Taiwanese Journal of Mathematics

NOTES ON SINGULAR INTEGRALS ON SOME INHOMOGENEOUS HERZ SPACES

Yusuo Komori

Full-text: Open access

Abstract

We consider the singular integral operators which are more singular than Calder´on-Zygmund operator and include pseudo-differential operators. We obtain the boundedness of these operators on inhomogeneous Herz spaces and Herz-type Hardy spaces.

Article information

Source
Taiwanese J. Math., Volume 8, Number 3 (2004), 547-556.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407672

Digital Object Identifier
doi:10.11650/twjm/1500407672

Mathematical Reviews number (MathSciNet)
MR2163325

Zentralblatt MATH identifier
1090.42008

Subjects
Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Keywords
singular integral Herz space Herz-Harsy space

Citation

Komori, Yusuo. NOTES ON SINGULAR INTEGRALS ON SOME INHOMOGENEOUS HERZ SPACES. Taiwanese J. Math. 8 (2004), no. 3, 547--556. doi:10.11650/twjm/1500407672. https://projecteuclid.org/euclid.twjm/1500407672


Export citation

References

  • [1.] J. Alvarez, M. Guzmán-Partida and J. Lakey, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures, Collect. Math. 51 (2000), 1-47.
  • [2.] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
  • [3.] C. Fefferman, Inequalities for strongly singular convolution operators, Acata Math. 123 (1969), 9-36.
  • [4.] C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math. 129 (1972), 137-193.
  • [5.] J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. 39 (1989), 499-513.
  • [6.] J. García-Cuerva and M. L.Herrero, A theory of Hardy spaces associated to the Herz spaces, Proc. London Math. Soc. 69 (1994), 605-628.
  • [7.] E. Hernández and D. Yang, Interpolation of Herz–type Hardy spaces, Illinois J. Math. 42 (1998), 564-581.
  • [8.] Y. Komori, Calderón–Zygmund operators on $H^p(R^n)$, Sci. Math. Japonicae 53 (2001), 65-73.
  • [9.] X. Li and D. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math. 40 (1996), 484-501.
  • [10.] S. Z. Lu and D. Yang, The local version of $H^p(R^n)$ spaces at the origin, Studia Math. 116 (1995), 103-131.
  • [11.] A. Torchinsky, Real–Variable Methods in Harmonic Analysis, Academic Press, 1986.