Taiwanese Journal of Mathematics

$L(3,2,1)$-LABELING OF GRAPHS

Ma-Lian Chia, David Kuo, Hong-ya Liao, Cian-Hui Yang, and Roger K. Yeh

Full-text: Open access

Abstract

Given a graph $G,$ an $L(3,2,1)$-labeling of $G$ is a function $f$ from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(u)-f(v)|\geqslant 1$ if $d(u,v) = 3,$ $|f(u)-f(v)| \geqslant 2$ if $d(u,v) = 2$ and $|f(u)-f(v)| \geqslant 3$ if $d(u,v) = 1$. For a nonnegative integer $k$, a $k$-$L(3,2,1)$-labeling is an $L(3,2,1)$-labeling such that no label is greater than $k$. The $L(3,2,1)$-labeling number of $G$, denoted by $\lambda_{3,2,1}(G)$, is the smallest number $k$ such that $G$ has a $k$-$L(3,2,1)$-labeling. We study the $L(3,2,1)$-labelings of graphs in this paper. We give upper bounds for the $L(3,2,1)$-labeling numbers of general graphs and trees, and consider the $L(3,2,1)$-labeling numbers of several classes of graphs, such as the Cartesian product of paths and cycles, and the powers of paths.

Article information

Source
Taiwanese J. Math., Volume 15, Number 6 (2011), 2439-2457.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406480

Digital Object Identifier
doi:10.11650/twjm/1500406480

Mathematical Reviews number (MathSciNet)
MR2896127

Zentralblatt MATH identifier
1247.05203

Subjects
Primary: 05

Keywords
$L(3,2,1)$-labeling tree Cartesian product power path cycle

Citation

Chia, Ma-Lian; Kuo, David; Liao, Hong-ya; Yang, Cian-Hui; Yeh, Roger K. $L(3,2,1)$-LABELING OF GRAPHS. Taiwanese J. Math. 15 (2011), no. 6, 2439--2457. doi:10.11650/twjm/1500406480. https://projecteuclid.org/euclid.twjm/1500406480


Export citation

References

  • G. J. Chang and D. Kuo, The $L(2,1)$-labeling on graphs, SIAM J. Discrete Math., 9 (1996), 309-316.
  • J. Clipperton, J. Gehrtz, Z. Szaniszlo and D. Torkornoo, $L(3,2,1)$-Labeling of Simple Graphs, VERUM, Valparaiso University, 2006.
  • D. Gonçalves, On the $L(p,1)$-labelling of graphs, Discrete Math., 308 (2008), 1405-1414.
  • J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math., 5 (1992), 586-595.
  • W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE, 68 (1980), 1497-1514.
  • T. Hasunuma, T. Ishii, H. Ono and Y. Uno, An $O(n^{1.75})$ algorithm for $L(2,1)$-labeling of trees, Theoretical Computer Science, 410 (2009), 3702-3710.
  • D. Král and R. ŠS krekovski, A theorem about the channel assignment problem, SIAM J. Discrete Math., 16 (2003), 426-437.
  • Jia-Zhuang Liu and Zhen-dong Shao, The $L(3,2,1)$-labeling problem on graphs, Mathematica Applicata, 17(4) (2004), 596-602.
  • F. S. Roberts, Private communication through J. Griggs, 1988.
  • Zhen-dong Shao, The $L(3,2,1)$-labeling problem on graphs, J. Qufu Normal University, 30(3) (2004), 24-28.
  • R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math., 306 (2006), 1217-1231.