Taiwanese Journal of Mathematics

THE SOLUTION OF 3D-PHOTON TRANSPORT PROBLEM IN INTERSTELLAR CLOUD

Yu-Hsien Chang and Cheng-Hong Hong

Full-text: Open access

Abstract

In this paper we study a problem for photon transport in a host medium (e.g. an interstellar cloud where a localized source is present), that occupies a compact convex region $V$ in $R^{3}$. We find the generalized solution of the photon transport problem by means of the theory of equicontinuous semigroup of bounded linear operators on a sequentially complete locally convex topological vector space.

Article information

Source
Taiwanese J. Math., Volume 15, Number 5 (2011), 1957-1968.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406416

Digital Object Identifier
doi:10.11650/twjm/1500406416

Mathematical Reviews number (MathSciNet)
MR2880386

Zentralblatt MATH identifier
1231.82060

Subjects
Primary: 46A03: General theory of locally convex spaces 47D06: One-parameter semigroups and linear evolution equations [See also 34G10, 34K30] 82C70: Transport processes 85A25: Radiative transfer

Keywords
photon transport equicontinuous semigroup

Citation

Chang, Yu-Hsien; Hong, Cheng-Hong. THE SOLUTION OF 3D-PHOTON TRANSPORT PROBLEM IN INTERSTELLAR CLOUD. Taiwanese J. Math. 15 (2011), no. 5, 1957--1968. doi:10.11650/twjm/1500406416. https://projecteuclid.org/euclid.twjm/1500406416


Export citation

References

  • \item[1.] A. B. Morante, W. Lamb and A. C. Mcbride, Photon transport problems involving a point source, Analysis and Applications, 5(1) (2007), 77-93.
  • \item[2.] A. B. Morante and F. Mugelli, Identification of the boundary surface of an interstellar cloud from a measurement of the photon far-field, Math. Meth. Appl. Sci., 27 (2004), 627-642.
  • \item[3.] A. B. Morante, A mathematical model for gamma ray transport in the cardiac region, Journal of Mathematical Analysis and Applications, 244 (2000), 498-514.
  • \item[4.] A. B. Morante, Roach GF. Gamma ray transport in the cardiac region: an inverse problem, Journal of Mathematical Analysis and Applications, 269 (2002), 200-215.
  • \item[5.] Y. H. Chang and H. C. Hong, Generalized solution of Photon Transport Problem, Canad. Math. Bull., 54(1) (2011), 28-38.
  • \item[6.] Y. H. Chang and H. C. Hong, Generalized Solution of Non-autonomous Photon Transport Problem, Math. Meth. Appl. Sci., 33 (2010), 1012-1020.
  • \item[7.] Y. H. Choe, $C_{0}$-Semigroups on a locally convex space, J. Math. Anal. and Appal., 106 (1985), 293-320.
  • \item[8.] F. Treves, Topological Vector Spaces, Distributions and Kernals, Academic Press, London, 1967.
  • \item[9.] John Horvath, Topological Vector Spaces and Distributions, Vol. 1, Addsion-Wesley, 1966.
  • \item[10.] G. Kothe, Topological vector spaces II, Springer-Verlag, New York/Heidelberg/Berlin, 1979.
  • \item[11.] Meri Lisi and Silvia Totaro, Photon transport with a localized source in locally convex spaces, Math. Meth. Appl. Sci., 29 (2006), 1019-1033.
  • \item[12.] K. Yosida, Functional analysis, 2nd ed., Academic Press, New York, 1968.