Taiwanese Journal of Mathematics

Positive Approximation Properties of Banach Lattices

Dongyang Chen

Full-text: Open access

Abstract

In this paper, an equivalent formulation of extendable local reflexivity (ELR) introduced by Oikhberg and Rosenthal is given. We introduced the positive version (PELR) of the ELR in Banach lattices to solve the lifting problem for the bounded positive approximation property (BPAP). It is proved that a Banach lattice $X$ has the BPAP and is PELR if and only if the dual space $X^{*}$ of $X$ has the BPAP. Finally, we give isometric factorizations of positive weakly compact operators and establish some new characterizations of positive approximation properties.

Article information

Source
Taiwanese J. Math., Volume 22, Number 3 (2018), 617-633.

Dates
Received: 13 December 2016
Revised: 30 May 2017
Accepted: 22 August 2017
First available in Project Euclid: 4 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1507082434

Digital Object Identifier
doi:10.11650/tjm/170807

Mathematical Reviews number (MathSciNet)
MR3807329

Zentralblatt MATH identifier
06965389

Subjects
Primary: 46B28: Spaces of operators; tensor products; approximation properties [See also 46A32, 46M05, 47L05, 47L20]
Secondary: 47L20: Operator ideals [See also 47B10]

Keywords
positive extendable local reflexivity positive approximation property bounded positive approximation property positive weakly compact operators

Citation

Chen, Dongyang. Positive Approximation Properties of Banach Lattices. Taiwanese J. Math. 22 (2018), no. 3, 617--633. doi:10.11650/tjm/170807. https://projecteuclid.org/euclid.twjm/1507082434


Export citation

References

  • C. D. Aliprantis and O. Burkinshaw, Factoring compact and weakly compact operators through reflexive Banach lattices, Trans. Amer. Math. Soc. 283 (1984), no. 1, 369–381.
  • S. J. Bernau, A unified approach to the principle of local reflexivity, in Notes in Banach Spaces, 427–439, Univ. Texas Press, Austin, Tex., 1980.
  • P. G. Casazza, Approximation properties, in Handbook of the Geometry of Banach Spaces I, 271–316, North-Holland, Amsterdam, 2001.
  • C. Choi, J. M. Kim and K. Y. Lee, Right and left weak approximation properties in Banach spaces, Canad. Math. Bull. 52 (2009), no. 1, 28–38.
  • J. L. Conroy and L. C. Moore, Local reflexivity in Banach lattices, Unpublished.
  • W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327.
  • N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Pure and Applied Mathematics 7, Interscience Publishers, New York, 1958.
  • G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), no. 4, 672–695.
  • A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), 140 pp.
  • W. B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301–310.
  • W. B. Johnson and T. Oikhberg, Separable lifting property and extensions of local reflexivity, Illinois J. Math. 45 (2001), no. 1, 123–137.
  • J. M. Kim, New criterion of the approximation property, J. Math. Anal. Appl. 345 (2008), no. 2, 889–891.
  • Å. Lima, On lifting the approximation property from a Banach space to its dual, Proc. Amer. Math. Soc. 143 (2015), no. 1, 213–217.
  • Å. Lima, O. Nygaard and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325–348.
  • J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Springer-Verlag, Berlin, 1977.
  • A. Lissitsin and E. Oja, The convex approximation property of Banach spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 616–626.
  • P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991.
  • N. J. Nielsen, The positive approximation property of Banach lattices, Israel J. Math. 62 (1988), no. 1, 99–112.
  • T. Oikhberg and H. P. Rosenthal, Extension properties for the space of compact operators, J. Funct. Anal. 179 (2001), no. 2, 251–308.
  • E. Oja, Geometry of Banach spaces having shrinking approximations of the identity, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2801–2823.
  • ––––, Lifting bounded approximation properties from Banach spaces to their dual spaces, J. Math. Anal. Appl. 323 (2006), no. 1, 666–679.
  • ––––, Lifting of the approximation property from Banach spaces to their dual spaces, Proc. Amer. Math. Soc. 135 (2007), no. 11, 3581–3587.
  • ––––, The strong approximation property, J. Math. Anal. Appl. 338 (2008), no. 1, 407–415.
  • H.-U. Schwarz, Banach Lattices and Operators, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics] 71, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1984.
  • A. Szankowski, A Banach lattice without the approximation property, Israel J. Math. 24 (1976), no. 3-4, 329–337.