the coefficients in (2.1) and (2.2)
by the equations
by =Reaj if a+p#0, bg:Reag—Iﬁlz_lImag/.‘z. (2.7)
We shall now confine ourselves to the case when % equals 2 in formula (2.1) and
let 2 and f denote the quadratic respectively the linear part of the corresponding
polynomial with real coefficients on R" @ R". If {u,v)> denotes the standard
Euclidean scalar product on R" @ R", then there is a unique symmetric trans-
formation H such that

h(u) = {Hu,u>, w€R" @ R".

By ¢ we shall also denote multiplication by the imaginary unit in R" ® E* when
this space is identified with C" as a real vector space under the isomorphism

RR@R3x,8)—xt+iE€C.

We shall examine the invariance of (2.1) when the symbol (y, D) is transformed
as a vector in R" @ R* and find that our inequality is invariant under the
symplectic group of R" @ R™

Definition 2.1. We define the symplectic bilinear form ¢ on R* @ R* by the
equation

ou,v)=Im@wm,v)={—twm,v>={u,wy, u,vER" P R" (2.8)

where (u,v) denotes the Hermitian scalar product on C". The corresponding
linear transformations on R" @ R® under which o(%, ) remains unaltered are
called canonical transformations. They form the symplectic group Sp(E" @ B").

If H is strictly positive, then (Hu ,v) defines a scalar product b on R" @ R”
and since

(HiHw ,v> = {Hu ,(— iH)v), w,v€R" @ R"
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tH is skew-symmetric with respect to b and it follows that the spectrum of H
is situated on the imaginary axis, symmetrically around the origin. The last statement,
is clearly valid even if H is only positive semi-definite since the eigenvalues of
a linear transformation depend continuously on the transformation and H =
lim,_ , H 4 eI, where I is the identity transformation.

Definition 2.2. By Tr H ('ﬁ' k) we shall mean the sum of the positive elements
in 4 - Spectrum (iH) where each eigenvalue is counted with its multiplicity.

It follows from the argument above that Tr H depends continuously on H.

Remark 2.3. In order to illustrate the natural role of Tr H we shall prove
that it is invariant under symplectic transformations. If y € Sp(R* @ R") then
the polynomial %(yu) corresponds to the symmetric transformation 3'Hy, where
%' is the adjoint of y with respect to the standard Euclidean structure of R* @ R",
so we have to show that

Tr y Hy—Tr H . (2.9)
Now by the definition of Sp(R" @ R")

iy =y
hence
i Hy =y i Hy
which implies that iy'Hy and ¢H have the same characteristic polynomial.
THEOREM 2.4. The inequality (2.1) with k= 2 is valid if and only if
(i) Ax, &) = > | 5 =2 Re afa’&ulpl >0
() flx,&) = > 415 =1 Reagale>
vanishes in the null space of h, and -
(iti) Reag— > 5y Imaf/2 — CHY, />4 + Tr H >0.
Remark 2.5. Although H-' does not have to exist the expression (H-If,f)
is well defined by (ii) and as is easily seen
CHTY, f> = sup <u, fH2. (2.11)
h(u) <1
In view of (2.7) we may assume that the coefficients af are real in the proof of
Theorem 2.4. Of course we shall make use of the trivial fact that we could as well
let » run through & in (2.1).
Definition 2.6. We shall say that two polynomials p, and p, on R* @ R"
are symplectically equivalent if there is a canonical transformation y such that

p(x(v) = pa(v), vER" @ B".

By a symplectic basis for R* @ R we shall mean a basis {e;,...,¢e,, fi,...,[.}
with the property

O'(ej s ey) = O'(fj J) =0, U(ej o) = — 6jk'
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LemMa 2.7. Let p, and p, be symplectically equivalent polynomials of the second
degree with real coefficients. Then the inequality

R{/EQWMthMmdyZO,vGS (2.12)

is valid for p, if and only if it is valid for p,.

We have already proved the necessity of condition (i) in Theorem 2.4. Using
Lemma 2.7 it will be easy to finish the proof of Theorem 2.4 in the case where
h is positive definite. We observe that

o(u ,v) = (HSu ,v) = b(Su , v)

where S = (1H)! is skew-symmetric with respect to b. By a standard result
concerning normal transformations on a Hilbert space we shall be able to reduce
our problem to the case » = 1. In fact, we have the following

LeEMMA 2.8. Let {4 ,..., A} be the positive elements (counted with multiplicity)
in - Spectrum (S). Then R @ R" can be written as a direct sum

RoR =3V,

which is orthogonal with respect to b and where V; has an orthonormal basis {e; , f;}
in the same sense such that

Se; = — Af,, Sfi=Ae,j=1,...,m. (2.13)

Notice that this condition implies that {#,,...,E,,F,,...,F,} with
B = A e, Fy = A%, is a symplectic basis for R @ R". If (EY,...,E)} is
the standard orthonormal basis for C", then {E},...,E!, F},...,F.} with
F} = iE] is a symplectic basis for R" @ R". Let y denote the canonical trans-
formation which maps E] on E; and F] on F; for j=1,...,n If

