Taiwanese Journal of Mathematics

$\lambda$ PROPERTY FOR BOCHNER-ORLICZ SEQUENCE SPACES WITH ORLICZ NORM

Zhongrui Shi and Linsen Xie

Full-text: Open access

Abstract

We give the sufficient and necessary conditions of Bochner-Orlicz sequence spaces equipped with Orlicz norm that have the $\lambda$ property and uniform $\lambda$ property, respectively. The results show that the $\lambda$ property can not be lifted from $X$ to $l_{_{M}}(X)$.

Article information

Source
Taiwanese J. Math., Volume 12, Number 5 (2008), 1131-1145.

Dates
First available in Project Euclid: 20 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500574253

Digital Object Identifier
doi:10.11650/twjm/1500574253

Mathematical Reviews number (MathSciNet)
MR2431885

Zentralblatt MATH identifier
1165.46008

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Keywords
$\lambda$ property uniform $\lambda$ property Bochner-Orlicz sequence space Orlicz norm

Citation

Shi, Zhongrui; Xie, Linsen. $\lambda$ PROPERTY FOR BOCHNER-ORLICZ SEQUENCE SPACES WITH ORLICZ NORM. Taiwanese J. Math. 12 (2008), no. 5, 1131--1145. doi:10.11650/twjm/1500574253. https://projecteuclid.org/euclid.twjm/1500574253


Export citation

References

  • R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math., 127 (1987), 209-231.
  • A. S. Granero, $\lambda$-property in Orlicz Spaces, Bull. Polish Aca. Sci. Math., 37 (1989), 421-431.
  • S. Chen, H. Sun and C. Wu, $\lambda$-property of Orlicz spaces, Bull. Polish Acad. Sci. Math., 39 (1991), 63-69.
  • S. Chen and H. Sun, $\lambda$-property of Orlicz sequence spaces, Ann. Polan. Math., 59 (1994), 239-249.
  • S. Chen, Geometry of Orlicz spaces, Dissertation, Warszawa, Poland, 1996.
  • Y. Liu, Z. Shi and P. Zhang, Rotundity of Orlicz-Bochner spaces with Luxemburg norm, J. ShangHai Univ. $($English Edition$)$, 7(4) (2003), 322-326.
  • H. Hudzik, Strongly extreme points in Kothe-Bochner spaces, Rocky Mountain J. Math., 23 (1993), 899-909.
  • M. A. Krasnoselskii and Y. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
  • Z. Shi, Y. Liu and P. Zhang, Rotundity of Orlicz-Bochner sequence spaces with Orlicz norm, Functional space theory and its applications, 2004, pp. 232-242. (United Kingdom).
  • R.Shi and P. Zhang, Orlicz-Bochner sequence spaces that have the uniform lamda-property, Comment. Math., (2004), Ser. 1, 215-227, (Poland),