Taiwanese Journal of Mathematics


Ryotaro Sato

Full-text: Open access


For a $\gamma$-th order Cesàro mean bounded linear operator $T$ on a Banach space $X$, we characterize the range $R(A)$ of the operator $A = T-I$, by using an $A$-ergodic net and its companion net which were introduced by Dotson and developed by Shaw. Similarly, if $A$ is the generator of a $\gamma$-th order Cesàro mean bounded $C_{0}$-semigroup (or strongly continuous cosine operator function) of bounded linear operators on $X$, then we characterize the range $R(A)$.

Article information

Taiwanese J. Math., Volume 10, Number 5 (2006), 1193-1223.

First available in Project Euclid: 20 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47A35: Ergodic theory [See also 28Dxx, 37Axx] 47A50: Equations and inequalities involving linear operators, with vector unknowns 47D05 47D09: Operator sine and cosine functions and higher-order Cauchy problems [See also 34G10]

Banach space $\gamma$-th Order Cesàro mean bounded operator closed operator range and domain generator resolvent $C_{0}$-semigroup cosine operator function ergodic net and its companion net mean ergodic theorem cohomology equation cobounda


Sato, Ryotaro. ON ERGODIC AVERAGES AND THE RANGE OF A CLOSED OPERATOR. Taiwanese J. Math. 10 (2006), no. 5, 1193--1223. doi:10.11650/twjm/1500557298. https://projecteuclid.org/euclid.twjm/1500557298

Export citation


  • [1.] A. I. Alonso, J. Hong and R. Obaya, Absolutely continuous dynamics and real coboundary cocycles in $L^{p}$-spaces, $0<p<\infty$, Studia Math., 138 (2000), 121-134.
  • [2.] I. Assani, A note on the equation $y=(I-T)x$ in $L^{1}$, Illinois J. Math., 43 (1999), 540-541.
  • [3.] Y. Derriennic, On the mean ergodic theorem for Cesàro bounded operators, Colloq. Math., 84/85 (2000), Part 2, 443-455.
  • [4.] W. G. Dotson, Jr., An application of ergodic theory to the solution of linear functional equations in Banach spaces, Bull. Amer. Math. Soc., 75 (1969), 347-352.
  • [5.] W. G. Dotson, Jr., On the solution of linear functional equations by averaging iteration, Proc. Amer. Math. Soc., 25 (1970), 504-506.
  • [6.] W. G. Dotson, Jr., Mean ergodic theorems and iterative solution of linear functional equations, J. Math. Anal. Appl., 34 (1971), 141-150.
  • [7.] N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, Interscience, New York, 1958.
  • [8.] R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal., 61 (1985), 1-14.
  • [9.] V. Fonf, M. Lin and A. Rubinov, On the uniform ergodic theorem in Banach spaces that do not contain duals, Studia Math., 121 (1996), 67-85.
  • [10.] U. Krengel and M. Lin, On the range of the generator of a Markovian semigroup, Math. Z., 185 (1984), 553-565.
  • [11.] Y.-C. Li, R. Sato and S.-Y. Shaw, Boundedness and growth orders of means of discrete and continuous semigroups of operators, preprint.
  • [12.] M. Lin and R. Sine, Ergodic theory and the functional equation $(I-T)x=y$, J. Operator Theory, 10 (1983), 153-166.
  • [13.] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  • [14.] R. Sato, A remark on real coboundary cocycles in $L^{\infty}$-space, Proc. Amer. Math. Soc., 131 (2003), 231-233.
  • [15.] R. Sato, On solvability of the cohomology equation in function spaces, Studia Math., 156 (2003), 277-293.
  • [16.] R. Sato, Ergodic properties of continuous parameter additive processes, Taiwanese J. Math., 7 (2003), 347-390.
  • [17.] R. Sato, Solvability of the functional equation $f=(T-I)h$ for vector-valued functions, Colloq. Math., 99 (2004), 253-265.
  • [18.] R. Sato, On the range of a closed operator in an $L_1$-space of vector-valued functions, Comment. Math. Univ. Carolinae, 46 (2005), 349-367.
  • [19.] S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal., 87 (1989), 428-441.
  • [20.] S.-Y. Shaw, On the range of a closed operator, J. Operator Theory, 22 (1989), 157-163.
  • [21.] S.-Y. Shaw and Y.-C. Li, On solvability of $Ax=y$, approximate solutions, and unifrom ergodicity, Rend. Circ. Mat. Palermo $($2$)$ Suppl., 68 (2002), Part II, 805-819.
  • [22.] M. Sova, Cosine operator functions, Rozprawy Math., 49 (1966), 1-47.
  • [23.] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32 (1978), 75-96.
  • [24.] A. Zygmund, Trigonometric Series. Vol. 1, Cambridge Univesity Press, Cambridge, 1959.