Taiwanese Journal of Mathematics

OPTIMALITY CONDITIONS AND DUALITY FOR A CLASS OF NONDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING PROBLEMS

Do Sang Kim and Kwan Deok Bae

Full-text: Open access

Abstract

In this paper, we formulate a general dual problem for a class of nondifferentiable multiobjective programs involving the support function of a compact convex set and linear functions. Fritz John and Kuhn-Tucker optimality conditions are presented. In addition, we establish weak and strong duality theorems for weakly efficient solutions under suitable generalized $(F,\alpha, \rho, d)$ convexity assumptions. Some special cases of our duality results are given.

Article information

Source
Taiwanese J. Math., Volume 13, Number 2B (2009), 789-804.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405403

Digital Object Identifier
doi:10.11650/twjm/1500405403

Mathematical Reviews number (MathSciNet)
MR2510833

Zentralblatt MATH identifier
1188.90273

Subjects
Primary: 90C46: Optimality conditions, duality [See also 49N15] 90C26: Nonconvex programming, global optimization 90C29: Multi-objective and goal programming

Keywords
nondifferentiable multiobjective programming problems generalized $(F,\alpha,\rho,d)$-convex functions optimality conditions duality

Citation

Kim, Do Sang; Bae, Kwan Deok. OPTIMALITY CONDITIONS AND DUALITY FOR A CLASS OF NONDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING PROBLEMS. Taiwanese J. Math. 13 (2009), no. 2B, 789--804. doi:10.11650/twjm/1500405403. https://projecteuclid.org/euclid.twjm/1500405403


Export citation

References

  • F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983, pp. 235-236.
  • V. Jeyakumar, Equivalence of saddle-points and optima, and duality for a class of nonsmooth non-convex problems, Journal of Mathematical Analysis and Applications, 130 (1988), 334-343.
  • V. Jeyakumar and B. Mond, On generalized convex mathematical programming, Journal of the Australian Mathematical Society, 34B (1992), 43-53.
  • S. J. Kim, M. H. Kim and D. S. Kim, Optimality and Duality for a Class of Nondifferentiable Multiobjective Fractional Programming Problems, Journal of Optimization Theory and Applications, 129(1) (2006), 131-146.
  • H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with V-$\rho$-invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412.
  • Z. A. Liang, H. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, Journal of Optimization Theory and Applications, 110(3) (2001), 611-619.
  • S. N. Lal, B. Nath and A. Kumar, Duality for some nondifferentiable static multiobjective programming problems, Journal of Mathematical Analysis and Applications, 186 (1994), 862-867.
  • H. J. Lee, Y. J. Lee and D. S. Kim, Generalized second order symmetric duality in nondifferentiable multiobjective programming, Taiwanese Journal of Mathematics, 11(3) (2007), 745-764.
  • O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969, pp. 66-67.
  • O. L. Mangasarian, and S. Fromovitz, The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints, Journal of Mathematical Analysis and Application, 17 (1967), 37-47.
  • S. K. Mishra and R. N. Mukherjee, On generalized convex multi-objective nonsmooth programming, Journal of the Australian Mathematical Society, 38B (1996), 140-148.
  • B. Mond and M. Schechter, Non-differentiable symmetric duality, Bulletin of the Australian Mathematical Society, 53 (1996), 177-187.
  • V. Preda, On efficiency and duality for multiobjective programs, Journal of Mathematical Analysis and Applications, 166 (1992), 365-377.
  • X. M. Yang, K. L. Teo and X. Q. Yang, Duality for a class of nondifferentiable multiobjective programming problem, Journal of Mathematical Analysis and Applications, 252 (2000), 999-1005.