Taiwanese Journal of Mathematics

A NOTE ON INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR LOG-CONVEX AND LOG-CONCAVE FUNCTIONS

Gou-Sheng Yang, Kuei-Lin Tseng, and Hung-Ta Wang

Full-text: Open access

Abstract

In this note, we establish new inequalities of Hadamard type involving several log-convex functions and log-concave functions.

Article information

Source
Taiwanese J. Math., Volume 16, Number 2 (2012), 479-496.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406596

Digital Object Identifier
doi:10.11650/twjm/1500406596

Mathematical Reviews number (MathSciNet)
MR2892893

Zentralblatt MATH identifier
1242.26038

Subjects
Primary: 26D15: Inequalities for sums, series and integrals 26D99: None of the above, but in this section

Keywords
Hadamard type inequalities log-convex functions log-concave functions geometric mean extended logarithmic mean

Citation

Yang, Gou-Sheng; Tseng, Kuei-Lin; Wang, Hung-Ta. A NOTE ON INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR LOG-CONVEX AND LOG-CONCAVE FUNCTIONS. Taiwanese J. Math. 16 (2012), no. 2, 479--496. doi:10.11650/twjm/1500406596. https://projecteuclid.org/euclid.twjm/1500406596


Export citation

References

  • S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, RGMIA Research Report collection, 3(4) (2000), 527-533.
  • S. S. Dragomir and B. Mond, Integral inequalities of hadamard type for log-convex functions, Demonstratio Mathematic, 31 (1998), 354-364.
  • S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2002.
  • D. S. Mitrinović and I. B. Lackovic, Hermite and convexity, Aequat. Math., 28 (1985), 229-232.
  • D. S. Mitrinović, J. E. Pečc arić and A. M. Fink, Clssical and New Inequalities in Analysis, Kluwer Academic Pulishers, Dordrecht, 1993.
  • B. G. Pachpatte, A note on integral inequalities involving two log-convex functions, Mathematical Inequalities & Applications, 7(4) (2004), 511-515.
  • J. E. Pečc arić, F. Proschan and Y. L. Tang, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1991.