Taiwanese Journal of Mathematics

Weighted Endpoint Estimates for Singular Integral Operators Associated with Zygmund Dilations

Yongsheng Han, Ji Li, Chin-Cheng Lin, Chaoqiang Tan, and Xinfeng Wu

Full-text: Open access


The main purpose of this paper is to study multi-parameter singular integral operators which commute with Zygmund dilations. We develop the theory of the weighted multi-parameter Hardy space $H^p_{\mathfrak{z},w}$ and prove the boundedness for these operators on $H^p_{\mathfrak{z},w}$ for certain $p \leq 1$, which provide endpoint estimates for those singular integral operators studied by Ricci-Stein [31] and Fefferman-Pipher [15]. We also establish the Calderón-Zygmund decomposition and interpolation theorem in this setting.

Article information

Taiwanese J. Math., Volume 23, Number 2 (2019), 375-408.

Received: 7 May 2018
Accepted: 3 December 2018
First available in Project Euclid: 21 December 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B30: $H^p$-spaces

Calderón-Zygmund decomposition interpolation multi-parameter singular integral operators weighted Hardy spaces Zygmund dilations


Han, Yongsheng; Li, Ji; Lin, Chin-Cheng; Tan, Chaoqiang; Wu, Xinfeng. Weighted Endpoint Estimates for Singular Integral Operators Associated with Zygmund Dilations. Taiwanese J. Math. 23 (2019), no. 2, 375--408. doi:10.11650/tjm/181203. https://projecteuclid.org/euclid.twjm/1545361216

Export citation


  • A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139.
  • L. Carleson, A counterexample for measures bounded on $H^p$ for the bidisc, Mittag-Leffler Report 7, 1974.
  • S.-Y. A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3, 613–620.
  • S.-Y. A. Chang and R. Fefferman, A continuous version of duality of $H^1$ with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201.
  • ––––, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455–468.
  • ––––, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43.
  • A. Córdoba, Maximal functions, covering lemmas and Fourier multipliers, in: Harmonic Analysis in Euclidean Spance, Part 1, 29–50, Proc. Sympos. Pure Math. 35, Amer. Math. Soc., Providence, R.I., 1979.
  • A. Córdoba and R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102 (1975), no. 1, 95–100.
  • D. V. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications 215, Birkhäuser/Springer Basel AG, Basel, 2011.
  • C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.
  • R. Fefferman, Some weighted norm inequalities for Córdoba's maximal function, Amer. J. Math. 106 (1984), no. 5, 1261–1264.
  • ––––, Multiparameter Fourier analysis, in: Beijing Lectures in Harmonic Analysis (Beijing, 1984), 47–130, Ann. of Math. Stud. 112, Princeton Univ. Press, Princeton, NJ, 1986.
  • ––––, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130.
  • ––––, Multiparameter Calderón-Zygmund theory, in: Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), 207–221, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999.
  • R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), no. 2, 337–369.
  • R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143.
  • M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170.
  • M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics 79, American Mathematical Society, Providence, RI, 1991.
  • J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland Publishing Co., Amsterdam, 1985.
  • R. F. Gundy and E. M. Stein, $H^p$ theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 3, 1026–1029.
  • Y. Han, J. Li, C.-C. Lin and C. Tan, Singular integrals associated with Zygmund dilations, J. Geom. Anal., to appear.
  • B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217–234.
  • J.-L. Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), no. 3, 55–91.
  • ––––, A covering lemma for product spaces, Proc. Amer. Math. Soc. 96 (1986), no. 4, 593–598.
  • ––––, Two problems of Calderón-Zygmund theory on product-spaces, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 111–132.
  • D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I, Invent. Math. 119 (1995), no. 2, 199–233.
  • A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Func. Anal. 181 (2001), no. 1, 29–118.
  • A. Nagel, F. Ricci, E. M. Stein and S. Wainger, Singular integrals with flag kernels on homogeneous groups I. Rev. Mat. Iberoam. 28 (2012), no. 3, 631–722.
  • A. Nagel and S. Wainger, $L^2$ boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), no. 4, 761–785.
  • J. Pipher, Journé's covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690.
  • F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 637–670.
  • F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation of integrals, Ann. of Math. (2) 123 (1986), no. 1, 1–9.