Taiwanese Journal of Mathematics

UNICITY OF MEROMORPHIC FUNCTIONS OF CLASS A

Ten-Ging Chen and Keng-Yan Chen

Full-text: Open access

Abstract

Jank and Terglane gave a unicity condition of three meromorphic functions of class $\mathcal{A}$. We generalize this unicity condition for arbitrary $q$ meromorphic functions, and prove that the condition is sharp in the cases $q=3$ and $4$. Moreover, we provide a conjecture concerning this aspect.

Article information

Source
Taiwanese J. Math., Volume 12, Number 3 (2008), 821-827.

Dates
First available in Project Euclid: 21 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500602438

Digital Object Identifier
doi:10.11650/twjm/1500602438

Mathematical Reviews number (MathSciNet)
MR2417150

Zentralblatt MATH identifier
1158.30016

Subjects
Primary: 30D30: Meromorphic functions, general theory 30D35: Distribution of values, Nevanlinna theory

Keywords
meromorphic functions of class $\mathcal{A}$ Nevanlinna theory reduced counting function

Citation

Chen, Ten-Ging; Chen, Keng-Yan. UNICITY OF MEROMORPHIC FUNCTIONS OF CLASS A. Taiwanese J. Math. 12 (2008), no. 3, 821--827. doi:10.11650/twjm/1500602438. https://projecteuclid.org/euclid.twjm/1500602438


Export citation

References

  • G. Brosch, Eindeutigkeitssätze für meromorphe funktionen, Thesis, Technical University of Aachen, 1989.
  • W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
  • G. Jank and N. Terglane, Meromorphic functions sharing three values, Math. Pannonica, 2 (1990), 37-46.
  • R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929.
  • H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Pure and Applied Math. Monographs No. 32, Science Press, Beijing, 1995.