Taiwanese Journal of Mathematics

Waring-Goldbach Problem: Two Squares and Three Biquadrates

Yingchun Cai and Li Zhu

Full-text: Open access

Abstract

Assume that $\psi$ is a function of positive variable $t$, monotonically increasing to infinity and $0 \lt \psi(t) \ll \log t/(\log \log t)$. Let $\mathcal{R}_{3}(n)$ denote the number of representations of the integer $n$ as sums of two squares and three biquadrates of primes and we write $\mathcal{E}_{3}(N)$ for the number of integers $n$ satisfying $n \leq N$, $n \equiv 5, 53, 101 \pmod{120}$ and \[ \left| \mathcal{R}_{3}(n) - \frac{\Gamma^{2}(1/2) \Gamma^{3}(1/4)}{\Gamma(7/4)} \frac{\mathfrak{S}_{3}(n) n^{3/4}}{\log^{5}n} \right| \geq \frac{n^{3/4}}{\psi(n) \log^{5}n}, \] where $0 \lt \mathfrak{S}_{3}(n) \ll 1$ is the singular series. In this paper, we prove \[ \mathcal{E}_{3}(N) \ll N^{23/48+\varepsilon} \psi^{2}(N) \] for any $\varepsilon \gt 0$. This result constitutes a refinement upon that of Friedlander and Wooley [2].

Article information

Source
Taiwanese J. Math., Volume 23, Number 5 (2019), 1061-1071.

Dates
Received: 28 March 2018
Revised: 7 August 2018
Accepted: 14 November 2018
First available in Project Euclid: 21 November 2018

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1542790912

Digital Object Identifier
doi:10.11650/tjm/181107

Subjects
Primary: 11P32: Goldbach-type theorems; other additive questions involving primes 11N36: Applications of sieve methods

Keywords
Waring-Goldbach problem Hardy-Littlewood method asymptotic formula

Citation

Cai, Yingchun; Zhu, Li. Waring-Goldbach Problem: Two Squares and Three Biquadrates. Taiwanese J. Math. 23 (2019), no. 5, 1061--1071. doi:10.11650/tjm/181107. https://projecteuclid.org/euclid.twjm/1542790912


Export citation

References

  • J. Brüdern, Sums of squares and higher powers I, J. London Math. Soc. (2) 35 (1987), no. 2, 233–243.
  • J. B. Friedlander and T. D. Wooley, On Waring's problem: two squares and three biquadrates, Mathematika 60 (2014), no. 1, 153–165.
  • G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), no. 2, 249–254.
  • C. Hooley, On a new approach to various problems of Waring's type, in: Recent Progress in Analytic Number Theory I, (Durham, 1979), 127–191, Academic Press, London, 1981.
  • ––––, On Waring's problem for two squares and three cubes, J. Reine Angew. Math. 328 (1981), 161–207.
  • ––––, On Waring's problem for three squares and an $\ell$th power, Asian J. Math. 4 (2000), no. 4, 885–903.
  • L. K. Hua, Additive Theory of Prime Numbers, American Mathematical Society, Providence, R.I., 1965.
  • K. Kawada and T. D. Wooley, On the Waring-Goldbach problem for fourth and fifth powers, Proc. London Math. Soc. (3) 83 (2001), no. 1, 1–50.
  • A. V. Kumchev, On Weyl sums over primes and almost primes, Michigan Math. J. 54 (2006), no. 2, 243–268.
  • Y. V. Linnik, Additive problems involving squares, cubes and almost primes, Acta Arith 21 (1972), 413–422.
  • R. C. Vaughan, The Hardy-Littlewood Method, Second edition, Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge, 1997.
  • T. D. Wooley, Slim exceptional sets for sums of four squares, Proc. London Math. Soc. (3) 85 (2002), no. 1, 1–21.
  • L. Zhao, Exceptional sets in Waring's problem: two squares and $s$ biquadrates, Acta Arith 162 (2014), no. 4, 369–379.