HY = tE + ...+ t,B, + uF, + ...+ 7,F,

and
v=uxB + ... B+ R+ ...+ EF,
then an easy computation yields
0 0 - —1 2 2
ay + f 5 o> 4+ hgv) = @y + Z Z’j (tjxj + & + 2 + 5]) . (2.14)
i=1
According to Lemma 2.7 we have to study the inequality
Re / oyHad + 3 4y + D + v+ D)Yoly)dy =0, v€S. (2.15)
j=1

Replacing v by

e {Ey(y)
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in {2.15) and repeating the same argument after a Fourier transformation we get
the equivalent inequality,

(ag — CHY , f>[4) f [o(y) Py + /1734) > ANy + Diw(y)dy =0, vE€S. (2.16)
Here we have used the equation

2 AN + 7)) = bHY, HYf) = CHf. f>
Let u € CY(R). By expanding the right-hand side of the inequality

0 S/ (D — Awy)ul* dy

we get for real 1
/’17,(D2 + 2y¥udy > l/ |u|2 dy .

(This is essentially the proof of the uncertainty relation.) Hence we obtain by
choosing 4 =1

/ o(y) > A7 @ + D)oy dy = S A4 / [o(y) 2 dy (2.17)

and choosing #(y) = e~ "I we see that the inequality cannot be improved.

Since Tr H = > A~ this will complete the proof of Theorem 2.4 in case H—!
exists. The general case follows from a continuity argument. We replace the coeffi-
cients aj by af(e) in such a way that H will be replaced by H, = H + eI while
f and ay are conserved. From (2.6) we get (for ¢ > 0)

Re [ 3 (lpiy D dy < Re [5G0 S (BP0 ay
latpl =2 jatBl <2
and since g(g) = af — (H'f,f>/4+ + 'ﬁ(HE) tends to g(0) when ¢ tends to zero
the necessity of (ii) and (iii) follows.
Conversely, if (ii) and (iii) are fulfilled we can choose a function ¢(¢) tending
to zero when ¢ tends to zero such that

& + ple) — CHT'f, f3/4 + Tr (H,) = 0

and then the sufficiency of our conditions follows since for fixed v the left hand
side of (2.1) depends continuously on the coefficients aj.

Proof of Lemma 2.7. The idea is to subject v in formula (2.12) to isomorphisms
of & which lead to linear transformations of (y , D) generating Sp = Sp(£" @ B").
We shall introduce three subsets G, G, and G, of Sp:

G, is the group of all transformations of the form 7' @ T° where T is an
isomorphism in R" and 7" denotes the adjoint transformation. This is the group
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of linear transformations in R" @ R" obtained by regarding the second copy as
the dual space of the first.

G, is the set of all elementary canonical transformations, i.e. transformations
of the form

C"3 (s e e y2) = (02, L, 6902 (2.18)
where o is the characteristic function of a subset of {1,...,n}.
G, is the group of transformations
EoOR>@,8)—>(@,&§— Sx) (2.19)

where S is a symmetric linear transformation on the Euclidean space R".

If the validity of (2.12) for p; implies the same for p, — p, o y when y €G;,
then we shall say that (2.12) is G,-invariant.

To prove that (2.12) is G, — invariant we replace w(y) in (2.12) by »"(y) =
»(Ty) where T is an isomorphism in E". By the chain rule

D"y = (T'D)*)"

where (T'D,)e'<* > = (T"§)e' <% >, A substitution of y by T—'x in the integral
yields us the equation

Re / T W)pi(y , D' (y) dy = |det T|* Re / v(@)py (T , T'D,)o(x) dx

from which the G-invariance follows.
When proving the (,-invariance we shall construct the partial Fourier transform
that corresponds to y in (2.18),

7 =T77
w(j)=1

where
7 u(E) = / e TG TWE LG, Gy, E)dY, WES.

Replacing » in (2.12) by 7,(v) and using the formulas
y;7,=9,D;, D7, =—T y if yp(j)=1 (2.20)
ngw: ‘wyj’ ngw:ngj if 'tp(j):O

/ I,00) 7, uly) dy = (2m)=0) / v(y)uly) dy ,

we see that (2.12) is also Gy-invariant.
In the proof of the Gy-invariance we replace v in (2.12) by e~ ' <% 7>y(y)
with § as in (2.19). Now

Dy(e i <9 >Py(y)) = ¢~ < I>EHD, 8 ()o(y) (2.21)
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where S(y) is the jth coordinate of S(y) and since y and D commute in (2.1)
when k=2 and the coefficients are real we get

Re / T () DY <> o)) dy = (2.22)

— Re / oD — S o)dy , ] <2.

The Gj-invariance now follows immediately from (2.21) and (2.22). In order to
complete the proof of Lemma 2.7 we have to show

Lemma 2.9. The sets Gy, G, and G, generate together the symplectic group
Sp(R" @ R").

