Taiwanese Journal of Mathematics

SHARPNESS AND GENERALIZATION OF JORDAN’S INEQUALITY AND ITS APPLICATION

Shan-He Wu

Full-text: Open access

Abstract

In this paper we sharpen and generalize the Jordan’s inequality, our results unify and optimize some corresponding known results in the recent papers. As application, the obtained results are used to improve the wellknown L. Yang’s inequality.

Article information

Source
Taiwanese J. Math., Volume 12, Number 2 (2008), 325-336.

Dates
First available in Project Euclid: 20 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500574157

Digital Object Identifier
doi:10.11650/twjm/1500574157

Mathematical Reviews number (MathSciNet)
MR2402118

Zentralblatt MATH identifier
1180.26018

Subjects
Primary: 26D15: Inequalities for sums, series and integrals

Keywords
Jordan's inequality L. Yang's inequality sharpness generalization best possible coefficient

Citation

Wu, Shan-He. SHARPNESS AND GENERALIZATION OF JORDAN’S INEQUALITY AND ITS APPLICATION. Taiwanese J. Math. 12 (2008), no. 2, 325--336. doi:10.11650/twjm/1500574157. https://projecteuclid.org/euclid.twjm/1500574157


Export citation

References

  • D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer-Verlag, New York, 1970, pp. 33-34.
  • J. C. Kuang, Applied Inequalities, Third edition, Shandong Science and Technology Press, Jinan, People's Republic of China, 2004, pp. 269-270 (in Chinese).
  • S.-H. Wu, On generalizations and refinements of Jordan type inequality, Octogon Math. Mag., 12(1) (2004), 267-272.
  • F. Yuefeng, Jordan's inequality, Math. Mag., 69 (1996), 126.
  • L. Debnath and C.-J. Zhao, New strengthened Jordan's inequality and its applications, Appl. Math. Lett., 16(4) (2003), 557-560.
  • L. Zhu, Sharpening Jordan's inequality and Yang Le inequality, Appl. Math. Lett., 19 (2006), 240-243.
  • K. Deng, On extensions of the Jordan's inequality. J. Xiangtan Mining Inst., 10(4) (1995), 60-63 (in Chinese).
  • D. S. Mitrinović J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, Boston and London, 1993, pp. 1-2.
  • C.-J. Zhao and L. Debnath, On Generalizations of L. Yang's inequality, J. Inequal. Pure Appl. Math., 30(4) (2002), Article 56 (electronic).