Taiwanese Journal of Mathematics

The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function

Junesang Choi and H. M. Srivastava

Full-text: Open access


Almost eleven decades ago, Barnes introduced and made a systematic investigation on the multiple Gamma functions $\Gamma_n$. In about the middle of 1980s, these multiple Gamma functions were revived in the study of the determinants of Laplacians on the $n$-dimensional unit sphere ${\bf S}^n$ by using the multiple Hurwitz zeta functions $\zeta_n(s,a)$. In this paper, we first aim at presenting a generalized Hurwitz formula for $\zeta_n(s,a)$ together with its various special cases. Secondly, we give analytic continuations of multiple Hurwitz-Euler eta function $\eta_n(s,a)$ in two different ways. As a by-product of our second investigation, a relationship between $\eta_n(-\ell,a)$ $(\ell \in \mathbb{N}_0)$ and the generalized Euler polynomials $E_\ell^{(n)}(n-a)$ is also presented.

Article information

Taiwanese J. Math., Volume 15, Number 2 (2011), 501-522.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$ 11M99: None of the above, but in this section
Secondary: 33B99: None of the above, but in this section

Gamma function multiple Gamma functions Riemann zeta function Hurwitz zeta function multiple Hurwitz zeta function eta function multiple Hurwitz-Euler eta function Taylor-Maclaurin series expansion generalized Bernoulli numbers and polynomials


Choi, Junesang; Srivastava, H. M. The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function. Taiwanese J. Math. 15 (2011), no. 2, 501--522. doi:10.11650/twjm/1500406218. https://projecteuclid.org/euclid.twjm/1500406218

Export citation


  • E. W. Barnes, The theory of the $G$-function, Quart. J. Math., 31 (1899), 264-314.
  • E. W. Barnes, Genesis of the double Gamma function, Proc. London Math. Soc., (Ser. 1), 31 (1900), 358-381.
  • E. W. Barnes, The theory of the double Gamma function, Philos. Trans. Roy. Soc. London Ser. A, 196 (1901), 265-388.
  • E. W. Barnes, On the theory of the multiple Gamma functions, Trans. Cambridge Philos. Soc., 19 (1904), 374-439.
  • J. Choi, Determinant of Laplacian on $ S^3$, Math. Japon., 40 (1994), 155-166.
  • J. Choi, Explicit formulas for the Bernolli polynomials of order $n$, Indian J. Pure Appl. Math., 27 (1996), 667-674.
  • M. Garg, K. Jain and H. M. Srivastava, Some relationships between thegeneralized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions,Integral Transform. Spec. Funct., 17 (2006), 803-815.
  • H. Kumagai, The determinant of the Laplacian on the $n$-sphere, Acta Arith., 91 (1999), 199-208.
  • S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct., 17 (2006), 817-827.
  • B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211.
  • J. R. Quine and J. Choi, Zeta regularized products and functional determinants on spheres, Rocky Mountain J. Math., 26 (1996), 719-729.
  • H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
  • I. Vardi, Determinants of Laplacians and multiple Gamma functions, SIAM J. Math. Anal., 19 (1988), 493-507.
  • A. Voros, Special functions, spectral functions and the Selberg Zeta function, Comm. Math. Phys., 110 (1987), 439-465.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis$:$ An Introduction to the General Theory of Infinite Processes and of Analytic Functions$;$ With an Account of the Principal Transcendental Functions, Fourth edition, Cambridge University Press, Cambridge, London and New York, 1963.