We shall use the symbol A(n) to denote the set of all subspaces 4 of B" @ R*
which are isotropic in the symplectic geometry and of maximal dimension, i.e.
A € A(n) if and only if dim (1) == and

olu,v) =90 when u,v€AL. (2.23)

R*=1[E},...,E" and iR"=[F},...,F’] belong to A(n). It is easy to see
that if 2, € A(n) is transversal to +R", that is, the projection 2,— R" along
1R" is surjective, then there is a symmetric linear transformation § on R" such
that

Ao ={(x, Sx);xz € R"}.

Let 1, € A(n). By looking at the image of the projection
3 (@,8 —>z€R"
we realize that there exists an elementary canonical transformation y such that
x(4) 1is transversal to ¢R". (Cf. [1, § 96]).
Proof of Lemma 2.9. Let y € Sp. By the remark above there is a x, in @,
and a symmetric linear transformation § such that
x1° x(¢B") = {(x, Sx) ; x € R"} .

Choosing y, as in (2.19) we get

ixe© ja° x(iR") = iR".

Since R" is transversal to iR" it follows that x'R" is transversal to yx¢E" for
any linear bijective y'. Hence there is a symmetric linear transformation §,; such
that

ix2 0 po y(B") ={(x,8z);x €R"}.

If y; denotes the corresponding map defined in (2.19) and y, = yzoteo ygo 1%
we have

2a(B") = R", yy(iR") = iR".
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Thus y,=A ® B where 4 and B are linear transformations on RE". Since
x4 € Sp we must have y, €, and we conclude that y belongs to the group
generated by @, G, and 6.

Remark 2.10. It is easy to describe those positive semi-definite linear trans-

formations H of R" @ R" for which Tr vanish. The following statements are

equivalent
1° T H=0
2° H(R" ® R")c A for some A€ A(n)
3° H1(0)D 4 for some A€ A(n).

The equivalence between 2° and 3° follows from the fact that A+ = i1, where A+
denotes the orthogonal complement of 12 with respect to the standard Euclidean
structure. Let G denote the positive square root of H. Since GiG is skew-
symmetric the equivalence between 1° and 2° will follow from the following chain
of implications:
1° < ¢H is nilpotent = G4G is nilpotent = GG = 0 => HiH = 0 <« 2°,
We shall end this section with an application of our results to the inequality

/ IE:A,%v(y) + ;”B,rbva) Ry > o / o)Edy, vECPRY.  (2.24)

Here A, and B, are vectors in a (complex) Hilbert space 9¢ and since there
is no ambiguity we use the symbols (A4 , B) for the scalar product and |4| for
the norm in 9L

By using (2.5) we get
/ |2, dy0(y) + §1j B,D,(y) | dy = (2.25)

= Re (— zz (4,, B,)) / [v(y)® dy - Re f o(y) {> Re (4, , 4,)y.y,5(y) +

Vot

+ 22 Re (4, ,B)y,Doyy) + 2 Re (B, , B,)D,Duy)} dy .
Vot vou
We now introduce the Gramian of %, ,...,h, € 9¢{ as the matrix -
G(hl IR hm) = ((kj 3 hk))}'tk=1 .

Notice that Re G(hy,...,h,) is a real positive semi-definite matrix since
Re (g, h) -is an Euclidean scalar product in the real subspace of 9C spanned by
{hy,...,hy} over R. Let H=ReG(4,,...,4,,B,,...,B,), then by (2.25)

the inequality (2.24) is equivalent with

Re (— i3 (4, B) / o) dy + Re f @<H(%),(%)>v(y> dy > (2.26)

Zcflv(y)lzdy, v € O7(R") .
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Theorem 2.4 then gives us
ProrosiTioN 2.11. The tnequality (2.24) is valid if and only if

¢c<Re(—i>(4,,B)+TrReGd,,...,4,,B,,...,B). (2.27)
1

In particular, the best constant in (2.24) is a continuous function of the vectors A,
and B,

Remark 2.12. Hormander [5] has given necessary and sufficient conditions for
(2.24) to hold with a positive constant ¢. We have however not managed to derive
an easy criterion for this directly from (2.27).

Remark 2.13. The validity of the inequality (2.1) when % = 2 and conditions
(i) and (iii) of Theorem 2.4 are fulfilled (with % positive definite) can also be proved
in the following more general way. For the sake of simplicity we assume that the
coefficients are real. Let X, (¢=1,...,2n) be symmetric linear operators
defined in a dense set F of a complex Hilbert space 9¢ and suppose that X,(F)
is contained in ¥ for all X; and that the following relations hold (ef. (2.3)),

XX — XX, =[X;,X]=—V — L,l. (2.28)

Here J = (J,) denotes the matrix for 4, the multiplication by the imaginary
unit in R* @ R*, and I is the identity transformation in 9(. We shall prove the
inequality

Re (p(X)v,v) >0, v€EF, (2.29)

where X = (X;,...,X,,) and p(w) = {Hu ,u) + {f,w)> -+ ay is defined as in
Theorem 2.4. It follows from (2.28) that the left hand side of (2.29) is well defined.

