Taiwanese Journal of Mathematics

EXISTENCE THEOREM ON VARIATIONAL INEQUALITY PROBLEM WITH LOCAL INTERSECTION PROPERTY

Hemant Kumar Nashine

Full-text: Open access

Abstract

Existence theorem for a variational inequality problem with local intersection property has been obtained in topological space by relaxing the property of open inverse values from the result of Vetrivel and Nanda [7].

Article information

Source
Taiwanese J. Math., Volume 14, Number 1 (2010), 267-272.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405740

Digital Object Identifier
doi:10.11650/twjm/1500405740

Mathematical Reviews number (MathSciNet)
MR2603455

Zentralblatt MATH identifier
1192.90202

Subjects
Primary: 90C30: Nonlinear programming 49N15: Duality theory

Keywords
variational inequality fixed point upper semicontinuous map local intersection property open inverse values

Citation

Nashine, Hemant Kumar. EXISTENCE THEOREM ON VARIATIONAL INEQUALITY PROBLEM WITH LOCAL INTERSECTION PROPERTY. Taiwanese J. Math. 14 (2010), no. 1, 267--272. doi:10.11650/twjm/1500405740. https://projecteuclid.org/euclid.twjm/1500405740


Export citation

References

  • X. P. Ding, A coincidence theorem involving contractible spaces, Appl. Math. Lett., 10(3) (1997), 53-56.
  • J. Gwinner, On fixed points and variational inequalities - a circular tour, Nonlinear Anal. Theory Methods Appl., 5(5) (1981), 565-583.
  • C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl., 156(2) (1991), 341-357.
  • M. Lassonde, Fixed points for kakutani factorizable multifunctions, J. Math. Anal. Appl., 152(1) (1990), 46-60.
  • N. Shioji, A further generalization of Knaster-Kuratoski-Masurkiewicz theorem, Proc. Amer. Math. Soc., 111 (1991), 187-195.
  • E. Tarafdar and X. Z. Yuan, A remark on coincidence theorems, Proc. Amer. Math. Soc., 122(3) (1994), 875-859.
  • V. Vetrivel and S. Nanda, A remark on gwinner's existence theorem on variational inequality problem, Internat. J. Math. Math. Sci., 24(8) (2000), 573-575.
  • X. Wu and S. Shen, A further generelization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl., 197 (1996), 61-74.
  • E. Zeidler, Nonlinear Functional Analysis and its Applications. III, Variational methods and optimization, Translated from the German by Leo F. Boron., Springer-Verlag, New York, Berlin, 1985.