Taiwanese Journal of Mathematics

OPERATOR INEQUALITY AND ITS APPLICATION TO CAPACITY OF GAUSSIAN CHANNEL

Kenjiro Yanagi, Han Wu Chen, and Ji Wen Yu

Full-text: Open access

Abstract

We give some inequalities of capacity in Gaussian channel with or without feedback. The nonfeedback capacity $C_{n,Z}(P)$ and the feedback capacity $C_{n,FB,Z}(P)$ are both concave functions of $P$. Though it is shown that $C_{n,Z}(P)$ is a convex function of $Z$ in some sense, $C_{n,FB,Z}(P)$ is a convex-like function of $Z$.

Article information

Source
Taiwanese J. Math., Volume 4, Number 3 (2000), 407-416.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407257

Digital Object Identifier
doi:10.11650/twjm/1500407257

Mathematical Reviews number (MathSciNet)
MR1779105

Zentralblatt MATH identifier
1072.94512

Subjects
Primary: 94A40: Channel models (including quantum) 47A63: Operator inequalities

Keywords
operator inequality Gaussian channel capacity feedback

Citation

Yanagi, Kenjiro; Chen, Han Wu; Yu, Ji Wen. OPERATOR INEQUALITY AND ITS APPLICATION TO CAPACITY OF GAUSSIAN CHANNEL. Taiwanese J. Math. 4 (2000), no. 3, 407--416. doi:10.11650/twjm/1500407257. https://projecteuclid.org/euclid.twjm/1500407257


Export citation