By the computations after Lemma 2.8 we can find a symplectic matrix y such
that

n

A, gy = 30l + k053 A

Z

We now introduce new operators X, by the equations

2n

Xj = leijv + gJI i

where g = 1/2yH-'f. It is then easy to verify that the operators X; will satisfy
(2.28). Since we have

)= 32X+ X2 — KHY DT + ol

the inequality (2.29) will follow from the uncertainty relation.
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3. Localization of lower bounds for pseudo-differential operators

We shall now apply the results of section 2 to a localization of the inequality
(0.3). Let ¢ be a twice continuously differentiable function defined in an open
setin R™. We then define the Hessian of ¢ as the matrix

H ,(x) = (D) (D) p(@))] umr - (3.1)

J
THEOREM 3.1. Assumethat a,, > 0. Then the inequality (0.3) with p = (m — 1)/2
holds for every & > 0 and every s with suitable C when K 1is any compact set in
2 if and only if
Rea,_,+12TrH, >0

at the zeros of @, in QxS

Remark 3.2. The condition «, >> 0 is a consequence of (0.3) if we assume
that A4 is self-adjoint, which is no restriction. If we do not introduce any nor-
malization our conditions are:

Rea, >0 (3.2)
and Rea,_; + (12)Tm > aff) + (1/2) Tt Hy,, >0 (3.3)
=1

at the zeros of Rea, in 2x8" %
BRemark 3.3. From (2.9) and the identity

H, (x,rE) = r'"“lx'Hum(x 8y, r>0,

where y = r’E ® r~'* E and E is the unit matrix of order s, we conclude
that 'E'H,,m in Theorem 3.1 is homogeneous of degree (m — 1) in £&.

In the proof of Theorem 3.1 we shall reduce ourselves to the case m = 1. Let
R¢ denote properly supported pseudo-differential operators in £ with symbol
(I + |€"¢* and set A, = R™°AR™°. Recall that a pseudo-differential operator
A in £ is called properly supported if both projections supp K, - £ are proper,
where K, is the distribution kernel of 4. See also [6], p. 148. Then A satisfies
(0.83) with g = (m — 1)/2 for every &> 0 and every s when C is suitably
chosen if and only if the same holds for 4, with u = (m — 2¢ — 1)/2. Since
an(x , §) = 0 implies grad, 4 a.(x,&) =0 we also find that the conditions in
Theorem 3.1 are left invariant if we replace 4 by 4,. Henceforth we shall therefore
assume that m = 1.

Proof that the condition in Theorem 3.1 is necessary

Assume that a,(z°, ") =0 with (2°,%°) in ©2xS8""'. Choose any &> 0
and let K be a compact set in £ containing 2° as an interior point. We want to
show that (0.3) implies
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Re ao(a® , 1) + 12 Tr H,(a*, 1) = 0. (3.4)

In order to get (3.4) we shall construct a class of functions with support near

2’ and with Fourier transform concentrated close to the half-ray generated by

n° in R". For the sake of simplicity we assume that 2’ = 0. Let » € CQ(R")
and set

u, () = Po(Jx)ei <= #n'>

Then |u,|q = |v|g and u;, € CF(K) for large 1. A simple calculation yields

(du, , 1) = (22)™ / / 6= 52a(all, P+ 2)5 (@Oe@dads . (3.5)
Since the first-order derivatives of a; at (0, 7" vanish and since

(17" + 28] + 1)t = O(HA(L + [&])

a Taylor expansion of @ about (0,%°) will give

ale/d, Bn’ 4 26) = > a0, ") PEXIBl + ag(0 , °) + O()AHL + [ED*. (3.6)

|a+B]=2

Then applying the Fourier inversion formula and using (0.3) with s = —1
we get with some constant € that does not depend on A

Re/m > (1/x1Nags(0 , ")’ Dv(x)da +

la+-B8=2
+ (¢ + Re a0, 7)) f [0(@) 2 de -+ 2720(1) = Clay [y -

Now |u;(_y—0 when A—> co. Hence by first letting 1 tend to infinity and
then letting ¢ tend to zero we arrive at the inequality

Re / (x) > (1ax!BNass(0 , n°)2’ Do(x) dw + Re ay(0, 7°) [ [v(x)?de >0 (3.7)

Joe+8|=2

when v belongs to CF(R"). The inequality (3.4) now follows by Theorem 2.4.

