Taiwanese Journal of Mathematics

NONLINEAR ERGODIC THEOREMS FOR SEMIGROUPS OF NON-LIPSCHITZIAN MAPPINGS IN HILBERT SPACES

Isao Miyadera

Full-text: Open access

Abstract

Let $C$ be a nonempty subset (not necessarily closed and convex) of a Hilbert space, and $S=\{T(t); t\geq 0\}$ be a semigroup of non-Lipschitzian mappings on $C$. In this paper we study almost-convergence of almost-orbits of $S$.

Article information

Source
Taiwanese J. Math., Volume 4, Number 2 (2000), 261-274.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500407231

Digital Object Identifier
doi:10.11650/twjm/1500407231

Mathematical Reviews number (MathSciNet)
MR1757405

Zentralblatt MATH identifier
0980.47054

Subjects
Primary: 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc. 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

Keywords
nonlinear ergodic theorem semigroup of non-Lipschitzian mappings fixed point asymptotic center asymptotically nonexpansive mapping in the weak sense almost-orbit weak almost-convergence strong almost-convergence

Citation

Miyadera, Isao. NONLINEAR ERGODIC THEOREMS FOR SEMIGROUPS OF NON-LIPSCHITZIAN MAPPINGS IN HILBERT SPACES. Taiwanese J. Math. 4 (2000), no. 2, 261--274. doi:10.11650/twjm/1500407231. https://projecteuclid.org/euclid.twjm/1500407231


Export citation