Taiwanese Journal of Mathematics

MULTIPLICITY RESULTS FOR SOME ELLIPTIC PROBLEMS OF $n$-LAPLACE TYPE

Said El Manouni and Francesca Faraci

Full-text: Open access

Abstract

By using a recent result of Ricceri, we prove the existence of multiple solutions for perturbed $n$-Laplacian equations with Dirichlet boundary conditions. The Trudinger Moser inequality allows us to deal with perturbations with exponential growth.

Article information

Source
Taiwanese J. Math., Volume 16, Number 3 (2012), 901-911.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406666

Digital Object Identifier
doi:10.11650/twjm/1500406666

Mathematical Reviews number (MathSciNet)
MR2917246

Zentralblatt MATH identifier
1248.35070

Subjects
Primary: 35J35: Variational methods for higher-order elliptic equations 35J60: Nonlinear elliptic equations 35J66: Nonlinear boundary value problems for nonlinear elliptic equations

Keywords
$n$-Laplacian Dirichlet boundary conditions exponential growth multiple solutions

Citation

Manouni, Said El; Faraci, Francesca. MULTIPLICITY RESULTS FOR SOME ELLIPTIC PROBLEMS OF $n$-LAPLACE TYPE. Taiwanese J. Math. 16 (2012), no. 3, 901--911. doi:10.11650/twjm/1500406666. https://projecteuclid.org/euclid.twjm/1500406666


Export citation

References

  • Adimurthi, Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\R^2$, Proc. Indian Acad. Sci. Math. Sci., 99 (1989), 49-73.
  • Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393- 413.
  • D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $ \R^2 $ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
  • J. M. do Ó, Quasilinear elliptic equations with exponential nonlinearities, Comm. Appl. Nonlinear Anal., 2 (1995), 63-72.
  • J. M. do Ó, Semilinear Dirichlet problems for the $N$-Laplacian in $\R^ N$ with nonlinearities in the critical growth range, Differential and Integral Equations, 9 (1996), 967-979.
  • J. Moser, A sharp form of an equality by N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1092.
  • D. Mugnai, Four nontrivial solutions for subcritical exponential equations, Calc. Var. Partial Differential Equations, 32 (2008), 481-497.
  • B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157.
  • N. S. Trudinger, On imbedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.
  • E. Zeidler, Nonlinear functional analysis and its applications, Vol. II/B. Berlin, Heidelberg, New York, 1978.
  • Z. Zhang, M. Calanchi and B. Ruf, Elliptic equations in $\R^2$ with one-sided exponential growth, Commun. Contemp. Math., 6 (2004), 947-971.