Proof that the condition in Theorem 3.1. is sufficient

Following Hormander [5] we shall make a localization of the estimates by
means of partitions of unity in the variables 2 and & There exist sequences
(pe and (y)i, of non-negative functions belonging to Cg°(R") such that the
following conditions are fulfilled (See [5], p. 141 —142):

vil€) = pul€ . |7, and gqoi(x) - i:wi@ ~1 (3.8)
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(and at most 2" supports overlap)

le —y| < C if x,y €supp (¢y) (3.9)
> D) <0, (3.10)
1§ —n| < CEM* if &,y €supp (p) and k=0 (3.11)
and finally
> &) —wmR < OlE— P &7 i 1§ — g < J8)/2. (3.12)

When proving this part of Theorem 3.1 we make the convention that constants
depending only on 4 and the chosen partitions of unity are to be denoted by
the same symbol C. Of course, we may restrict ourselves to the case s = — 1/4
in (0.3), so we have to show that if ¢ > 0 is given, and K is a compact set in 2
then there exists a constant C such that

Re (du , u) + 51“]%0) = C’|’“|%_1/4) , u€CFP(K). (3.13)

Furthermore, since the contribution to Re (4w , ) that comes from Im @, and
terms of negative degree is continuous in H_,4,, we may also assume that
A =a{x,D) with a =a,+ o, and a, real valued.

Finally we notice that the validity of (3.13) is not affected if the symbol
of A is changed outside a neighbourhood of K. Hence replacing a by
(1 — )1 4+ D' + ya(x, &), where y belongs to CP(2) and 0 <yplx) <1
with equality to the right in a neighbourhood of K, we may assume that 4 is
defined in 2 = R" and that the symbol of A4 equals 7(&) = (1 -~ |£)”* outside
a compact set in R*. We shall prove (3.13) with K replaced by R"

To begin with we shall split up « by its spectrum and make the corresponding
approximations of the operator. Let 0 == & belong to the support of y; and let
6 be a number with 0 << § <<1. We introduce the differential operators

Ado(z) = 12 () , E[O)D — &8\ u(x), v € C®(R").
of <2

We shall prove the inequality

(du, u) — 3 (Al (6DYu , p(6DYw)| < C8luly + Cslult s for uw € CF(RY) . (3.14)
J

Of course (3.14) is valid if it holds for 4 = (1 4 |D|*)'* and when A is replaced

by B =b(x,D) where B satisfies (1.3) with m = 1 and vanishes when x is

outside a compact subset of B". When 4 = (1 + |[D|")'* we get by using Parseval’s

formula and (3.8)

(du,u) — 3 (Ady(5DYu , p,(8D)) = (22)"" f () Fa()d

where with r(§) = (1 4 |&)'?
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= 24090 — 3 (e — /o)
J ol <2

From (3.11) and Taylor’s formula we deduce the existence of a constant C such that
lg(&)] < CoTF|E|T i |E] > 08

and using this inequality we easily prove (3.14) in this case.

We shall now prove (3.14) for B. If 3(7} , &) denotes the Fourier transform
of b with respect to the variables = then

(Bu,w) — 3 (Bly(8D)u , (D)) / / (& n)ie)atn)dsdn

j

where

Hy& ) = 1/2 3 (9(08) — y,(om)* by — &, &) + (3.15)

+ > p (0w (on)ibn — £, 8) - ; (1a)p@(y — & , E1[0)(& — &[8)} .
j af <2
Our approximation will be good for small § since we have
Lemma 3.4. For large N there are constants Cy independent of 6 and functions
@5, n € CF(R") such that

Hy(&, m)| < Oxo(1 + 1 — )™ + g5, 5(E)ps, n(n) - (3.16)
Proof. By carrying out partial integrations one obtains
1D%(n, &) < Cy ol + 1)1 + [ED (8.17)

and Taylor’s formula then gives us an estimate for the second term in the expression
for H; when 6(|&| + [n]) is large by

Cn(l + | — Ei)””%ﬂpj(%)wj(én)!/ﬁ — &6'q;, 5(&) (3.18)

where

g,s(8) = sup (1 + [& 4 (&[0 — &)))2

0<t<<1

From (3.11) we obtain
&=l < OO < nglf2 i jy08)y;(dn) + 0 and |p| > 4027,

so if jy(0&)y;(dn) = 0 and [£] + |n| > 1202671 then we must have [§| > 4(?257.
By replacing & by &/6 and 5 by & in the inequality above we get

16— &[] < COTMIE < (g2 i Iyl 4 & > 120751 and jy(08)y(on) = O
Then the sum in (3.18) can be estimated by
{ONOT (L Iy — EDTVETA + Jy — D7V
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if 8(|n] 4+ 1&]) is large enough, and since the first factor tends to zero when
(I€] + in]) = oo we realize that the second sum in (3.15) can be estimated by the
right hand side of (3.16).

It remains to estimate the first sum in (3.15). Now (3.12) together with (3.17)
gives us

S (;(08) — w(om)Rlbin — £, &) < Cxd(1 + In — &)Y

if |£— g <|é)/2 (and |&] + |y is large). Finally if |& — 5] > |£]/2 and N > 2
then

by — &, &) < Op(1 4+ [EN(L + |y — &N~ < 61 + [ — &)Y

if |&] + [g| is large enough. This completes the proof of the lemma.
The validity of (3.14) for B now follows from Lemma 3.4 and the inequality

// (1 1§ — 5]~V [a(E)] [d(n) |dédn < 0/ |u(@)Pdz , w € OF(E") .

