Taiwanese Journal of Mathematics

ON PERIODIC CONTINUED FRACTIONS OVER $\mathbb{F}_q((X^{−1}))$

H. Ben Amar and M. Mkaouar

Full-text: Open access

Abstract

Let $\mathbb{F}_q$ be a field with $q$ elements of characteristic $p$ and $\mathbb{F}_q((X^{−1}))$ be the field of formal power series over $\mathbb{F}_q$. Let $f$ be a quadratic formal power series of continued fraction expansion $[b_0; b_1, \ldots, b_s, \overline{a_1, \ldots, a_t}]$, we denote by $t = \operatorname{Per}(f)$ the period length of the partial quotients of $f$. The aim of this paper is to study the continued fraction expansion of $Af$ where $A$ is a polynomial $\in \mathbb{F}_q[X]$. In particular we study the asymptotic behavior of the functions \[ S(N,n) = \sup_{\operatorname{deg} A = N} \sup_{f \in \Lambda_{n}} \operatorname{Per}(Af) \quad \textrm{and} \quad R(N) = \sup_{n \geq 1} \frac{S(N,n)}{n}, \] where $\Lambda_{n}$ is the set of quadratic formal power series of period $n$ in $\mathbb{F}_q((X^{−1}))$.

Article information

Source
Taiwanese J. Math., Volume 14, Number 5 (2010), 1935-1956.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406025

Digital Object Identifier
doi:10.11650/twjm/1500406025

Mathematical Reviews number (MathSciNet)
MR2724142

Zentralblatt MATH identifier
1227.11030

Citation

Amar, H. Ben; Mkaouar, M. ON PERIODIC CONTINUED FRACTIONS OVER $\mathbb{F}_q((X^{−1}))$. Taiwanese J. Math. 14 (2010), no. 5, 1935--1956. doi:10.11650/twjm/1500406025. https://projecteuclid.org/euclid.twjm/1500406025


Export citation

References

  • H. Cohen, Multiplication par un entier d'une fraction continue periodique, Acta Arith., 23 (1974), 129-148.
  • T. W. Cusick, Integer multiples of periodic continued fractions, Pacific Math., 78 (1978), 47-60.
  • M. Mendès France, Sur les fractions continues limitées, Acta. Arith, 23 (1973), 207-215.
  • M. Mendès France, The depth of a rational number, Colloquia Mathematica Societatis Janos Bolyai. 13 Topics IN Number Theory, Debrecen (UNGARY), (1974), pp. 183-194.
  • G. N. Raney, On continued fractions and finite automata, Math. Ann., 206 (1973), 265-283.