Taiwanese Journal of Mathematics


Alireza Medghalchi and Shahram Saeidi

Full-text: Open access


IIn this paper, we deal with a class of nonexpansive mappings with the property $D(\overline{co} F_{\frac 1n} (T),F(T))\to 0$, as $n\to \infty$, where $D$ is the Hausdorff metric. We show that nonexpansive mappings with compact domains enjoy this property and give some examples of this kind of mappings with noncompact domains in $l^\infty$. Then we prove a nonlinear ergodic theorem, and a convergence theorem of mann's type for this kind of mappings.

Article information

Taiwanese J. Math., Volume 12, Number 9 (2008), 2489-2499.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc. 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

fixed point nonexpansive mapping nonlinear ergodic theorem mapping of type ($\gamma$) strong convergence mann's type


Medghalchi, Alireza; Saeidi, Shahram. WEAK AND STRONG CONVERGENCE FOR SOME OF NONEXPANSIVE MAPPINGS. Taiwanese J. Math. 12 (2008), no. 9, 2489--2499. doi:10.11650/twjm/1500405191. https://projecteuclid.org/euclid.twjm/1500405191

Export citation


  • [1.] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis, Springer-Verlage, Berlin-Heidelberg, 1999.
  • [2.] S. Atsushiba and W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with compact domains, Math. Japonica., 52 (2000), 183-195.
  • [3.] S. Atsushiba and W. Takahashi, A weak convergence theorem for nonexpansive semigroups by the mann iteration process in Banach spaces, Proceeding of the International Conference on Nonlinear Analysis and Convex Analysis, (W. Takahashi and T. Tanaka, Eds.), World Scientific Publishers, pp. 102-109, 1999.
  • [4.] S. Atsushiba and W. Takahashi, Strong convergence theorems for one-parameter nonexpansive semi-groups with compact domains, in: Y. J. Cho, J. K. Kim and S. M. Kang (Eds.), Fixed Point Theory and Applications, Vol. 3, Nova Science Publisher, New York, 2002, pp. 15-31.
  • [5.] J. B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B, 280 (1975), 1511-1514.
  • [6.] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math., 18, part 2, 1976.
  • [7.] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32 (1979), 107-116.
  • [8.] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314.
  • [9.] M. Edelestein, On non-expansive mappings of Banach spaces, Proc. Camb. Phill. Soc., 60 (1964), 439-447.
  • [10.] K. Goeble and W. A. Kirk, Topics in metric fixed point theory, Cambridge Univ. Press, 1990.
  • [11.] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.