We shall also carry out a partition of « in the variables x. If ¢ == ¢(z) is a
real valued function in CP(R") then

Re ( / p(Av)pida — / Af((pv)(pﬁdx) =
= Re / (pifl 2 (1/a)aX(x , &8} p(D — E 8w — (D — &/8)*(¢v)}d .

We shall replace ¢ by ¢u(z|&|"*) and v by 9;(6D)u(z). In doing so we note
that when the differentiations on the right hand side are carried out we obtain in
addition to the term

— o > a¥x, E/8)Dp/a!

je]=2

only terms containing a factor @Dg. Since > ¢ Dg, = 0 these will drop out
when we sum over %k which gives

Re {(Afy,(0DYu , p(sDyu) — 3 (Aluf¥ , wlhy} = (3.19)
%
= % szf(l/“!)““(x s &118)|18 (D) (2 |E7 V)| yy(0D)u Pdic .
Here we have introduced
wi(@) = gz )& [Py (0D)u(z) .

We shall use the symbol O(1) to denote functions that can be estimated uni
formly when # and 6 vary. Summing over j in (3.19) and using (3.14) we get
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, 8,k ik
Re (dw , u) = Z Re (4juf , wf) — (3.20)

- / (1atya(x , £16)|& (oD pi) (@187 M%) ly,(ODYu Pdac +

Js k[oc[ 2

+ 60(1)]u|(0) + 060(1)[“](_1/4) , w€CP(R").
The fact that a satisfies (1.3) with m = 1 uniformly when « € R" and that

/ [p,(8D)upde = f () Pda

implies that the second sum in (3.20) can be written as (1)6]u|(20). Hence
Re (4u, u) = 3 Re (dfuf , u) + 500 ulfy + COM My - (3:21)
Je
We shall now make a change of variables and introduce the functions »§ by
the equations
wi@) = <= =0l (@ — o) g )
where
xjk — |§j]-—l/2xk
and
ot = &7 € supp (¢i) -
The last relation follows from the definition of £ and since
Wi (y)| = gula”® + ) [y (dD)u((=* 4 9) &7
we also have by (3.9)
supp (v}) © {y € B"; ly| < C}.

This fact together with a change of variables in the integrals (4%, w}) and a
Taylor expansion of a at (x*,&/8) with respect to the variable z gives us

&M AG W) = (3.22)
= 2 / (Ya)a (@™ + yl&]| 7, 18) 182D y))lk(y)dy —
= S (B, &) (-l f T D)y +
la+8{<2
+ oS 3 / \Doé(y) Py .

In order to estimate the remainder in (3.22) we introduce the functions v? by
the equations,

W (8DYu(x) = ¢ <= F>gl(geI 1) |
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By (3.11) there is a constant C such that
|08 — &] < C|E"* if & € Spectrum (y;(6D)u)
and hence

IE] < 08 if & € Spectrum (v}) . (3.23)

Now o differs from ¢} only by a translation and using (3.10) and (3.23) together
with Parseval’s formula we get since the »7¥ have their supports in a fixed compact
set in R"

Z/ 2. l?/ﬁD“U{sk(y)lzd?/£0N5"2N]§jl"’2/ l;(8D)u|*da . (3.24)
£ J |atfT<N

By first summing over all indices j with [&] > 6712 we get
S 65 |gl| f 9y (OD)ude = O()3[ufly + O)C,lultyy
J

and using this together with (3.21), (3.22) and (3.24) (with N = 2) we get
Re (Au , u) = (3.25)
=2 @™ Re 3 (xlphag(a™, £]0)|E7| (100 / Ky Dol (y)dy +
Jok

latBl <2
+ 50(1)]’“’1%0) + 050(1)|u|?_1/4) , u€CP(R").

We have now reduced our problem to an estimate of the individual terms in
(3.25). In the rest of the proof § will be kept fixed so that the remainder term
60(1)]u|?0) in (3.25) is greater than —(e/3)|u|?0). In order to complete the proof
it is enough to find a sequence ¢; tending to zero when j tends to infinity such that

Re S (1alflas(c®, £9]8)|e7|(x=1oD / T Dy +  (3.26)

a8l <2

+ (¢/2) / o5 @) fdy = — o / > 1Dy Pdy .

jo] <4

For multiplying both sides of (3.26) by |&/|~™* after a summation over %k and
using (3.24) and the equality

IE"I”"”Z/ Ivﬁk(y)lzdy=/Iw,-(éD)ulzdy

we realize that (3.13) follows from (3.25) if the resulting terms are summed over j.
Remark 3.5. Since

ai | £]3)]& (-0 / T D)y

can be estimated by a constant times
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Sl gl |tk Bl2 [ S Dol (y) [Pdy
y=2

when |x 4 B8] <2, and since |&/| tends to infinity when j tends to infinity
we may replace ag in (3.26) by af; if we add the term

ag(@™ , E1]8) / [V (y) [Pdy

to the left hand side of the formula.
All that we need is furnished by the following lemma.

