Taiwanese Journal of Mathematics

Vertex-coloring Edge-weightings of Graphs

Gerard J. Chang, Changhong Lu, Jiaojiao Wu, and Qinglin Yu

Full-text: Open access


A $k$-edge-weighting of a graph $G$ is a mapping $w: E(G) \to \{1,2,\ldots, k\}$. An edge-weighting $w$ induces a vertex coloring $f_w: V(G) \to \mathbb{N}$ defined by $f_w(v) = \sum_{v \in e} w(e)$. An edge-weighting $w$ is vertex-coloring if $f_w(u) \ne f_w(v)$ for any edge $uv$. The current paper studies the parameter $\mu(G)$, which is the minimum $k$ for which $G$ has a vertex-coloring $k$-edge-weighting. Exact values of $\mu(G)$ are determined for several classes of graphs, including trees and $r$-regular bipartite graph with $r \ge 3$.

Article information

Taiwanese J. Math., Volume 15, Number 4 (2011), 1807-1813.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05C15: Coloring of graphs and hypergraphs

edge-weighting vertex-coloring tree bipartite graph


Chang, Gerard J.; Lu, Changhong; Wu, Jiaojiao; Yu, Qinglin. Vertex-coloring Edge-weightings of Graphs. Taiwanese J. Math. 15 (2011), no. 4, 1807--1813. doi:10.11650/twjm/1500406380. https://projecteuclid.org/euclid.twjm/1500406380

Export citation


  • L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed, Vertex colouring edge partitions, J. Combin. Theory, Series B, 94 (2005), 237-244.
  • L. Addario-Berry, K. Dalal, C. Mcdiarmid, B. A. Reed and A. Thomason, Vertex-colouring edge-weightings, Combinatorica, 27 (2007), 1-12.
  • L. Addario-Berry, K. Dalal and B. A. Reed, Degree constrainted subgraphs, Discrete Applied Math., 156 (2007), 1168-1174.
  • M. Aigner, E. Triesch and Zs. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics 90, A. Barlotti et al., (eds), Elsevier Science Pub., New York, 1992, pp. 1-9.
  • P. N. Balister, O. M. Riordan and R. H. Schelp, Vertex-distinguishing edge colorings of graphs, J. Graph Theory, 42 (2003), 95-109.
  • A. C. Burris and R. H. Schelp, Vertex-distinguishing proper edge colorings of graphs, J. Graph Theory, 26 (1997), 73-82.
  • K. Edwards, The harmonious chromatic number of bounded degree graphs, J. London Math. Soc., 55 (1997), 435-447.
  • A. Frieze, R. J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory, 41 (2002), 120-137.
  • M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weighting: toward the 1-2-3-conjecture, J. Combin. Theory, Series B, 100 (2010), 347-349.
  • M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory, Series B, 91 (2004), 151-157.
  • T. Wang and Q. Yu, On vertex-coloring $13$-edge-weighting, Front. Math. China, 3 (2008), 1-7.