Taiwanese Journal of Mathematics

THE HÁJECK-RÈNYI INEQUALITY FOR THE AANA RANDOM VARIABLES AND ITS APPLICATIONS

Mi-Hwa Ko, Tae-Sung Kim, and Zhengyan Lin

Full-text: Open access

Abstract

In this paper we study the Hájeck-Rènyi type inequality of asymptotically almost negatively associated (AANA) random variables and derive strong laws of large numbers for weighted sums of AANA sequences.

Article information

Source
Taiwanese J. Math., Volume 9, Number 1 (2005), 111-122.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407749

Digital Object Identifier
doi:10.11650/twjm/1500407749

Mathematical Reviews number (MathSciNet)
MR2122907

Zentralblatt MATH identifier
1069.60022

Subjects
Primary: 60F05: Central limit and other weak theorems

Keywords
strong law of large numbers negatively associated asymptotically almost negatively associated weighted sums maximal inequality

Citation

Ko, Mi-Hwa; Kim, Tae-Sung; Lin, Zhengyan. THE HÁJECK-RÈNYI INEQUALITY FOR THE AANA RANDOM VARIABLES AND ITS APPLICATIONS. Taiwanese J. Math. 9 (2005), no. 1, 111--122. doi:10.11650/twjm/1500407749. https://projecteuclid.org/euclid.twjm/1500407749


Export citation

References

  • [1.] R. C.Bradley, W. Bryc, and S. Janson, On dominations between measures of dependence, J. Mult. Anal. 3 (1987), 312-329.
  • [2.] T. K. Chandra, and S. Ghosal, Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta. Math. Hungar. 32 (1996a), 327-336.
  • [3.] T. K. Chandra, and S. Ghosal, The strong law of large numbers for weighted averages under dependence assumptions, J. Theor. Probab. 9 (1996b), 797-809.
  • [4.] K. Joag-Dev, and F. Proschan, Negative association random variables with application, Ann. Statist. 11 (1983), 286-295.
  • [5.] P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), 209-213.
  • [6.] P. Matula, Convergence of weighted averages of associated random variables, Probab. Math. Statist. 16 (1996), 337-343.
  • [7.] Stout, W. F. Almost Sure Convergence, Academic Press, New York, 1972.