LeMMA 3.6. Let K, be a compact subset of R™\{0}, let y be a real valued
continuous function on R X K,, such that y is constant when x is outside some
compact set in R", let O be a fized positive number and suppose that

(x,n) ER" X Ky, ax,n) =0

implies
12 T Ho (@, m) + ple, 1) > 0. (3.27)
Then there is a function o(A) —0 when i— o such thal
Re > (Ualfhafylx , n)2*~ I“”'/ v(y)y" D¥v(y)dy + (3.28)
la+p] <2

+ (@, ) / lo(y) *dy + o(4) HZ<4ID°‘ y)’dy =0

for every (x,n) € R"X K, and every v in CF(R™) with support in {y; |y] < C}L

In order to see that Lemma 3.6 implies the existence of a sequence g;
tending to zero in (3.26) we change (3.26) in accordance with Remark 3.5 and set
Ky =078 A== g% g =), (@, =", E), y=
(¢/2) + @y and v = v

Proof of Lemma 3.6. Our proof will be indirect. We shall assume that it is not
possible to choose ¢(4) in such a way that (3.28) holds and ¢(1) -0 when A— o©
and see that this leads to a contradiction. Our assumption means precisely that
there exist a ¢ > 0, sequences 4 — co when j— co and (z;,7,) € R" X K,,
and functions v; belonging to COF(R") with supports in {y; |y| < C} such that

/ lo(y)Pdy = 1

Re >  (1xlpag(x; , ny) a2 1othl / v,(y)y* Do, (y)dy +- (3.29)

lat+B] <2

7(90]' > "7j)/ ]”j(y)lzd?/ + @/ z [D"‘vj(y)lzdy <0.

ol <4

and
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We shall use some convexity properties for the derivatives of a positive function.
If g is a non-negative function in Cg’(R") then there is a constant C, such that

lgrad, g(y)? < Cg(y) .
It follows that

lgrad,,, ai(x , n)* < Okl ,m), (x,n) € B X Ky, (3.30)
since the inequality is trivially fulfilled when a,(x,%) = ||
Hence we get for || = |f] =1
lag(ay , )y / yODW)Iy| < &l @, n)lylglyly < (3:31a)

< (/3n)ay(x; , 7;) 23 + O lv;
gl » m7) 2 f ¥ o) Pdy| < Ohilasy(a; , m)| < (13n)as(a; , m) 75 + O (3.31b)

where C’ is a constant independent of j.
Using (3.29) and (3.31) together with the facts that 5 is a bounded function
and that for some constant C”

| > (atBadsla; , n) a2l / 0, ()Y’ Do(y)dy| < Ol 1%, (3.32)

jatBl=2
we obtain the inequality
I”j[ix) < 0|”j|?2)/9 (3.33)

where C is a new constant.
From the inequality

[”](22) < I”](0)|U|(4)

we conclude that the sequence (v;) is bounded in the H,-topology. By passing
to a subsequence if necessary we may therefore assume that (v;) converges to
a function ¢, in the H;-topology.

Using (3.31), (3.32) and the boundedness of the sequence |[v;], Wwe realize that
the sequence lfal(xj » ;) must be bounded (and by (3.30) the same statement is
valid for the sequence ; grad a,(;,;)). Hence a(%;,7;) tends to zero when j
tends to infinity and since @a(x; ,7;) is greater than some positive constant when
x is outside some compact set in R" we conclude that it is no restriction to
agsume that there is a (z,, %) € B X K, such that

(%, m;) = (X0, M) when j— o0, a(2y,7,) =0.

By choosing ¢ smaller in (3.29) we may replace v; by v, (for large j). Then
approximating v, by a function in Cy(R") and using the continuity of y we get
the existence of a function v in C*(R") and a small positive number ¢ such that
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/ lo(y)|Pdy = 1

g (1o Blasplay , mp) 21+ / v(y)y" Dv(y)dy + (3.34)

and

+ (9/2) Z o)} + Do)y + (o, 70) + 0/2) / o(y)"dy < 0.

To simplify notations we introduce
fi = gra'd(x,n) a’l(xj ’ 77]) H Hal( i "7]) H;; = I{] + ok

where E denotes the unit matrix. Since H; tends to the positive definite matrix
Hj we may assume that H; is positive definite for all j. Then an application of
Theorem 2.4 to (3.34) gives us

Baylay , ) — DY, F3/2) + p(@e,50) + of2 + 12 Tr H <0. (3.35)

The proof will be finished if we can prove that (3.35) is in contradiction with (3.27).
A Taylor expansion gives us

ay((@;  m)) + B) = ax(a;, my) 4 {fy o B + {Hjb, b)[2 + OQ)R]
when h € R™ and |h| < C. Since f;=O0(1)4" and H; < H] we get
0 S a’l((xj H 7]]) H” —lf) - a’l j o2 7]] <f1 H (H;T)_lf;> +
+ H{H7); , (H)7H/2 + 04 <

< a2y, m) — <fy» HDYD2 + 0.
Hence

0< Zf{“l(xj ) — s (HD[2) + of4
for large j. Then it follows from (3.35) that
P(@o > m0) + /4 + 1/2Tx Hy < 0
and by letting j tend to infinity and o tend to zero we get using the continuity
of Tr
p(x , Mo) + 0f/4 + 1/2 ﬁ'Hal(xo y 7o) <O

which is in contradiction with our assumptions. This completes the proof of the
lemma.

