Taiwanese Journal of Mathematics

BOUNDEDNESS OF OPERATORS ON HARDY SPACES

Kai Zhao and Yongsheng Han

Full-text: Open access

Abstract

In [1], the author provided an example which shows that there is a linear functional bounded uniformly on all atoms in $H^1(\mathbb{R}^n)$, and it can not be extended to a bounded functional on $H^1(\mathbb{R}^n)$. In this note, we first give a new atomic decomposition, where the decomposition converges in $L^2(\mathbb{R}^n)$ rather than only in the distribution sense. Then using this decomposition, we prove that for $0 \lt p \leq 1$, $T$ is a linear operator which is bounded on $L^{2}(\mathbb{R}^n)$, then $T$ can be extended to a bounded operator from $H^{p}(\mathbb{R}^n)$ to $L^{p}(\mathbb{R})$ if and only if $T$ is bounded uniformly on all $(p,2)$-atoms in $L^{p}(\mathbb{R}^n)$. A similar result from $H^{p}(\mathbb{R}^n)$ to $H^{p}(\mathbb{R}^n)$ is also obtained. These results still hold for the product Hardy space and Hardy space on spaces of homogeneous type.

Article information

Source
Taiwanese J. Math., Volume 14, Number 2 (2010), 319-327.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405791

Digital Object Identifier
doi:10.11650/twjm/1500405791

Mathematical Reviews number (MathSciNet)
MR2655771

Zentralblatt MATH identifier
1209.42013

Subjects
Primary: 42B30: $H^p$-spaces

Keywords
boundedness operator Calderón reproducing formula atomic decomposition Hardy space

Citation

Zhao, Kai; Han, Yongsheng. BOUNDEDNESS OF OPERATORS ON HARDY SPACES. Taiwanese J. Math. 14 (2010), no. 2, 319--327. doi:10.11650/twjm/1500405791. https://projecteuclid.org/euclid.twjm/1500405791


Export citation

References

  • M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc., 133(12) (2005), 3535-3542.
  • R. R. Coifman, A real variable characterization of $H^p$, Studia Math., 51 (1974), 269-274.
  • S. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math., 104(3) (1982), 455-468.
  • R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645.
  • Y. S. Han, Triebel-Lizorkin spaces on spaces of homogeneous type, Studia Math., 108 (1994), 247-273.
  • R. H. Latter, A decomposition of $H^p(\R^n)$ in terms of atoms, Studia Math., 62 (1978), 92-101.