Taiwanese Journal of Mathematics


Rosihan M. Ali and V. Ravichandran

Full-text: Open access


For a fixed analytic univalent function $\phi$, the class of meromorphic univalent $\alpha$-convex functions with respect to $\phi$ is introduced. A representation theorem for functions in the class, as well as a necessary and sufficient condition for functions to belong to the class are obtained. Also we obtain a sharp growth theorem and estimate on a certain coefficient functional for meromorphic starlike functions with respect to $\phi$. Differential subordination and superordination conditions are also obtained for the subclass of meromorphic starlike functions with respect to $\phi$.

Article information

Taiwanese J. Math., Volume 14, Number 4 (2010), 1479-1490.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.)
Secondary: 30C80: Maximum principle; Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination

convolution univalent meromorphic functions differential subordination and superordination


Ali, Rosihan M.; Ravichandran, V. CLASSES OF MEROMORPHIC α-CONVEX FUNCTIONS. Taiwanese J. Math. 14 (2010), no. 4, 1479--1490. doi:10.11650/twjm/1500405962. https://projecteuclid.org/euclid.twjm/1500405962

Export citation


  • T. Bulboacă, Classes of first-order differential superordinations, Demonstratio Math., 35(2) (2002), 287-292.
  • J. Clunie, On meromorphic schlicht functions, J. London Math. Soc., 34 (1959), 215-216.
  • N. E. Cho and S. Owa, Sufficient conditions for meromorphic starlikeness and close-to-convexity of order $\alpha$, Int. J. Math. Math. Sci., 26(5) (2001), 317-319.
  • V. Karunakaran, On a class of meromorphic starlike functions in the unit disc, Math. Chronicle, 4(2-3) (1976), 112-121.
  • S. R. Kulkarni and Sou. S. S. Joshi, On a subclass of meromorphic univalent functions with positive coefficients, J. Indian Acad. Math., 24(1) (2002), 197-205.
  • W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis $($Tianjin, 1992$)$, 157-169, Internat. Press, Cambridge, MA.
  • J. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 (1970), 220-228.
  • S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York, 2000.
  • S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48(10) (2003), 815-826.
  • M. Nunokawa and O. P. Ahuja, On meromorphic starlike and convex functions, Indian J. Pure Appl. Math., 32(7) (2001), 1027-1032.
  • Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221-235.
  • V. Ravichandran, S. Sivaprasad Kumar and M. Darus, On a subordination theorem for a class of meromorphic functions, J. Inequal. Pure Appl. Math., 5(1) (2004), Article 8, 4 pp. (electronic).
  • V. Ravichandran, M. Bolcal, Y. Polotoglu and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat., 34 (2005), 9-15.
  • W. C. Royster, Meromorphic starlike multivalent functions,\! Trans. Amer. Math. Soc., 107 (1963), 300-308.
  • S. Ruscheweyh, Convolutions in Geometric Function Theory, Presses Univ. Montréal, Montreal, Que., 1982.
  • H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, World Sci. Publishing, River Edge, NJ, 1992.
  • B. A. Uralegaddi and A. R. Desai, Integrals of meromorphic starlike functions with positive and fixed second coefficients, J. Indian Acad. Math., 24(1) (2002), 27-36.