4. Applications of the results to hypoellipticity

Let £ be an open set in R". We shall consider the class of classical pseudo-
differential operators 4 in £ satisfying the following conditions:
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a.(x,& >0 when (x,&) €802 x 8! (4.1)
Gp (X, = —a,_i(x,& when a,(r,& =0. (4.2)

Here m denotes the order of 4. On the set N of zeros for a, in 2XS"! we
can define the function

Iz, & Z D@, &) — 2it,_y(x, &) + (12) Tr H, (2, &)

The following result, due to Radkevié [10], gives a sufficient condition for 4
to be hypoelliptic in £.

TororeEM 4.1. If A s properly supported and satisfies (4.1) and (4.2) and if
I(x, &) >0 on N, then for every compact set K in Q and every real number m’
there exists o constant C such that the following estimate is valid

[ulfm——l) + 21{ [A(s)uﬁl/z) + IA(s)uf(z—l/z)} < 'Au,(zm + Iul(zm')} ; w€OP(K). (4.3)

Here A9 and 4, denote properly supported pseudo-differential operators
in Q with symbols a® respectively a,.

Remark 4.2. By using the results of Remark 2.10 we can easily get equivalent
formulations of the condition I(x,&) >0 on N.

Proof of Theorem 4.1. Let R° denote properly supported (self-adjoint) pseudo-
differential operators in 2 with the symbols

ope(w, &) = (L + &7 .
We shall apply Theorem 3.1 to the pseudo-differential operator

Ty=R"74 — 03 (REAORIPAY) — 5 3 (R4 (R A) +
(A% — A)*(A* — A) + 4(A*A — AA¥) — SR

where & is a small positive number.

We have to examine the symbol oy, of T';. We shall make use of the following
formulas (see [6], p. 147 and p. 149.) where A and B denote properly supported
pseudo-differential operators in £:

Ol &) ~ 3 ((D:on(z , ) Do (e , £)fe
op(@ , ) ~ 3 (iD Doyl , £)B! .

Then we see that the principal symbol of 4*4 — AA* is homogeneous of degree
2m — 2 in & and vanishes on N. The principal symbol of (4* — A)*(4* — A)
is homogeneous of the same degree and equals

l2 Im A1 + Za’g()]
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on N. The symbol of (R"A®)*(R"4®) can be written as
(@1 + €M) 4 2af)_1ald(1 4 (&%) - b

where the leading part of b is homogeneous of degree 2m — 2 in & and real
valued. Of course the symbol of

(R~1/2A(s))*(R‘l/2A(s))

can be written in a similar way with ¢® replaced by a;, and (1 4 |£[*)'* replaced

by (1 + &)~
Let K be a compact set in £. Then for some constant C,

lgrad,, . a,(z B < Cu (2,8, (x, 5 €K X 8",

(Cf. (3.30)), and it follows from the homogenecity of a,, that if ¢ is chosen small
enough then the principal symbol of 7, is non-negative and has the same zeros
as a, when z belongs to a neighbourhood of K.

If the symbol of T, is written

O‘T(s = t2m—-l + t2m—2 + se e
then by our assumptions and computations above
Re ty, o, &) + 12 Tr B, _(z,8) = (4.4)
= |3 i)y, &) — 2ia,_y(x,HF + 12Tr H, (¢,8 — 5 when (x,8)€N.

Since Tr H, . (v,§) tends to Tr H, (x,&) when 6 tends to zero (with uniform

convergence on every compact subset of N) the expression above in (4.4) is non-
negative for small § on the zeros of f,, ;, in 2,X8""!, where £, is some neigh-
bourhood of K. Hence by choosing 6 small and applying Theorem 3.1 with
£ = §/2 we get

Re (Tyu , u) + (8/2)|ulfn_1y = Cslulin, , w € CP(K). (4.5)
By expanding the left hand side of (4.5) and using the inequalities:
o — A% < 2(jd%0P + |4vP), v € 0F7(Q)
Re (R™'4v,v) = Re (dv, R™'v) < 4671 Avfy + 647 |v[f_yy + 00" 0[Gwy, v € OF(K)
we get with some constant C the following inequality
iy + 3 1A% + 3 1Al + [4%ally < C1dully + lulf) . (4.0

u € OF(K) .
This completes the proof of the theorem.
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