Taiwanese Journal of Mathematics
- Taiwanese J. Math.
- Volume 14, Number 6 (2010), 2383-2403.
Identification Problems for Isotropic Viscoelastic Materials with Long Nonlinear Memory
Jinsoo Hwang and Shin-ichi Nakagiri
Abstract
This paper is concerned with the identification problems of unknown parameters in viscoelastic materials with long nonlinear memory. The unknown parameters are diffusion constants and kernels in nonlinear memory terms, and the identification of such parameters is studied by means of quadratic optimal control theory due to Lions [10]. The existence of optimal parameters is proved, and the necessary condition is established for distributive and terminal values observation by using the transposition method.
Article information
Source
Taiwanese J. Math., Volume 14, Number 6 (2010), 2383-2403.
Dates
First available in Project Euclid: 18 July 2017
Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406081
Digital Object Identifier
doi:10.11650/twjm/1500406081
Mathematical Reviews number (MathSciNet)
MR2742370
Zentralblatt MATH identifier
05896865
Subjects
Primary: 73F99 93B30: System identification 49K20: Problems involving partial differential equations 93E24: Least squares and related methods
Keywords
identificatin problem viscoelastic materials with long nonlinear memory optimal parameter transposition method
Citation
Hwang, Jinsoo; Nakagiri, Shin-ichi. Identification Problems for Isotropic Viscoelastic Materials with Long Nonlinear Memory. Taiwanese J. Math. 14 (2010), no. 6, 2383--2403. doi:10.11650/twjm/1500406081. https://projecteuclid.org/euclid.twjm/1500406081